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Abstract. This paper presents novel techniques for recovering 3D dense scene

flow, based on differential analysis of 4D light fields. The key enabling result is a

per-ray linear equation, called the ray flow equation, that relates 3D scene flow to

4D light field gradients. The ray flow equation is invariant to 3D scene structure

and applicable to a general class of scenes, but is underconstrained (3 unknowns

per equation). Thus, additional constraints must be imposed to recover motion.

We develop two families of scene flow algorithms by leveraging the structural

similarity between ray flow and optical flow equations: local ‘Lucas-Kanade’ ray

flow and global ‘Horn-Schunck’ ray flow, inspired by corresponding optical flow

methods. We also develop a combined local-global method by utilizing the corre-

spondence structure in the light fields. We demonstrate high precision 3D scene

flow recovery for a wide range of scenarios, including rotation and non-rigid

motion. We analyze the theoretical and practical performance limits of the pro-

posed techniques via the light field structure tensor, a 3× 3 matrix that encodes

the local structure of light fields. We envision that the proposed analysis and al-

gorithms will lead to design of future light-field cameras that are optimized for

motion sensing, in addition to depth sensing.

1 Introduction

The ability to measure dense 3D scene motion has numerous applications, including

robot navigation, human-computer interfaces and augmented reality. Imagine a head-

mounted camera tracking the 3D motion of hands for manipulation of objects in a virtual

environment, or a social robot trying to determine a person’s level of engagement from

subtle body movements. These applications require precise measurement of per-pixel

3D scene motion, also known as scene flow [31]. In this paper, we present a novel

approach for measuring 3D scene flow with light field sensors [1, 24]. This approach is

based on the derivation of a new constraint, the ray flow equation, which relates dense

3D motion field of a scene to gradients of the measured light field, as follows:

LX VX +LY VY +LZ VZ +Lt = 0 ,

where VX ,VY ,VZ are per-pixel 3D scene flow components, LX ,LY ,LZ are spatio-angular

gradients of the 4D light field, and Lt is the temporal light field derivative. This simple,

linear equation describes the ray flow, defined as local changes in the 4D light field,

due to small, differential, 3D scene motion. The ray flow equation is independent of the

scene depth, and is broadly applicable to a general class of scenes.

The ray flow equation is an under-constrained linear equation with three unknowns

(VX ,VY ,VZ) per equation. Therefore, it is impossible to recover the full 3D scene flow
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without imposing further constraints. Our key observation is that, due to the structural

similarity between ray flow and the classical optical flow equations [14], the regular-

ization techniques developed over three decades of optical flow research can be easily

adapted to constrain ray flow. The analogy between ray flow and optical flow provides

a general recipe for designing ray flow based algorithms for recovering 3D dense scene

flow directly from measured light field gradients.

We develop two basic families of scene flow recovery algorithms: local Lucas-

Kanade methods, and global Horn-Schunck methods, based on local and global op-

tical flow [14, 20]. We also design a high-performance combined local-global method

by utilizing the correspondence structure in the light fields. We adopt best practices

and design choices from modern, state-of-the-art optical flow algorithms (e.g., tech-

niques for preserving motion discontinuities, recovering large motions). Using these

techniques, we demonstrate 3D flow computation with sub-millimeter precision along

all three axes, for a wide range of scenarios, including complex non-rigid motion.

Theoretical and practical performance analysis: What is the space of motions that

are recoverable by the proposed techniques? What factors influence their ability to re-

cover 3D motion? To address these fundamental questions, we define the light field

structure tensor, a 3×3 matrix that encodes local light field structure. We show that the

space of recoverable motions is determined by the properties (rank and eigenvalues) of

the light field structure tensor, which depends on the scene texture. We also analyze the

performance dependence of ray flow techniques on the imaging parameters of the light

field camera (e.g., angular resolution, aperture size and field of view [11]). This analysis

determines theoretical and practical performance limits of the proposed algorithms, and

can also inform design of future light field cameras optimized for motion sensing.

Scope and implications: The main goal of the paper is to establish theoretical founda-

tions of 3D scene flow computation from light field gradients. In doing so, this paper

takes the first steps towards positioning light field cameras as effective 3D motion sen-

sors, in addition to their depth estimation capabilities. Although we have implemented

several proof-of-concept ray flow methods, it is possible to leverage the vast body of

optical flow research and design novel, practical ray flow algorithms in the future. These

algorithms, along with novel light field camera designs optimized for motion sensing,

can potentially provide high-precision 3D motion sensing capabilities in a wide range

of applications, including robotic manipulation, user interfaces, and augmented reality.

