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Abstract. This work shows that it is possible to fool/attack recent
state-of-the-art face detectors which are based on the single-stage net-
works. Successfully attacking face detectors could be a serious malware
vulnerability when deploying a smart surveillance system utilizing face
detectors. In addition, for the privacy concern, it helps prevent faces be-
ing harvested and stored in the server. We show that existing adversarial
perturbation methods are not effective to perform such an attack, espe-
cially when there are multiple faces in the input image. This is because
the adversarial perturbation specifically generated for one face may dis-
rupt the adversarial perturbation for another face. In this paper, we call
this problem the Instance Perturbation Interference (IPI) problem. This
IPI problem is addressed by studying the relationship between the deep
neural network receptive field and the adversarial perturbation. Besides
the single-stage face detector, we find that the IPI problem also exists on
the first stage of the Faster-RCNN, the commonly used two-stage object
detector. As such, we propose the Localized Instance Perturbation (LIP)
that confines the adversarial perturbation inside the Effective Receptive
Field (ERF) of a target to perform the attack. Experimental results show
the LIP method massively outperforms existing adversarial perturbation
generation methods – often by a factor of 2 to 10.

Keywords: Adversarial · Interference · Effective receptive field · Single-
stage network · Detection.

1 Introduction

Deep neural networks have achieved great success in recent years on many appli-
cations [31, 10, 5, 28, 15, 27, 6, 39, 17]. However, it has been demonstrated in var-
ious works that by adding tiny, imperceptible perturbations onto the image, the
network output can be changed significantly [32, 4, 16, 25, 23, 11, 35, 19]. These
perturbations are often referred to as adversarial perturbations [4]. Most prior
works are primarily aimed at generating adversarial perturbations to fool neu-
ral networks for image classification tasks [32, 4, 16, 25, 23, 11, 22]. It is relatively
easier to attack these networks as the perturbations need to change only one
network decision for each image containing an instance/object of interest. This
means, there is only a single target and the target is the entire image. Recently,
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Fig. 1. An illustration of the Instance Perturbation Interference (IPI) problem. Up-

per row : two instances with their generated adversarial perturbations. The outer and
inner circles indicate the Theoretical Receptive Field (TRF) and Effective Receptive
Field (ERF), respectively. Lower row : one dimensional representation of the perturba-
tions. IPI problem refers to the perturbation generated for one instance significantly
disrupting the perturbation generated for the other instance. The disruption does not
have significant effect on the left case, whereas on the right case, it will reduce the
effectiveness of the attack

several methods have been proposed on more challenging attacks for segmenta-
tion [19, 3, 2] and object detection tasks [35], where there are significantly more
targets to attack within the input image.

In the field of biometrics, Sharif et al. [29] showed that face recognition sys-
tems can be fooled by applying adversarial perturbations, where a detected face
can be recognized as another individual. In addition, for the privacy concern,
biometric data in a dataset might be utilized without the consent of the users.
Therefore, Mirjalili et al. [20, 21] developed a technique to protect the soft bio-
metric privacy (e.g., gender) without harming the accuracy of face recognition.
However, in the above-mentioned methods, the faces are still captured and stored
in a server. In this paper, we propose a novel way to address these privacy issues
by avoiding the faces be detected completely from an image. Thus, attacking
face detection is crucial for both the security and privacy concerns.

With similar goals, previous works [29, 36] performed attacks on the Viola &
Jones (VJ) face detector [33]. However, deep neural networks have been shown
to be extremely effective in detecting faces [1, 6, 39, 12, 26, 37, 13, 24, 40], which
can achieve 2 times higher detection rate than the VJ. In this work, we tackle the
problem of generating effective adversarial perturbations for deep learning based
face detection networks. To the best of our knowledge, this is the first study that
attempts to perform such an adversarial attack on face detection networks.

Deep network based object/face detection methods can be grouped as two-
stage network, e.g., Faster-RCNN [28] and single-stage network [15, 27, 6, 24, 40].
In Faster-RCNN [9], a shallow region proposal network is applied to generate
candidates and a deep classification network is utilized for the final decision. The
Single-Stage (SS) network is similar to the region proposal network in Faster-
RCNN [28] but performs both object classification and localization simultane-
ously. By utilizing the Single-Stage network architecture, recent detectors [6, 24,
40] can detect faces on various scales with a much faster running time. Due to
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their excellent performance, we confine this paper to attacking the most recent
face detectors utilizing Single-Stage network.

