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Abstract. Image-based generative methods, such as generative adver-
sarial networks (GANs) have already been able to generate realistic im-
ages with much context control, specially when they are conditioned.
However, most successful frameworks share a common procedure which
performs an image-to-image translation with pose of figures in the image
untouched. When the objective is reposing a figure in an image while
preserving the rest of the image, the state-of-the-art mainly assumes a
single rigid body with simple background and limited pose shift, which
can hardly be extended to the images under normal settings. In this pa-
per, we introduce an image “inner space” preserving model that assigns
an interpretable low-dimensional pose descriptor (LDPD) to an articu-
lated figure in the image. Figure reposing is then generated by passing the
LDPD and the original image through multi-stage augmented hourglass
networks in a conditional GAN structure, called inner space preserving
generative pose machine (ISP-GPM). We evaluated ISP-GPM on repos-
ing human figures, which are highly articulated with versatile variations.
Test of a state-of-the-art pose estimator on our reposed dataset gave an
accuracy over 80% on PCK0.5 metric. The results also elucidated that
our ISP-GPM is able to preserve the background with high accuracy
while reasonably recovering the area blocked by the figure to be reposed.

Keywords: Conditional generative adversarial networks (cGANS) · In-
ner space preserving · Generative pose models · Articulated bodies.

1 Introduction

Photographs are important because they seem to capture so much: in the right
photograph we can almost feel the sunlight, smell the ocean breeze, and see the
fluttering of the birds. And yet, none of this information is actually present in a
two-dimensional image. Our human knowledge and prior experience allow us to
recreate “much” of the world state (i.e. its inner space) and even fill in missing
portions of occluded objects in an image since the manifold of probable world
states has a lower dimension than the world state space.

Like humans, deep networks can use context and learned “knowledge” to fill
in missing elements. But more than that, if trained properly, they can modify
(repose) a portion of the inner space while preserving the rest, allowing us to
significantly change portions of the image. In this paper, we present a novel
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Fig. 1. Inner space preserving reposing of one of Thomas Eakins’ paintings: William
Rush Carving His Allegorical Figure of the Schuylkill River, 1908.

deep learning based generative model that takes an image and pose specification
and creates a similar image in which a target element is reposed. In Fig. 1, we
reposed a human figure a number of different ways based on a single painting
by the early 20th century painter, Thomas Eakins.

In reposing a figure there are three goals: (a) the output image should look
like a realistic image in the style of the source image, (b) the figure should
be in the specified pose, and (c) the rest of the image should be as similar to
the original as possible. Generative adversarial networks (GANs) [23], are the
“classic” approach to solving the first goal by generating novel images that match
a certain style. More recently, other approaches have been developed that merge
deep learning and probabilistic models including the variational autoencoder
(VAE) to generate realistic images [57, 52, 35, 16, 7, 73, 37, 48, 70].

The second goal, putting the figure in the correct pose, requires a more con-
trolled generation approach. Much of the work in this area is based around
conditional GANs (cGAN) [42] or conditional VAE (cVAE) [62, 35]. The contex-
tual information can be supplied in a variety of ways. Many of these algorithms
generate based on semantic meaning, which could be class labels, attributes,
or text descriptors [22, 67, 54, 65, 47]. Others are conditioned on an image often
called as image-to-image translation [70]. The success of image-to-image trans-
lation is seen in many tasks including colorization [73, 36, 26], semantic image
segmentation [11, 38, 58, 24, 43, 13, 45, 19, 49, 12], texture transfer [17], outdoor
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Fig. 2. Generated bird figures from work presented in [56] with captions as: (a) this
bird has a black head, a pointy orange beak, and yellow body, (b) this bird has a red

head, a pointy orange beak, and yellow body.

photo generation with specific attributes [60, 34], scene generation with seman-
tic layout [30], and product photo generation [72, 18].