2 Related Work

Light field scene flow: State-of-the-art scene flow methods compute the 3D motion

by combining optical flow and change of depths (e.g., via stereo [15, 34] or RGB-D

cameras [12,29]). Scene flow methods for light fields cameras have also been proposed

before [13, 21, 27], where light fields are used for recovering depths. Our goal is dif-

ferent: we use light fields for recovering 3D scene motion directly. Thus, the proposed

approaches are not adversely affected by errors in measured depths, resulting in precise

motion estimation, especially for subtle motions.

Light field odometry: Light fields have been used for recovering a camera’s ego-

motion [10, 22], and to compute high-quality 3D scene reconstructions via structure-

from-motion techniques [17,35]. These methods are based on a constraint relating cam-
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Fig. 1. (a) A light ray is parameterized by 4D coordinates (x,y,u,v), which are determined by

the ray’s intersection points (x,y,0) and (x+u,y+ v,Γ ) with planes Z = 0 and Z = Γ , where Γ
is a fixed constant. (b) Motion (translation) of the scene point that emits or reflects the ray results

in a change in the (x,y) coordinates of the ray, but the (u,v) coordinates remain constant.

era motion and light fields. This constraint has the same structural form as the equation

derived in this paper, although they are derived in different contexts (camera motion

vs. non-rigid scene motion) with different assumptions. These works aim to recover

6-degrees-of-freedom (6DOF) camera motion, which is an over-constrained problem.

Our focus is on recovering 3D non-rigid scene motion at every pixel, which is under-

constrained due to considerably higher number of degrees of freedom.

Shape recovery from differential motion: Chandraker et al. developed a comprehen-

sive theory for recovering shape and reflectance from differential motion of the light

source, object or camera [7–9, 19, 32]. While our approach is also based on a differen-

tial analysis of light fields, our goal is different – to recover scene motion itself.

3 The Ray Flow Equation

Consider a scene point P at 3D location X = (X ,Y,Z). Let L(X,θ ,φ) be the radiance of

P along direction (θ ,φ), where θ ,φ are the polar angle and azimuth angle as defined in

spherical coordinates. The function L(X,θ ,φ) is called the plenoptic function: it defines

the radiance at all positions, along all possible ray directions. Assuming the radiance

does not change along a ray, the 5D function L(X,θ ,φ) can be simplified to the 4D

light field L(x,y,u,v), with each ray parameterized by its intersections with two parallel

planes Z = 0 and Z = Γ , where Γ is a fixed constant. This is shown in Figure 1(a). Let

the ray intersect the planes at points (x,y,0) and (x+u,y+v,Γ ), respectively. Then, the

ray is represented by the coordinates (x,y,u,v). Note that (u,v) are relative coordinates;

they represent the differences in the X and Y coordinates of the two intersection points.

This is called the two-plane parameterization of the light field [18, 24], and is widely

used to represent light fields captured by cameras.

By basic trigonometry, the relationship between the scene-centric coordinates

(X ,Y,Z,θ ,φ) of a light ray, and its camera-centric coordinates (x,y,u,v) is given by:

x = X −Z tanθ cosφ , u = Γ tanθ cosφ ,

y = Y −Z tanθ sinφ , v = Γ tanθ sinφ . (1)
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Effect of scene motion on light fields: Let the 3D locations of a scene point P at

time t and t + ∆ t be X and X′ = X + ∆X, where ∆X = (∆X ,∆Y,∆Z) is the small

(differential) 3D motion (shown in Figure 1(b)). Consider a ray reflected (emitted) by P.

We assume that the scene patch containing P only translates during motion1, so that the

ray only moves parallel to itself, i.e., (u,v) coordinates of the ray remain constant. Let

the coordinates of the ray before and after motion be (x,y,u,v) and (x+∆x,y+∆y,u,v).
Then, assuming that the ray brightness remains constant during motion2:

L(x,y,u,v, t) = L(x+∆x,y+∆y,u,v, t +∆ t) . (2)

This ray brightness constancy assumption is similar to the scene brightness con-

stancy assumption made in optical flow. First-order Taylor expansion of Eq. 2 gives:

∂L

∂x
∆x+

∂L

∂y
∆y+

∂L

∂ t
∆ t = 0 . (3)