We find that applying the commonly-used gradient based adversarial meth-
ods [4, 23] to the state-of-the-art face detection networks has not presented satis-
factory results. We point out that attacking a Single-Stage detector is challenging
and the unsatisfactory performance is attributed to the Instance Perturbation
Interference (IPI) problem. The IPI problem can be briefly explained as in-
terference between the perturbation required to attack one instance and the
perturbation required to attack a nearby instance. Since the recent adversarial
perturbation methods [35, 19] do not consider this problem, they become quite
ineffective in attacking SS face detector networks.

In this work, we attribute the IPI problem to the receptive field of deep neural
networks. Recent work [18] shows that the receptive field follows a 2D Gaussian
distribution, where the set of input image pixels closer to an output neuron have
higher impact on the neuron decision. The area where high impact pixels are
concentrated is referred to as the Effective Receptive Field (ERF) [18]. As illus-
trated in Fig. 1, if two faces are close to each other, the perturbation generated
to attack one face will reside in the ERF of another face. Prior work [34] shows
that adversarial attacks might fail when the specific structure is destroyed. Thus,
the residency in the ERF significantly hampers the success of attacking the other
face. In other words, the IPI problem happens when the interfering perturba-
tions disrupt the adversarial perturbations generated for the neighboring faces.
This IPI problem will become more serious when multiple faces exist in close
proximity and when the receptive field of the network is large. For the general
two-stage object detection, Faster-RCNN [28], we find that the IPI problem also
exists on its first stage network, i.e., region proposal network (RPN). We believe
this is the first work that describes and explains the IPI problem.
Contributions - We list our contributions as follows: (1) We describe and
provide theoretical explanation of the Instance Perturbation Interference prob-
lem that makes the existing adversarial perturbation generation method fail
to attack the SS face detector networks when multiple faces exist; (2) This is
the first study to show that it is possible to attack deep neural network based
face detector. More specifically, we propose an approach to attack Single-Stage
based face detector networks. (3) To perform the attack, we propose Localised
Instance Perturbation (LIP) method to generate instance based perturbations
by confining the perturbations inside each instance ERF.

2 Background

2.1 Adversarial Perturbation

As mentioned, attacking a network means attempting to change the network
decision on a particular target. A target t is defined as a region in the input image
where the generated adversarial perturbation is added to change the network
decision corresponding to this region. For example, the target t for attacking an
image classification network is the entire image.
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The adversarial perturbation concept was first introduced for attacking im-
age classification networks in [32, 4, 16, 25, 23, 11, 22]. Szegedy et al. [32] showed
that by adding imperceptible perturbations to the input images, one could make
the Convolutional Neural Network (CNN) predict the wrong class label with
high confidence. Goodfellow et al. [4] explained that the vulnerability of the
neural networks to the adversarial perturbations is caused by the linear nature
of the neural networks. They proposed a fast method to generate such adver-
sarial perturbations, naming the method Fast Gradient Sign Method (FGSM)
defined by: ξ = α sign(∇Xℓ(f(X), ytrue)), where α was a hyper-parameter [4].
The gradient was computed with respect to the entire input image X ∈ R

w×h

by back-propagation and the function sign() is the L∞ norm. Following this,
Kurakin et al. [11] proposed to extend FGSM by iteratively generating the ad-
versarial perturbations. At each iteration, the values of the perturbations were
clipped to control perceptibility. We denote it as I-FGSM in this work. To re-
duce perceptibility, Moosavi-Dezfooli et al. [23] proposed the method DeepFool,
which iteratively adds the minimal adversarial perturbations to the images by
assuming the classifier was linear at each iteration. The existence of universal
perturbations for image classification was shown in [22].

More recently, adversarial examples were extended into various applications
such as semantic segmentation [35, 19, 2, 3] and object detection [35]. Metzen et
al. [19] adapted the I-FGSM described in [11] into the semantic segmentation
domain, where every pixel was a target. They demonstrated that the gradients
of the loss for different target pixels might point to the opposite directions. In
object detection, the instances of interest are the detected objects. Thus, the
targets are the detected region proposals containing the object. An approach
for generating adversarial perturbations for object detection is proposed in [35].
They claimed that generating adversarial perturbations in object detection was
more difficult than in the semantic segmentation task. In order to successfully
attack a detected object, one needs to ensure all the region proposals associated
with the object/instance are successfully attacked. For example, if only K out
of R region proposals are successfully attacked, the detector can still detect the
object by using the other high-confidence-score region proposals that are not
successfully attacked.