At a superficial level, this seems to solve the reposing problem. However,
these existing approaches generally either focus on preserving the image (goal c)
or generating an entirely novel image based on the contextual image (goal b), but
not both. For example, when transforming a photo of a face to a sketch, the result
will keep the original face spatial contour unchanged [70], and when generating a
map from a satellite photo, the street contours will be untouched [27]. Conversely,
in attribute based generation, the whole image is generated uniquely for each
description [67, 30], so even minor changes will result in completely different
images. A demo case from an attribute based bird generation model from [56,
54] is demonstrated in Fig. 2, in which only changing a bird’s head color from
black to red will alter nearly the entire image.1

Recently, there have been attempts to change some elements of the inner
space while preserving the remaining elements of an image. Some works suc-
cessfully preserve the object graphical identities with varying poses or lighting
conditions [32, 40, 33, 28, 25, 41, 15, 68]. These works include human face or office
chair multi-view regeneration. Yet, all these works are conducted under sim-
plified settings that assume a single rigid body with barren textures and no
background. Another work limited the pose range to stay on the pose manifold
[68]. This makes them very limited when applied on images from natural settings
with versatile textures and cluttered background.

We address the problem of articulated figure reposing while preserving the
image’s inner space (goals b and c) via the introduction of our inner space
preserving generative pose machine (ISP-GPM) that generates realistic reposed
images (goal a). In ISP-GPM, an interpretable low-dimensional pose descrip-
tor (LDPD) is assigned to the specified figure in the 2D image domain. Altering
LDPD causes figure to be reposed. For image regeneration, we used stack of aug-
mented hourglass networks in a cGAN framework, conditioned on both LDPD
and the original image. We replaced hourglass network original downsampling
mechanism by pure convolutional layers to maximize the “inner space” preser-
vation between the original and reposed images. Furthermore, we extended the

1 For this experiment, the random term was set to zero to rule out differences due to
the input.
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“pose” concept to a more general format which is no longer a simple rotation of
a single rigid body, but instead the relative relationship between all the physical
entities present in an image and its background. We push the boundary to an
extreme case—a highly articulated object (i.e. human body) against a natural-
istic background (code available at [2]). A direct outcome of ISP-GPM is that
by altering the pose state in an image, we can achieve unlimited generative rein-
terpretation of the original world, which ultimately leads to a one-shot ISP data
augmentation.

2 Related Work

Pose altering is very common in our physical world. If we take photographs
of a dynamic articulated object over time, they can hardly be the same. These
images share a strong similarity due to having a relatively static background with
only differences caused by changes in the object’s pose states. We can perceive
these differences since the pose information is partially reflected in these images.
However, the true “reposing” actually happens in the 3D space and the 2D
mapping is just a simple projection afterwards. This fact inspired 3D rendering
engines such as Blender, Maya, or 3DS Max to simulate the physical world in
(semi)exact dimensions at graphical level, synthesize 3D objects in it, repose
the object in 3D, and then finally render a 2D image from the reposed object
using a virtual camera [37]. Following this pipeline, there are recent attempts to
generate synthesized human images [51, 61, 63]. SCAPE method parameterizes
the human body shapes into a generalized template using dense 3D scans of a
person in multiple poses [5]. Authors in [11] mapped the photographs of clothing
into SCAPE model to boost human 3D pose dataset. Physical rendering and real
textures are combined in [64] to generate a synthetic human dataset. However,
these methods inevitably require sophisticated 3D rendering engines and avatar
data is needed either from full 3D scanning with special equipment or generated
from generalized templates [39, 5], which means such data is not easily accessible
or extendable to novel figures.

Image-based generative methods, such as GANs and VAEs have already been
able to generate realistic images with much context control, specially when they
are conditioned [27, 7, 54]. There are also works addressing pose issue of rigid
(e.g. chair [14]) or single (e.g. face [68]) objects. An autoencoder structure to
capture shift or rotation changes is employed in [35], which successfully regener-
ates images of 2D digits and 3D graphics rendered images with pose shift. Deep
convolutional inverse graphics network (IGN) [33] learns interpretable represen-
tation of images including out-of-plane rotations and lighting variations to gen-
erate face and chairs from different view points. Based on IGN concept, Yang
employed a recurrent network to apply out-of-plane rotations to human faces
and 3D chairs to generate new images [68]. In [15], authors built a convolutional
neural network (CNN) model for chair view rendering, which can interpolate
between given viewpoints to generate missing ones or invent new chair styles by
interpolating between chairs from the training set. By incorporating 3D mor-
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phable model into a GAN structure, the authors in [71] proposed a framework
which can generate face frontalization in the wild with less training data. These
works as a matter of fact in a sense preserve the inner space information with the
target identity unchanged. However, most are limited to a single rigid body with
simple or no background, and are inadequate to deal with complex articulated
objects such as human body in a realistic background setting.