We define ray flow as the change (∆x,∆y) in a light ray’s coordinates due to scene

motion. Eq. 3 relates ray flow and light field gradients ( ∂L
∂x
, ∂L

∂y
, ∂L

∂ t
). From Eq. 1, we can

also find a relationship between ray flow and scene motion:

∆x =
∂x

∂X
∆X +

∂x

∂Z
∆Z = ∆X −

u

Γ
∆Z ,

∆y =
∂y

∂Y
∆Y +

∂y

∂Z
∆Z = ∆Y −

v

Γ
∆Z . (4)

By substituting Eq. 4 in Eq. 3 and using symbols L∗ for light field gradients, we get:

LX VX +LY VY +LZ VZ +Lt = 0 , (5)

where LX = ∂L
∂x

, LY = ∂L
∂y

, LZ =− u
Γ

∂L
∂x

− v
Γ

∂L
∂y

, Lt =
∂L
∂ t

, V=(VX ,VY ,VZ)= (∆X
∆ t

, ∆Y
∆ t

, ∆Z
∆ t

).

We call this the ray flow equation; it relates the 3D scene motion and the measured light

field gradients. This simple, yet powerful equation enables recovery of dense scene flow

from measured light field gradients, as we describe in Sections 4 to 6. In the rest of this

section, we discuss salient properties of the ray flow equation in order to gain intuitions

and insights into its implications.

3.1 Ray Flow Due to Different Scene Motions

Ray flows due to different scene motions have interesting qualitative differences. To

visualize the difference, we represent a 4D light field sensor as a 2D array of pinhole

cameras, each with a 2D image plane. In this representation (u,v) coordinates of the

light field L(x,y,u,v) denote the pixel indices within individual images (sub-aperture

images). (x,y) coordinates denote the locations of the cameras, as shown in Figure 2.

1 For a rotating object, in general, the motion of small scene patches can be modeled as transla-

tion, albeit with a change in the surface normal. For small rotations (small changes in surface

normal), the brightness of a patch can be assumed to be approximately constant [31].
2 This is true under the assumption that the light sources are distant such that N ·L, the dot-

product of surface normal and lighting direction, does not change [31].
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Fig. 2. Ray flow due to different scene motions. (Left) We represent a light field sensor as a 2D

array of pinhole cameras, each of which captures a 2D image (sub-aperture images). (u,v) denotes

the pixel indices within each sub-aperture image. (x,y) denotes the locations of the cameras.

(Right) For X/Y scene motion, rays move horizontally/vertically, across sub-aperture images.

The amount of change (∆x,∆y) in the sub-aperture index is independent of the rays’ coordinates.

For Z-motion, rays shift radially across sub-aperture images. The shift depends on each ray’s

(u,v) coordinates. Rays at the center of each sub-aperture image (u = 0,v = 0) do not shift. In all

cases, rays retain the same pixel index (u,v), but move to a different sub-aperture image.

For X/Y scene motion, a light ray shifts horizontally/vertically across sub-aperture

images. The amount of shift (∆x,∆y) is independent of the ray’s original coordinates,

as evident from Eq. 4. For Z-motion, the ray shifts radially across sub-aperture images.

The amount of shift depends on the ray’s (u,v) coordinates (c.f. Eq. 4). For example,

rays at the center of each sub-aperture image (u = 0,v = 0) do not shift. In all cases,

rays retain the same pixel index (u,v) after the motion, but in a different sub-aperture

image (x,y), since scene motion results in rays translating parallel to themselves.

3.2 Invariance of Ray Flow to Scene Depth

An important observation is that the ray flow equation does not involve the depth or

3D position of the scene point. In conventional motion estimation techniques, depth

and motion estimation are coupled together, and thus need to be performed simulta-

neously [2]. In contrast, the ray flow equation decouples depth and motion estimation.

This has important practical implications: 3D scene motion can then be directly recov-

ered from the light field gradients, without explicitly recovering scene depths, thereby

avoiding the errors due to the intermediate depth estimation step.

Notice that although motion estimation via ray flow does not need depth estimation,

the accuracy of the estimated motion depends on scene depth. For distant scenes, the

captured light field is convolved with a 4D low-pass point spread function, which makes

gradient computation unreliable. As a result, scene motion cannot be estimated reliably.