We note that all of the above approaches use whole image perturbations
which have the same size as the input image. This is because these perturbations
are generated by calculating the gradient with respect to the entire image. Thus,
a generated perturbation for one target may disrupt the perturbations generated
for other targets. To contrast these methods with our work, we categorize these
methods as IMage based Perturbation (IMP) methods.

2.2 Loss function

In general, the perturbations are generated by optimizing a specific objective
function. Let L =

∑T
i=1 Lti be the loss function to optimize. The objective

function is defined as follows:

argminξ
∑T

i=1 Lti(ξ) , (1)
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where T is the number of targets; Lti is the loss function for each individual
target ti; and ξ ∈ R

w×h is the adversarial perturbation which will be added into
the input image X.

According to the goals of adversarial attacks, the attacks can be catego-
rized into non-targeted adversarial attacks [4, 22, 35] and targeted adversarial
attacks [11, 19]. For non-targeted adversarial attacks, the goal is to reduce the
probability of truth class ytrue of the given target t and to make the network
predict any arbitrary class, whereas the goal of targeted adversarial attacks is to
ensure the network predict the target class ytarget for the target t. The objective
function of the targeted attacks can be summarized into the following formula:

argminξ Lti = ℓ(f(X + ξ, ti), y
target)− ℓ(f(X + ξ, ti), y

true) , (2)

where, ξ is the optimum adversarial perturbation; f is the network classification
score matrix on the target region; and ℓ is the network loss function.

In general, the face detection problem is considered as a binary classifica-
tion problem, which aims at classifying a region as face (+1) or non-face (−1)
(i.e., ytarget = {+1,−1}). However, in order to detect faces in various scales,
especially for tiny faces, recent face detectors utilizing Single-Stage networks [6,
24, 40] divide the face detection problem into multiple scale-specific binary clas-
sification problems, and learn their loss functions jointly. The objective function
to attack such a network is defined as:

argminξ Lti =
∑S

j=1 ℓsj (fsj (X + ξ, ti), y
target) , (3)

where, S is the number of scales; and ℓsj is the scale-specific detector loss func-
tion. Compared to Eq. 2, the above objective is more challenging. This is because
a single face can not only be detected by multiple region proposals/targets, but
also by multiple scale-specific detectors. Thus, one can only successfully attack
a face when the adversarial perturbation fools all the scale-specific detectors. In
other words, attacking the single-stage face detection network is more challeng-
ing than the work in object detection [35].

Finally, as our main aim is to prevent faces being detected, then our objective
function is formally defined as:

L =
∑T

i=1 Lti =
∑T

i=1

∑S
j=1 ℓsj (fsj (X + ξ, ti),−1) . (4)

In this work, we use the recent state-of-the-art Single-Stage face detector, HR [6],
which jointly learns 25 different scale-specific detectors, i.e., S = 25.

3 Instance Perturbations Interference

When performing an attack using the existing adversarial perturbation ap-
proaches [11, 19], the Instance Perturbations Interference (IPI) problem appears
when multiple faces exist in the input image. In short, the IPI problem refers to
the conditions where successfully attacking one instance of interest can reduce
the chance of attacking the other instances of interest. For the face detection
task, the instance of interest is a face. If not addressed, the IPI problem will
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significantly reduce the overall attack success rate. To show the existence of the
IPI problem, we perform an experiment using synthetic images. In this exper-
iment, we apply an adaptation of the existing perturbation methods generated
by minimizing Eq. 4.

3.1 Image based Perturbation

As mentioned, we categorize the previous methods as IMage based Perturbation
(IMP) as they use whole image perturbation to perform the attack. Here we
adapt two of the existing methods, I-FSGM [11] and DeepFool [23], by optimizing
Eq. 4. We denote them as IMP(I-FGSM) and IMP(DeepFool). In both methods,
the adversarial perturbation is generated by using a gradient descent approach.
At the (n+ 1)th iteration, the gradient with respect to the input image X,
∇XL(f(X + ξ(n)),−1), is generated via back-propagating the network with the
loss function.

For the IMP(I-FSGM) [11], we iteratively update the adversarial perturba-
tion as follows:

ξ(n+1) = Clipε{ξ
(n) − α sign(∇XL(f(X + ξ(n)),−1))} , (5)

where the step rate α = 1; the epsilon ε is the maximum absolute magnitude to
clip; ξ(0) = 0; and the loss function L is referred to the Eq. 4. Note that in Eq. 4,
the loss function is a summation of the loss of all targets. Thus, the aggregate
gradient, ∇XL, can be rewritten as:

∇XL(f(X + ξ(n)),−1) =
∑T

i=1

∑S
j=1 ∇Xℓsj (fsj (X + ξ(n), ti),−1) . (6)

As we assume f is a deep neural network, then the aggregate gradient ∇XL can
be obtained by back-propagating all of the targets at once. After obtaining the
final adversarial perturbation ξ, the perturbed image, Xadv, is then generated
by: Xadv = X + ξ.