In the last couple of years, there have been a few image-based generative
models proposed for human body reposing. In [56] and [54], by localizing exact
body parts, human figures were synthesized with provided attributes. However,
though pose information is provided exactly, the appearance are randomly sam-
pled under attribute context. Lassner and colleagues in [37] generated vivid hu-
man figures with varying poses and clothing textures by sampling from a given
set of attributes. A direct result of sampling based method is a strong coupling
effect between different identities in the image, in which the pose state cannot
get altered without the image inner space change.

In this paper, we focus on the same pose and reposing topics but extend them
to a more general format of highly articulated object with versatile background
under realistic/wild settings. We are going to preserve the original inner space of
the image, while altering the pose of the an specific figure in the image. Instead
of applying a large domain shift on an image such as changing the day to night,
or the summer to winter, we aim to model a pose shift caused by a movement in
the 3D physical world, while the inner space of the world stays identical to its
version before this movement. Inspired by this idea, we present our inner space
preserving generative pose machine (ISP-GPM), in which rather than attribute
based sampling, we focus on specific image instances.

3 World State and Inner Space of An Image

“No man ever steps in the same river twice” quoted from Heraclitus.
Our world is dynamically changing. Taking one step forward, raising hand a

little bit, moving our head to the side, all these tiny motions make us visually
different from a moment ago. These changes are also dependably reflected in the
photographs taken from us. In most cases, for a short period of time, we can
assume such changes are purely caused by pose shift instead of characteristic
changes of all related entities. Let’s simply call the partial world captured by an
image “the world”. If we model the world by a set of rigid bodies, for a single
rigid body without background (the assumption in the most of the state-of-the-
art), the world state can be described by appearance term α and the pose state
β of the rigid body as Ws = {α,β} and the reposing process is conduced by
altering β to a target pose β̂. However, real world can hardly be described by
a simple rigid body, but clustered articulated rigid bodies and background. In
this case, we formulate the world state as:

Ws = {αi,βi, φ(i, j)|i, j ∈ N}. (1)

where, N stands for the total number of rigid bodies in the world and φ(i, j)
stands for the constraints between two rigid bodies. For example, a human has
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Fig. 3. An overview of the Inner Space Preserving Generative Pose Machine (ISP-
GPM) framework.

N (depending on the granularity of the template that we choose) articulated
limbs in which the joints between them follow the biomechanical constraints of
the body. A pure reposing process in physical world should keep the αi terms
unchanged. However, in imaging process, only part of the αi information is
preserved as αin

i
with αi = αin

i
+ αout

i
, where αout

i
stands for the missing

information in the image with respect to the physical world. We assume each
image can partially preserved the physical world information and we call this
partially preserved world state the “inner space”. If αin

i
and φ(i, j) term are

preserved during figure i reposing, we call this process “inner space preserving”.
Another assumption is that in the majority of cases, the foreground (F ) and

the background (B) should be decoupled in the image, which means if figure
i ∈ F and figure j ∈ B, the φ(i, j) is empty or vice versa. This means if a bird
with black head and yellow body is the foreground, the identical bird can be in
different backgrounds such as on a tree or in the sky. However, strong coupling
between foreground and background is often seen in attribute-based models as
shown in Fig. 2. Instead, we designed our generative pose machine to reflect: (1)
inner space preserving, and (2) foreground and background decoupling.

4 ISP-GPM: Inner Space Preserving Generative Pose

Machine

The ISP-GPM addresses the extensive pose transformation of articulated figures
in an image through the following process: given an image with specified figure
and its interpretable low-dimensional pose descriptor (LDPD), ISP-GPM out-
puts a reposed figure with original image inner space preserved (see Fig. 3). The
key components of the ISP-GPM are: (1) a CNN interface converter to make
the LDPD compatible with the first convolutional layer of the ISP-GPM inter-
face, and (2) a generative pose machine to generate reposed figures using the
regression structure of hourglass networks when stacked in a cGAN framework
in order to force the pose descriptor into the regenerated images.