3.3 Similarities between Ray Flow and Optical Flow

For every ray in the captured light field, we have one ray flow equation with three

unknowns to solve, which gives us an under-constrained system. Therefore additional

assumptions need to be made to further constrain the problem. This is similar to the

well-known aperture problem in 2D optical flow, where the optical flow equation Ixux+
Iyuy+It = 0 is also under-constrained (1 equation, 2 unknowns (ux,uy)). There are some
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Optical Flow Ray Flow

Linear equation: Ixux + Iyuy + It = 0 Linear equation: LXVX +LY VY +LZVZ +Vt = 0

Coefficients: Image gradients (Ix, Iy, It ) Coefficients: Light field gradients (LX ,LY ,LZ ,Lt )
2 unknowns per pixel: Pixel motion (ux,uy) 3 unknowns per pixel: Scene motion (VX ,VY ,VZ)
Motion (ux,uy) computed in 2D image space (pixels) Motion (VX ,VY ,VZ) computed in 3D scene space

Gradients (Ix, Iy) defined on 2D image grid Gradients (LX ,LY ,LZ) defined on 4D light-field grid

ux and uy flow computations are symmetric X/Y and Z motion computations are asymmetric

Size of structure tensor: 2×2 Size of structure tensor: 3×3

Possible ranks of structure tensor: [0,1,2] Possible ranks of structure tensor: [0,2,3]

Table 1. Comparisons between optical flow and ray flow.

interesting differences between ray flow and optical flow (see Table 1), but the key

similarity is that both ray flow and optical flow are under-constrained linear equations.

Fortunately, optical flow is one of the most researched problems in computer vision.

Broadly, there are two families of differential optical flow techniques, based on the addi-

tional constraints imposed for regularizing the problem. The first is local methods (e.g.,

Lucas-Kanade [20]), which assume that the optical flow is constant within small image

neighborhoods. Second is global methods (e.g., Horn-Schunck [14]), which assume that

the optical flow varies smoothly across the image. By exploiting the structural similarity

between the optical flow and ray flow equations, we develop two families of ray flow

techniques accordingly: local ray flow (Section 4) and global ray flow (Section 5).

4 Local ‘Lucas-Kanade’ Ray Flow

In this section, we develop the local ray flow based scene flow recovery methods, in-

spired by Lucas-Kanade optical flow [20]. This class of ray flow methods assume that

the motion vector V is constant in local 4D light field windows. Consider a ray with co-

ordinates xc = (x,y,u,v). We stack all the equations of form Eq. 5 from rays in a local

neighborhood of xc, xi ∈ N (xc) into a linear system AV = b, where:

A =







LX (x1) LY (x1) LZ(x1)
...

...
...

LX (xn) LY (xn) LZ(xn)






, b =







−Lt(x1)
...

−Lt(xn)






. (6)

Then, the motion vector V can be estimated by the normal equation:

V = (AT A)−1AT b. (7)

4.1 What is the Space of Recoverable Motions?

In the previous section, we discussed that it is impossible to recover the complete 3D

motion vector from a single ray flow equation. A natural question to ask is: what is the

space of recoverable motions with the additional local constancy constraint? Intuitively

it depends on the local structure of the light field. For example, if the local window

corresponds to a textureless scene, then no motion is recoverable. One way to address

this question is by understanding the properties of the 3×3 symmetric matrix S=AT A.

S =





∑
n
i=1 L2

Xi ∑
n
i=1 LXiLYi ∑

n
i=1 LXiLZi

∑
n
i=1 LYiLXi ∑

n
i=1 L2

Yi ∑
n
i=1 LYiLZi

∑
n
i=1 LZiLXi ∑

n
i=1 LZiLYi ∑

n
i=1 L2

Zi



 , (8)
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Fig. 3. Relationship between scene texture, rank of the light field structure tensor, and the

space of recoverable motions. (Top) Scene patches. (Middle) Distribution of light field gra-

dients; each dot represents the gradient (LX ,LY ,LZ) computed at one location in a light field

window. The covariance of the gradients is represented by ellipsoids whose principal axes are pro-

portional to the three eigenvalues λ1,λ2,λ3 of the structure tensor. (Bottom) Set of recoverable

motion vectors. (Left) For a light field window corresponding to a smooth patch, the gradients

(LX ,LY ,LZ) are approximately zero, and concentrated around the origin in the gradient space.

The rank of the structure tensor is 0, implying that no motion vector can be recovered reliably.