For the IMP(DeepFool), following [23], we configure the Eq. 5 into:

ξ(n+1) = Clipε{ξ
(n) − ∇XL(f(X+ξ(n)))

‖∇XL(f(X+ξ(n)))‖
2

2

} , (7)

where the loss function in Eq. 4 is rewritten as L =
∑T

i=1

∑S
j=1(fsj (X + ξ, ti)).

Compare with the IMP(DeepFool), the IMP(I-FGSM) generates denser and
more perceptible perturbations due to the L∞ norm.

3.2 Existence of the IPI Problem

To show the existence of the IPI problem, we construct a set of synthetic images
by controlling the number of faces and distances between them: (1) an image
containing only one face; (2) an image containing multiple faces closely located
in a grid and (3) using image in (2) but increasing the distance between the faces.
Examples are shown in Fig. 2. For this experiment, we use the recent state-of-
the-art face detector HR-ResNet101 [6]. The synthetic images are constructed by
randomly selecting 50 faces from the WIDER FACE dataset [38]. Experimental
details are given in Section 5.2. We generate the adversarial perturbations using
the IMP approaches: IMP(I-FGSM) and IMP(DeepFool).
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The attack success rate is calculated as follows: #Face removed
#Detected face . Table 1 reports

the results. For the first synthetic case where an image only contains one face,
both IMP(I-FGSM) and IMP(DeepFool) are able to attack the face detector
with a 100% attack success rate. The IMP method is only partially successful on
the second case where the number of faces is increased to 16. The attack success
rates decrease significantly to only 18.3% and 11.0% when N = 81. The IMP
method attack success rates significantly increase when the distances between
faces are increased significantly, especially for the IMP(DeepFool). It is because
the IMP(DeepFool) generates sparser perturbations than the IMP(I-FGSM).

Fig. 2. Examples of synthetic images
after adding adversarial perturbations
from the IMage based Perturbation
(IMP). The detection results of the
adversarial images are shown in rect-
angles. Note that, as face density in-
creases, attack success rate decreases.
The IMP attack is ineffective when
there are many faces in an image, as in
(a) and (c). When the distance among
faces is increased, the attack becomes
successful as in (b)

These results suggest the following: (1)
IMP is effective when only a single face
exists; (2) IMP is ineffective when multi-
ple faces exist close to each other and (3)
the distance between faces significantly af-
fects the attack performance. There are
two questions that arise from these re-
sults: (1) why is the attack affected by
the number of faces? and (2) why does
the distance between faces affect the at-
tack success rate? We address these two
questions in the next section.

4 Proposed method

We first elaborate on the relationship be-
tween the Effective Receptive Field and
the IPI problem. Then, the proposed
Localized Instance Perturbation (LIP)
method is outlined.

4.1 Effective Receptive Field (ERF)

The receptive field of a neuron in a neural network is a set of pixels in the input
image that impact the neuron decision [18]. In CNNs, it has been shown in [18]
that the distribution of impact within the Theoretical Receptive Field (TRF)
of a neuron follows a 2D Gaussian distribution. This means most pixels that
have significant impact to the neuron decision are concentrated near the neuron
and the impact decays quickly away from the center of the TRF. In [18], the
area where pixels still have significant impact to the neuron decision is defined
as the Effective Receptive Field (ERF). The ERF only takes up a fraction of
the TRF and pixels within the ERF will generate non-negligible impacts on
the final outputs. We argue that understanding ERF and TRF is important
for addressing the IPI problem. This is because the adversarial perturbation is
aimed at changing a network decision at one or more neurons. All pixels in the
input image that impact the decision must be considered.
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Table 1. The IMP attack success rate (in %) on the synthetic images with respect to
the number of faces and distances among faces. N is the number of faces. The IMP can
achieve 100% attack success rate when there is one face per image. The attack success
rate drops significantly when the number of faces is increased. With the same number
of faces, the attack success rate can be increased as the distance among faces increases

N 1 16 81

Distance 40 40 80 160 40

IMP(I-FGSM) 100 34 37.5 38.9 18.3

(a) IMP(I-FGSM)