4.1 CNN Interface Converter

We employed an LDPD in the 2D image domain, which in the majority of
the human pose dataset such as Max Planck institute informatics (MPII) [3]
and Leeds sports pose (LSP) [29] is defined as the vector of 2D joint position
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coordinates. To make this descriptor compatible with the convolutional layer
interface of ISP-GPM, we need a CNN interface converter. The most straight
forward converter could simply set the joint point in the image, similar to the
work described in [56]. As human body can be represented by a connected graph
[4, 8], more specifically a tree structure, in this work we further appended the
edge information into our converter. Assume human pose to be represented by
2D locations of its N joints. Let’s use N channel maps to hold this information
as joint map, JMap. For each joint i with coordinates (xi, yi), if joint i’s parent
joint exists, we are going to draw a line from (xi, yi) to its parent location in
channel i of JMap. In generating JMaps, the draw operation is conducted by
image libraries such as OpenCV [10].

4.2 Stacked Fully Convolutional Hourglass cGAN

Many previous works have proved the effectiveness of multi-stage estimation
structure in human pose estimation, such as 2016 revolutionary work of con-
volutional pose machine [66]. As an inverse operation to regenerate figures of
humans, we employed a similar multi-stage structure. Furthermore, human pose
can be described in a multi-scale fashion, starting from simple joint description
to sophisticated clothing textures on each body part, which inspired the use of
an hourglass model with a stacked regression structure [44]. However, instead
of pose estimation or segmentation, for human reposing problem, more detailed
information needs to be preserved in both encoding and decoding phases of the
hourglass network. Therefore, we replaced hourglass network’s max pooling and
the nearest upsampling modules by pure convolutional layers to maximize the
information preservation. The skip structure of the original hourglass network
is also preserved to let more original high frequency parts pass through. Origi-
nal hourglass is designed for image regression purpose. In our case, we augment
hourglass original design by introducing structure losses [27], which penalize the
joint configuration of the output. We forced the pose into the generated image
by employing a cGAN mechanism.

An overview of our stacked fully convolutional hourglass cGAN (FC-hourglass-
cGAN) is shown in Fig. 4, where we employed a dual skip mechanism, a module
level skip as well as the inner module level skips. Each FC-hourglass employs a
encoder-decoder like structure [46, 6, 44]. Stacked FC-hourglass plays the gener-
ator role in our design, while another convolutional net plays the discriminator
role. We employed an intermediate supervision mechanism similar to [44], how-
ever the supervision is conducted by both L1 loss and generator loss, as described
in the following section.

4.3 Stacked Generator and Discriminator Losses

Due to the ISP-GPM stacked structure, the generator loss comes from all in-
termediate stages to the final one. The loss for generator is then computed as:

LG(G,D) = Eu,v[logD(u, v)] +

Nstk∑

i=1

Eu[log(1−D(u,G(u)[i])]. (2)
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Fig. 4. Inside the stacked FC-hourglass-cGAN part of the ISP-GPM. Blu e arrows stand
for the image ow, yellow arrows for the hourglass feature maps, and green arrows for
JMap ow.
where,u stands for the combined input ofJMap and the original image, andv is
the target reposed image.G is stacked FC-hourglass that acts as the generator
role, Nstk stands for the total number of stacks in the generatorG, and D is
the discriminator part of the cGAN. Di�erent from commonly used generator ,
our G gives multiple output according to the stack number. G(u)[i ] stands for
the i -th output conditioned on u. Another di�erence from traditional cGAN
design is that we do not include the random termz as it is common in most
GAN based models [42, 62, 22, 67, 47, 23]. The particular reason to have this term
in traditional GAN based model is to introduce higher variation into th e sam-
pling process. The main reason behind introducing randomness in GAN is to
capture a probabilistic distribution which generates novel images that match a
certain style. However, our ISP-GPM follows quite opposite approach,and aims
to achieve a deterministic solution based on the inner space parameters, instead
of generating images from a sampling process.D term is the discriminator to
reveal if the input is real or fake, conditioned on our input u information.

Since our aim is regressing the �gure to a target pose on its subspace mani-
fold, low frequency components play an import role here to roughly localize the
�gure to the correct position. Therefore, we capture these components using a
classical L1 loss:

L L 1(G) =
N stkX

i =1

Eu;v [jj v � G(u)[i ]jj1]: (3)

We used a weighted term� to balance the importance of L1 andG losses in
our target objective function:

L �
obj = arg min

G
max

D
L G (G; D ) + �L L 1(G): (4)

5 Model Evaluation
To illustrate our inner space preserving concept and the performance of the
proposed ISP-GPM, we chose a speci�c �gure as our reposing target, the hu-






