(Center) For a patch with a single edge, non-zero gradients are distributed approximately along

a plane in the gradient space, resulting in a rank 2 structure tensor (1-D null space). As a result,

a 2D family of motions (orthogonal to the edge) can be recovered. (Right) For a patch with 2D

texture, non-zero gradients are distributed nearly isotropically in the gradient space. Therefore,

structure tensor has rank = 3. Thus, the entire space of 3D motions are recoverable.

where L∗i is short for L∗(xi). We define S as the light field structure tensor; it encodes

the local structure of the light field.3 To estimate motion using Eq. 7, S must be invert-

ible. Thus, the performance of the local method can be understood in terms of rank(S).

Result (Rank of structure tensor) Structure tensor S has three possible ranks: 0, 2, and

3 for a local 4D light field window. These correspond to scene patches with no texture

(smooth regions), an edge, and 2D texture, respectively.

3 Structure tensors have been researched and defined differently in the light field community

(e.g., [23]). Here it is defined by the gradients w.r.t. the 3D motion and is thus a 3×3 matrix.
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Intuition: In the following, we provide an intuition for the above result by considering

three cases. A detailed proof is given in the supplementary technical report.

Case 1: Smooth region. In this case, LX = LY = LZ = 0 for all the locations in the light

field window. Therefore, all the entries of the structure tensor (given in Eq. 8) are zero,

resulting in it being a rank 0 matrix. All three eigenvalues λ1,λ2,λ3 = 0, as shown in

the left column of Figure 3. As a result, it has a 3-D null space, and no motion vector

can be recovered reliably for this window.

Case 2: Single step edge. Without loss of generality, suppose the light field window cor-

responds to a fronto-parallel scene patch with a vertical edge, i.e., LY = 0. The middle

row of the structure tensor is all zeros, resulting in a rank 2 matrix, with a 1-D null space

(only one eigenvalue λ3 = 0). As a result, a 2D family of motions (motion orthogonal

to the edge) can be recovered, as illustrated in the second column of Figure 3.

Case 3: 2D texture. All three derivatives are non-zero and independent. The structure

tensor is full rank (rank = 3) and the entire space of 3D motions are recoverable.

Comparisons with structure tensor for optical flow: The structure tensor for 2D op-

tical flow is a 2× 2 matrix and can have all possible ranks from 0 to 2 [26]. For light

fields, the structure tensor cannot have rank 1. This is because even a 4D window with a

single step edge results in a rank 2 structure tensor.4 For more conceptual comparisons

between optical flow and ray flow, please refer to Table 1.

Dependence on camera parameters. Besides scene texture and light field structure,

the imaging parameters of the light field camera also influences the performance of ray

flow methods. Using the ray flow equation requires computing angular light field gra-

dients (LX and LY ), whose accuracy depends on the angular resolution of the light field

camera. Most off-the-shelf light field cameras have a relatively low angular resolution

(e.g., 15×15 for Lytro Illum), resulting in aliasing [22]. To mitigate aliasing, we apply

Gaussian pre-filtering before computing the gradients. Another important parameter is

the aperture size, which limits the range of recoverable motion. This is because ray flow

changes the (x,y) coordinates of the ray. When the motion is too large, most of the rays

will escape the aperture and the motion cannot be recovered (see Fig. 2). See the sup-

plementary report for a detailed discussion on the effects of various camera parameters.

4.2 Enhanced Local Methods

Our analysis so far assumes small (differential) scene motion. If the inter-frame scene

motion is large, then the simple linear ray flow equation is not valid. Another way to

relate the scene motion and the resulting change in the captured light field is to define a

warp function on the light field, which describes the change in coordinates x=(x,y,u,v)
of a light ray due to scene motion V (Eq. 1):

w(x,V) = (x+VX −
u

Γ
VZ ,y+VY −

v

Γ
VZ ,u,v) . (9)

4 Although the structure tensor theoretically has rank 2, the ratio λ1

λ2
of the largest and second

largest eigenvalues can be large. This is because the eigenvalue corresponding to Z motion de-

pends on the range of (u,v) coordinates, which is limited by the size of the light field window.

Therefore, a sufficiently large window size is required for motion recovery.
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Then, the local method can be formulated as a local light field registration problem:

min
V

∑
xi∈N (xc)

(L0(xi)−L1(w(xi,V)))2 . (10)

The method described by Eq. 7 is the same as locally linearizing Eq. 10. Using this

formulation, we develop an enhanced local method where the motion vector V is solved

over a light field pyramid for dealing with large (non-differential) scene motions.

5 Global ‘Horn-Schunck’ Ray Flow

The local constancy assumption made by the local ray-flow methods is too restrictive

when dealing with non-rigid motion. In this section, we propose a family of global

ray flow methods that are inspired by global ‘Horn-Schunck’ optical flow [14]. The

basic, less limiting assumption is that the 3D flow field varies smoothly over the scene.