N 1 16 81

Distance 40 40 60 80 40

IMP(DeepFool) 100 67.5 91.8 99.7 11.0

(b) IMP(DeepFool)

In this paper, we denote the Distribution of Impacts in the TRF as DI-TRF
for simplicity. The DI-TRF is measured by calculating the partial derivative
of the central pixel on the output layer via back-propagation. Following the
notations in our paper, let us denote the central pixel as tc, then the partial

derivative of the central pixel is ∂f(X,tc)
∂X

, which is the DI-TRF. According to the
chain rule, we have the gradient of the target tc [18] as: ∇XL(f(X, tc), y

target) =
∂L(f(X,tc),y

target)
∂f(X,tc)

∂f(X,tc)
∂X

, where the ∂L(f(X,tc),y
target)

∂f(X,tc)
is set to 1.

Comparing the gradient of a target pixel for the adversarial perturbations in
Eq. 6, the only difference with the DI-TRF is in the partial derivative of the loss

function ∂L(f(X,tc),y
target)

∂f(X,tc)
, which is a scalar for one target pixel. In our work,

the scalar, ∂L(f(X,tc),y
target)

∂f(X,tc)
, measures the loss between the prediction label and

the target label. The logistic loss is used for the binary classification of each
scale-specific detector, (i.e., the ℓsj (fsj (X, tc), y

target) in Eq. 4). Therefore, our
adversarial perturbation for one target can be considered as a scaled distribution
of the DI-TRF. Since DI-TRF follows a 2D Gaussian distribution [18], then the
adversarial perturbation to change a single neuron decision is also a 2D Gaussian.

We explain the IPI problem as follows. Since an adversarial perturbation to
attack a single neuron follows a 2D Gaussian, then the perturbation is mainly
spread over the ERF and will have a non-zero tail outside the ERF. From the ex-
periment, we observed that the perturbations generated to attack multiple faces
in the image may interfere with other. More specifically, when these perturba-
tions overlap with the neighboring face ERF, they may be sufficient enough to
disrupt the adversarial perturbation generated to attack this neighboring face.
In addition, prior work [34] shows that adversarial attacks might fail when the
specific structure is destroyed. In other words, when multiple attacks are applied
simultaneously, these attacks may corrupt each other, leading to a lower attack
rate. We name the part of a perturbation interfering with the other perturbations
for other faces as the interfering perturbation.

This also explains why the IPI is affected by the distance between faces.
The closer the faces, the more chance the interfering perturbations with a larger
magnitude overlap with the neighboring face ERF. When distances between faces
increase, the magnitude of the interfering perturbations that overlap with the
neighboring ERFs may not be strong enough to disrupt attacks for target faces.
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4.2 Localized Instance Perturbation (LIP)

To address the IPI problem, we argue that the generated adversarial perturba-
tions of one instance should be exclusively confined within the instance ERF.
As such, we call our method as the Localized Instance Perturbation (LIP). The
LIP comprises two main components: (1) methods to eliminate any possible
interfering perturbation and (2) methods to generate the perturbation.

Eliminating the Interfering Perturbation. To eliminate the interference
between perturbations, we attempt to constrain the generated perturbation for
each instance individually inside the ERF. Let us consider that an image X,
with w × h pixels, contains N instances {mi}

N
i=1. Each instance mi has its

corresponding ERF, ei, and we have {ei}
N
i=1. For each instance, there are a set

of corresponding targets represented as object proposals, {pj}
P
j=1. We denote

the final perturbation for the ith instance as Rmi
and the final combination of

the perturbation of all the instances as R. Similar to the IMP method, once the
final perturbation, R, has been computed, then we add the perturbation into
the image Xadv = X +R.

(1) Perturbation Cropping. This step is to limit the perturbations inside
the instance ERF. This is done by cropping the perturbation according to the
corresponding instance ERF. Let us define a binary matrix Cei

∈ {0, 1}w×h as
the cropping matrix for the ERF, ei. The matrix C is defined as follows:

Cei
(w, h) =

{

1, (w, h) ∈ ei

0, otherwise
, (8)

where (w, h) is a pixel location. The cropping operation is computed by a
element-wise dot product of the mask Cei

and the gradient w.r.t. the input
images X, is defined as:

Rmi
= Cei

·∇XLmi
, (9)

where Lmi
is the loss function of the i-th instance. Lmi

will be described in the
next sub-section.

(2) Individual Instance Perturbation. It is possible to compute the perturba-
tion of multiple instances simultaneously. However, the interfering perturbation
can still exist and may impact the attack. To that end, we propose to separately
compute the perturbation for each instance, ∇XLmi

before cropping. After the
cropping step is applied to each instance perturbation, the final perturbation of
all instances is combined via:

R =
∑N

i=1 Cei
· ∇XLmi

. (10)

We then normalize the final perturbation, R, via: R = α sign(R).

Perturbation Generation. Given a set of region proposals corresponding to
an instance, there are at least two methods of generating the instance perturba-
tion Rmi

: (1) All proposal based generation and (2) Highest Confidence proposal
based generation.
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(1) All Proposal based Generation. In the first method, we utilize all the
region proposals to generate the perturbation Rmi

. Thus, the Lmi
in Eq. 9 can

be defined as a summation of the loss function of all the region proposals Lpj

belong to the instance:
Lmi

=
∑P

j=1 Lpj
. (11)

(2) Highest Confidence Proposal based Generation. In online hard example
mining [30], Shrivastava et al. showed the efficiency of using the hard examples
to generate the gradients for updating the networks. The hard examples are
the high-loss object proposals chosen by the non-maximum suppression. Non-
Maximum Suppression (NMS) is similar to max-pooling, which selects the object
proposal with the highest score (i.e., selecting the proposal with the highest loss).
Inspired by this, instead of attacking all of the object proposals corresponding
to a single instance, we can use NMS to select the one with the highest loss to
compute the back-propagation. Then Lmi

can be rewritten as:

Lmi
= max(Lpj

) . (12)

5 Experiments

5.1 Implementation Details

In this section, we first describe the implementation details and then evaluate
our proposed adversarial attacks on the state-of-the-art face detection datasets.

For this study, we utilize a recent state-of-the-art face detector, HR [6]. In
particular, HR-ResNet101 is used. Image pyramids are utilized in HR, i.e., down-
sampling/interpolating the input image into multiple sizes. Therefore, for every
image in the pyramid, we generate corresponding adversarial examples. The de-
tection results of the image pyramid are combined together with Non-Maximum
Suppression (NMS). The chosen thresholds of NMS and classification are 0.1
and 0.5 respectively.

In order to avoid the gradient explosion when generating the perturbations,
we found that by zero-padding the small input images can reduce the magnitude
of the gradient. In this work, we zero pad the small images to 1000×1000 pixels.
In addition, as the input images of the detection networks can have arbitrary
sizes, we do not follow existing methods [22, 19] that resize the input images into
a canonical size.

Note that we cannot simply crop the input image to generate a successful
adversarial perturbation. This is because the perturbation may be incomplete as
it does not include the context information obtained from neighboring instances.
An example of two non-normalized perturbations in absolute value generated
with and without context is shown in supplementary materials.

For determining the perturbation cropping size, we follow the work of Luo et
al. [18] which computes the gradient of the central proposal of an instance on
the output feature map to obtain the distribution of the ERF. We average the
gradients over multiple instances and determine the crop size with the definition
that the ERF takes up 90% of the energy of the TRF [18]. The perturbation
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crop size is set to 80 × 80 pixels for small faces and 140 × 140 pixels for large
faces. The maximum noise value ε is 20 and the maximum number of iterations
N0 is 40. The α is set to 1 in this work.

Perturbation Generation Methods. In our work, we compared our proposed
Localized Instance Perturbation (LIP) approach with the IMage Perturbation
(IMP) and Localized Perturbation (LP). The details of the perturbation gener-
ation methods evaluated are listed as follow:

(1) Localized Instance Perturbation using All proposal generation (LIP-A).
The proposed LIP-A is a variant of our proposed LIP method in Section 4.2. As
mentioned, the loss function of one instance is the summation of all proposals
(refer to Eq. 11).

(2) Localized Instance Perturbation using Highest confidence proposal gener-
ation (LIP-H). The LIP-H is another variant of our proposed LIP with the loss
function of Eq. 12. The loss function of one instance consists of only one loss of
the highest confidence proposal.

(3) IMage Perturbation (IMP). The IMP method refers to the generation
method in Section 3.1 which applies the perturbation without cropping it. This
perturbation generation method follows the previous work [19].

(4) Localized Perturbation (LP). The LP is the localized perturbation which
also crops the image perturbation. The main difference to the proposed LIP is
that it computes the gradients of all the instances simultaneously before the
cropping. In contrast to Eq. 10, the final perturbation is obtained by:

R =
⋃N

i=1 Cei
·
∑N

i=1 ∇XLmi
. (13)

where
⋃N

i=1 Cei
is the union of all binary matrices. The advantage of this method

is that current deep learning toolboxes can calculate the summation of the gra-
dients of all instances, (i.e.,

∑N
i=1 ∇XLmi

), simultaneously by back-propagating
the network only once.