Therefore, we regularize the flow computation by introducing a smoothness term that

penalizes large variations of V and minimize a global functional:

E(V) = ED(V)+ES(V), where (11)

ED(V) =
∫

Ω
(LXVX +LYVY +LZVZ +Lt)

2
dxdydudv ,

ES(V) =
∫

Ω

(

λ |∇VX |
2 +λ |∇VY |

2 +λZ |∇VZ |
2
)

dxdydudv .

Note that Ω is the 4D light field domain, and ∇p is the 4D gradient of a scalar field p:

∇p = ( ∂ p
∂x
, ∂ p

∂y
, ∂ p

∂u
, ∂ p

∂v
). Since the computation of X/Y flow and Z flow are asymmetric,

we use different weights for the X/Y and Z smoothness terms. In practice we use λ = 8

and λZ = 1. E(V) is a convex functional, and its minimum can be found by the Euler-

Lagrange equations. See the supplementary technical report for details.

Enhanced global methods. The quadratic penalty functions used in the basic global ray

flow method (Eq. 11) penalizes flow discontinuities, leading to over-smoothing around

motion boundaries. In the optical flow community [3, 5, 25], it has been shown that ro-

bust penalty functions perform significantly better around motion discontinuities. Based

on this, we developed an enhanced global method that uses the generalized Charbonnier

function ρ(x) = (x2 + ε2)a with a = 0.45 as suggested in [28].

6 Combined Local-Global Ray Flow

The ray flow methods considered so far treat the motion of each light ray separately.

However, a light field camera captures multiple rays from the same scene point, all of

which share the same motion. Can we exploit this constraint to further improve the

performance of ray flow based motion recovery methods? Consider a ray with coordi-

nates (x,y,u,v), coming from a scene point S = (X ,Y,Z). The coordinates of all the rays

coming from S form a 2D plane P(u,v) [10, 17, 27] in the 4D light-field:

P(u,v) = {(xi,yi,ui,vi) | ui = u−α(xi − x),vi = v−α(yi − y)}, (12)



10 S. Ma, B. M. Smith and M. Gupta

�௑ �௒ �௓ ���

Fig. 4. Measured light field gradients. Light field for an example scene (a card moving in the

X-Z plane in front of a static background) is shown as a 3×3 subset of sub-aperture images (left).

Light field gradients are only shown for the central sub-aperture. Zoom in for details.

where the parameter α = Γ
Z

is the disparity between sub-aperture images, and is a

function of the depth Z of S. All these rays share the same flow vector V = (VX ,VY ,VZ).
Therefore, we can estimate V by minimizing the following function:

min
V

∑
xi∈P(u,v)

(LXiVX +LYiVY +LZiVZ +Lti)
2. (13)

Given the parameter α (which can be determined using light-field based depth esti-

mation [33]), this function can be minimized similarly as the local method (Section 4),

which assumes constancy of ray motion in a local 4D ray neighborhood N (u,v). While

the local constancy assumption is only approximate, the constancy of motion over the

2D plane described in Eq. 12 is an exact constraint, resulting in better performance.

Moreover, in order to further regularize the problem, we can leverage the global smooth-

ness of motion assumption used in global methods in Section 5. Based on these obser-

vations, we propose a combined local-global (CLG) ray flow method [6], whose data

term is given by minimizing the local term (Eq. 13) for each ray in the central view Ωc:

ED(V) =
∫

Ωc

∑
xi∈P(u,v)

(LXiVX +LYiVY +LZiVZ +Lti)
2dudv . (14)

This local data term is combined with a global smoothness term defined on Ωc.

ES(V) =
∫

Ωc

(

λ |∇VX |
2 +λ |∇VY |

2 +λZ |∇VZ |
2
)

dudv . (15)

This formulation estimates motion only for the 2D central view Ωc while utilizing the

information from the whole light field, thereby simultaneously achieving computational

efficiency and high accuracy. Furthermore, by adopting the enhancements of local and

global methods, the CLG method outperforms individual local and global methods.

Therefore, in the rest of the paper, we show results only for the CLG method. Also

notice that the CLG ray flow method uses the estimated depths only implicitly as an ad-

ditional constraint for regularization. Therefore, unlike previous methods [13, 21, 27],

estimating depths accurately is not critical for recovering motion. Please see the supple-

mentary technical report for implementation details of the CLG method, a comparison

between the local, global and CLG methods and simulation results demonstrating the

effect of depth accuracy on the CLG method.