Benchmark Datasets. We evaluate our proposed adversarial perturbations on
two recent popular face detection benchmark datasets: (1) FDDB dataset [8]:
The FDDB dataset includes images of faces with a wide range of difficulties
such as occlusions, difficult poses, low resolution and out-of-focus faces. It con-
tains 2,845 images with a total of 5,171 faces labeled; and (2) WIDER FACE
dataset [38]: The WIDER FACE dataset is currently the most challenging face
detection benchmark dataset. It comprises 32,203 images and 393,703 annotated
faces based on 61 events collected from the Internet. The images of some events,
e.g., parade, contain a large number of faces. According to the difficulties of
the occlusions, poses, and scales, the faces are grouped into three sets: ’Easy’,
’Medium’ and ’Hard’.

Evaluation Metrics. The metrics for evaluating the adversarial attacks against
face detection are defined as follows: (1) Attack Success Rate: The attack success
rate is the ratio between the number of faces that are successfully attacked and
the number of detected faces before the attacks; and (2) Detection Rate: The
detection rate is the ratio between the number of detected faces and the number
of faces in the images.
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5.2 Evaluation on Synthetic Data

As discussed in Section 3, due to the IPI problem, the IMP does not perform
well on the cases where (1) the number of faces per image is large; and (2) the
faces are close to each other. Here, we contrast IMP with LP and LIP.

We randomly selected 50 faces from the WIDER FACE dataset [38]. These
faces were first resized into a canonical size of 30×30 pixels. Each face was then
duplicated and inserted into a blank image in a rectangular grid manner (e.g., 3×
3 = 9). The number of duplicates and the distance between the duplicates were
controlled during the experiment. In total there were 50 images and the attack
success rate was then averaged across 50 images. Some examples of the synthetic
images are shown in Fig. 2.
The Effect of the Number of Faces. We progressively increased the number
of duplication for each synthetic image from 1 × 1 to 9 × 9 = 81 duplicates.
We fixed the distance between duplicates to 40 pixels. The quantitative results
are shown in Fig. 3. From this figure, we can see that for the perturbation
generation method I-FGSM, the IMP attack success rate significantly drops from
100% to 20% as the number of faces is increased. On the contrary, both LP and
LIP-H can achieve significantly higher attack success rate than IMP. This is
because both LP and LIP-H only use the generated perturbation within the
corresponding instance ERF by cropping it before applying. Note that, when
the number of faces is more than 36, the LP attack success rate drops from
85% (N = 36) to 51% (N = 81), whereas the LIP-H can still achieve more
than 90% success rate. Since LP processes all the instances simultaneously, the
accumulation of the interfering perturbations within each instance ERF will
become more significant when the number of faces is increased. Similarly, for
the generation method DeepFool, the LIP has demonstrated its effectiveness on
addressing the IPI problem when multiple faces exist. These also suggest the
existence of the IPI problem.
The Effect of Distance between Faces. In this experiment the number of
faces duplication was fixed to 9. We modified the distance between face duplicates
to 40, 160 and 240 pixels. It can be seen from Fig. 3b that the attack success rate
for IMP increases as the distance between faces is increased. The performance
of both LP and LIP-H are not affected. Similar performance is achieved on the
DeepFool. More details are shown in the supplementary materials.

Fig. 3. The attack success rate of the I-FGSM with respect to: (a) the number of
faces. The distance was fixed to 40 pixels; and (b) the distance between faces. Nine
face duplicates were used. (c) The attack success rate of the DeepFool
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5.3 Evaluation on Face Detection Datasets

IM
P

L
IP
-H

Original Perturbed image Perturbation

Fig. 4. Examples of the adversarial attacks
on face detection network, where the per-
turbation generation is based on the I-
FGSM. The LIP-H is successfully attack all
the faces, whereas some faces are still de-
tected when IMP is used

We contrasted LIP-A and LIP-H with
IMP and LP based on two exist-
ing methods: I-FSGM [11] and Deep-
Fool [23]. The experiments were run
on the FDDB [8] and 1,000 randomly
selected images in the WIDER FACE
validation set [38].