7 Experimental Results

For our experiments, we use a Lytro Illum camera, calibrated using a geometric cal-

ibration toolbox [4]. We extract the central 9× 9 subaperture images, each of which
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-2.5 0.0 2.5Unit: mm -2.5 0.0 2.5 -2.5 0.0 2.5

Image X-Flow (CLG) X-Flow (PD-Flow) X-Flow (OLFW)

Z-Flow (CLG) Z-Flow (PD-Flow) Z-Flow (OLFW)

-2.5 0.0 2.5Unit: mm -2.5 0.0 2.5 -2.5 0.0 2.5

X-Flow (CLG) X-Flow (PD-Flow) X-Flow (OLFW)

-2.0 0.0 2.0Unit: mm -2.0 0.0 2.0 -2.0 0.0 2.0

Z-Flow (CLG) Z-Flow (PD-Flow) Z-Flow (OLFW)

-2.0 0.0 2.0Unit: mm -2.0 0.0 2.0 -2.0 0.0 2.0

X-Flow Y-Flow Z-Flow

CLG 0.068 0.014 0.075

PD-Flow 0.062 0.032 0.250

OLFW 0.063 0.051 0.420

MAE (mm)

X-Flow Y-Flow Z-Flow

CLG 0.101 0.018 0.105

PD-Flow 0.115 0.059 0.507

OLFW 0.308 0.189 1.751

MAE (mm)

Fig. 5. Controlled experiments on a translation stage. (Top) A single card moving diagonally.

(Bottom) Three cards moving diagonally forward, laterally, and diagonally backward, respec-

tively. Mean absolute error (MAE) for the three motion components are shown in the tables.

While all methods recover the lateral motion relatively accurately, the proposed CLG ray-flow

approach estimates the Z-motion more accurately than previous approaches. This is because pre-

vious approaches rely on, and are thus prone to errors in, depth estimation. In contrast, our ap-

proach estimates the motion directly from light-field gradients, thereby achieving high accuracy.

has a spatial resolution of 552× 383. Figure 4 shows an example light field and the

computed gradients. We compare our combined local-global method (CLG) with the

RGB-D scene flow method (PD-Flow) of Jaimez et al. [16] and light field scene flow

method (called OLFW in this paper) of Srinivasan et al. [27]. For a fair comparison, we

use the same modality (light fields) for depth estimation in PD-Flow (depth estimated

from light field is the depth channel input), using the same algorithm as in OLFW [30].

Please refer to the supplementary video for a better visualization of the scene motion.

Controlled experiments on a translation stage. Figure 5 shows scene flow recovery
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PD-Flow [28]
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Fig. 6. Effect of the amount and kind of motion. We use a single textured plane as the scene to

exclude the effect of other factors (motion boundaries, occlusions). (a) For X-motion, the error of

our method increases rapidly when the motion is larger than 3.5mm, while PD-Flow and OLFW

degrade gracefully. (b) For Z-motion, our method outperforms previous methods since it does

not rely on accurate depth estimates. (c) This plot qualitatively shows the method best suited for

estimating different amount and kind of motion. While previous approaches can reliably measure

large motions, the proposed method is better suited for small, especially axial, motions.

Image Z-Flow (CLG) Z-Flow (PD-Flow) Z-Flow (OLFW)

-3.0 0.0 3.0Unit: mm -3.0 0.0 3.0 -3.0 0.0 3.0

Image Y-Flow (CLG) Y-Flow (PD-Flow) Y-Flow (OLFW)

-1.0 0.0 1.0Unit: mm -1.0 0.0 1.0 -1.0 0.0 1.0

Fig. 7. Recovering non-planar and non-rigid motion. (Top) A rotating spherical ornament. All

methods can estimate the gradually changing Z-motion, but only our method recovers the back-

ground correctly. (Bottom) An expanding hand. The expansion is demonstrated by the different

Y-motion of the fingers.

results for a scene that is intentionally chosen to have simple geometry and sufficient

texture to compare the baseline performance of the methods. The moving objects (play-

ing cards) are mounted on controllable translation stages such that they can move in

the X-Z plane with measured ground truth motion. Mean absolute error (MAE) for the

three dimensions (ground truth Y-motion is zero) are computed and shown in the ta-

ble. All three methods perform well for recovering the X-motion. However, PD-Flow

and OLFW cannot recover the Z-motion reliably because errors in depth estimation

are large compared to the millimeter-scale Z-motion. The proposed ray flow methods

estimates the Z-motion directly, thereby achieving higher accuracy.