The results based on the I-FGSM,
are reported in Table 3 and 2 re-
spectively. On the FDDB dataset (in
Table 3), the face detector, HR [6],
achieves 95.7% detection rate. The
LP, LIP-A and LIP-H can signifi-
cantly reduce the detection rate to around 5% with the attack success rate
of 94.9%, 94.6% and 93.8% respectively. On the other hand, the IMP can only
achieve 53.9% attack success rate (i.e., significantly lower than the LP, LIP-A,
LIP-H performance). This signifies the importance of the perturbation cropping
to eliminate the interfering perturbations. Due to the IPI problem, the inter-
fering perturbations from the other instances will affect the adversarial attacks
of the target instance. This results in the low attack success rate of the IMP.
This is because to generate the perturbations, the IMP simply sums up the all
perturbations including the interfering perturbations. We note that the perfor-
mance of LP, LIP-A and LIP-H are on par in the FDDB dataset. This could be
due to the low number of faces per image for this dataset.

Table 3. The attack success and detection rates (in %)
on FDDB [8]

Perturbations none
I-FGSM

IMP LP LIP-A LIP-H

Detection Rate 95.7 44.1 4.8 5.1 5.9

Attack Success Rate – 53.9 94.9 94.6 93.8

However, when the
number of faces per image
increases significantly, LIP
shows its advantages. Ex-
amples can be seen in
Fig. 4. This can be ob-
served in the WIDER
FACE dataset (in Table 2) where LIP-A and LIP-H outperform LP by 4 percent-
age points. the LIP-H can achieve attack success rates of (69.8%, 63.7%, 61.4%)

Table 2. The attack success and detection rate (in %) on WIDER FACE [38]

Perturbations none
I-FGSM DeepFool

IMP LP LIP-A LIP-H IMP LIP-A

Detection Rate
easy 92.4 46.2 30.1 28.2 26.5 50.6 43.2

medium 90.7 50.7 34.7 32.2 31.1 54.4 40.0
hard 77.3 45.9 29.3 23.6 26.6 46.5 25.8

Attack Success Rate
easy – 50.0 67.4 69.5 71.3 45.3 53.2

medium – 44.1 61.7 64.5 65.7 40.0 56.4
hard – 40.6 62.1 69.5 65.6 39.6 66.6
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on the (easy, medium, hard) sets, while the LP can only obtain attack success
rate (65.7%, 59.5%, 57.4%). As the LP processes all the instances together, the
interfering perturbations are accumulated within the ERF before the cropping
step. Note that the interfering perturbations may have low magnitude, however,
when they are accumulated due to the number of neighboring instances then
disruption could be significant. These results also suggest that we do not nec-
essarily need to attack all the region proposals as the performance of LIP-H
is on par with LIP-A. Similarly, for the DeepFool based methods, the LIP has
demonstrated its effectiveness on addressing the IPI problem.

5.4 Evaluation on Object Detection Dataset

Table 4. Evaluation on
COCO2017 dataset [14]

Perturbations IMP LP

Average Recall 7.9 2.2

Average Precision 6.9 1.9

To explore the existence of the IPI problem in
object detection networks, we perform attacks
on the pre-trained Faster-RCNN [28] (based on
ResNet101 [5]) provided by the Tensorflow object
detection API [7]. More specifically, we attack the
1st stage (i.e., RPN) of Faster-RCNN with the
goal of reducing generated proposals. We choose 300 images from COCO2017
dataset [14], where the average number of objects per image is 15. The origi-
nal predicted detections from the pre-trained Faster-RCNN are taken as ground
truth. The results in Table 4 show that the IPI problem exists and our proposed
LP method can attack more than 60% of the instances that cannot be attacked
by IMP. Note that, as the RPN generates hundreds of proposals for each in-
stance, the proposed LIP methods are not used due to the high computations.

6 Conclusions

In this paper, we presented an adversarial perturbation method to fool a recent
state-of-the-art face detector utilizing the single-stage network. We described
and addressed the Instance Perturbation Interference (IPI) problem which was
the root cause for the failure of the existing adversarial perturbation generation
methods to attack multiple faces simultaneously. We found that it was sufficient
to only use the generated perturbations within an instance/face Effective Recep-
tive Field (ERF) to perform an effective attack. In addition, it was important to
exclude perturbations outside the ERF to avoid disrupting other instance pertur-
bations. We thus proposed the Localized Instance Perturbation (LIP) approach
that only confined the perturbation within the ERF. Experiments showed that
the proposed LIP successfully generated perturbations for multiple faces simulta-
neously to fool the face detection network and outperformed existing adversarial
generation methods. In the future, we plan to develop a universal perturbation
generation method which can attack many faces with a general perturbation.
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