Dependency of the performance on the amount and kind of motion. We mount a

textured plastic sheet on the translation stage and move it either laterally (X-motion) or
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Image Y-Flow (CLG) Y-Flow (PD-Flow) Y-Flow (OLFW)

-4.0 0.0 4.0Unit: mm -4.0 0.0 4.0 -4.0 0.0 4.0

Image X-Flow (CLG) X-Flow (PD-Flow) X-Flow (OLFW)

-2.0 0.0 2.0Unit: mm -2.0 0.0 2.0 -2.0 0.0 2.0

Fig. 8. Recovering motion in natural environments with occlusions. (Top) The mug on the left

is picked up by a hand. Our method estimates the motion boundaries accurately. (Bottom) The

top two vertical branches of the plant quiver in the wind. Our method can correctly compute the

motion of the two complex-shaped branches.

Image X-Flow (CLG) X-Flow (PD-Flow) X-Flow (OLFW)

-3.0 0.0 3.0Unit: mm -3.0 0.0 3.0 -3.0 0.0 3.0

Image X-Flow (CLG) X-Flow (PD-Flow) X-Flow (OLFW)

-3.0 0.0 3.0Unit: mm -3.0 0.0 3.0 -3.0 0.0 3.0

Fig. 9. Recovering human actions. (Top) Handshaking. All the three methods compute the join-

ing movements of the hands correctly, while our method preserves the hand boundary best. (Bot-

tom) Waving hand. Our method correctly estimates the motion in spite of the reflections and

textureless regions in the background, which is challenging for depth estimation algorithms.

axially (Z-motion). Figures 6(a)(b) plot the RMSE of the estimated motion, against the

amount of motion. The proposed method achieves higher precision for small motion.

However, its accuracy decreases as the amount of motion increases. This is because of

the limit imposed by the aperture size, as discussed in Section 4.1. On the other hand,

previous depth-based methods [27] can recover motion over a large range, albeit with

lower precision. This complementary set of capabilities of our method and previous

methods are shown qualitatively in Figure 6(c). Although for the rest of the paper we

focus on showing our methods’ capability in recovering small motion (e.g., for appli-
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Image Z-Flow (CLG) Z-Flow (PD-Flow) Z-Flow (OLFW)

-2.0 0.0 2.0Unit: mm -2.0 0.0 2.0 -2.0 0.0 2.0

Image Y-Flow (CLG) Y-Flow (PD-Flow) Y-Flow (OLFW)

-3.0 0.0 3.0Unit: mm -3.0 0.0 3.0 -3.0 0.0 3.0

Fig. 10. Recovering motion under challenging lighting conditions. (Top) A figurine moves un-

der weak, directional lighting. Our method still preserves the overall shape of the object, although

its reflection on the table is also regarded as moving. (Bottom) Failure case: a few objects move

independently. Due to shadows and lack of texture in the background, boundaries of the objects

are not distinguishable in the recovered motion field of all the three methods.

cations in finger gesture and facial expression recognition), previous approaches [27]

may perform better for measuring large scale motion, such as gait recognition.

Qualitative comparisons. Figure 7–10 shows qualitative comparisons of the three

methods for complex, non-rigid motion and in challenging natural environments. For

each experiment we only show one component of the recovered 3D flow. Please see the

supplementary report for the full 3D flow visualization and more experiments. In all

the examples, our method is able to estimate the complex, gradually changing motion

fields and preserve the motion boundaries better than the other methods, especially for

experiments involving small Z-motion, and where depth estimation is unreliable (e.g.,

scenes with occlusions or reflections in the background). In Fig. 10 (bottom) all three

methods have difficulty in preserving the object boundaries due to shadows, which is a

inherent drawback of the brightness constancy assumption.

8 Limitations

Recoverable range of motion: As discussed in Sections 4.1 and 7, the maximum recov-

erable amount of motion for ray flow methods is limited by the aperture size. A future

research direction is to develop hybrid methods that combine the ray flow method and

depth-based methods [16, 27] according to the amount and nature of scene motion.

Running time: Currently our methods are implemented via unoptimized MATLAB

code, which takes approximately 10 minutes to compute scene flow between two frames.

Further work includes reducing the computational complexity of the algorithm and im-

plementing the algorithm efficiently (e.g., on a GPU), for real-time applications.
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