
Domain Adaptation through Synthesis for

Unsupervised Person Re-identification

Sławomir Bąk1[0000−0002−7152−5002], Peter Carr1, Jean-François
Lalonde2[0000−0002−6583−2364]

1 Argo AI, Pittsburgh PA 15222, USA
{sbak,pcarr}@argo.ai

2 Université Laval, Quebec City G1V 0A6, Canada
jflalonde@gel.ulaval.ca

Abstract. Drastic variations in illumination across surveillance cameras
make the person re-identification problem extremely challenging. Current
large scale re-identification datasets have a significant number of training
subjects, but lack diversity in lighting conditions. As a result, a trained
model requires fine-tuning to become effective under an unseen illumina-
tion condition. To alleviate this problem, we introduce a new synthetic
dataset that contains hundreds of illumination conditions. Specifically,
we use 100 virtual humans illuminated with multiple HDR environment
maps which accurately model realistic indoor and outdoor lighting. To
achieve better accuracy in unseen illumination conditions we propose
a novel domain adaptation technique that takes advantage of our syn-
thetic data and performs fine-tuning in a completely unsupervised way.
Our approach yields significantly higher accuracy than semi-supervised
and unsupervised state-of-the-art methods, and is very competitive with
supervised techniques.
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1 Introduction

Even over the course of just a few minutes, a person can look surprisingly differ-
ent when observed by different cameras at different locations. Indeed, her visual
appearance can vary drastically due to changes in her pose, to the different
illumination conditions, and to the camera configurations and viewing angles.
To further complicate things, she may be wearing the same shirt as another,
unrelated person, and could thus easily be confused.

The task of person re-identification tackles the challenge of finding the same
subject across a network of non-overlapping cameras. Most effective state-of-the-
art algorithms employ supervised learning [25–27,46,51], and require thousands
of labeled images for training. With novel deep architectures, we are witnessing
an exponential growth of large scale re-identification datasets [25, 48]. Recent
re-identification benchmarks have focused on capturing large numbers of iden-
tities, which allows the models to increase their discriminative capabilities [43].



2 Sławomir Bąk, Peter Carr, Jean-François Lalonde

Fig. 1: Sample images from our SyRI dataset: the same 3D character rendered
in various HDR environment maps. The dataset provides 100 virtual humans
rendered in 140 realistic illumination conditions.

Unfortunately, current re-identification datasets lack significant diversity in the
number of lighting conditions, since they are usually limited to a relatively small
number of cameras (the same person is registered under a handful of illumination
conditions). Models trained on these datasets are thus biased to the illumination
conditions seen during training. One can increase the model generalization by
merging multiple re-identification datasets into a single dataset and training the
network as joint single-task learning [43]. In this approach, the learned models
show generalization properties but only upon fine-tuning [2]. This is because the
merged datasets contain tens of different lighting conditions, which might not
be sufficient to generalize. To apply the previously trained model to a new set
of cameras, we need to annotate hundreds of subjects in each camera, which is
a tedious process and does not scale to real-world scenarios.

In this work, we introduce the Synthetic Person Re-Identification (SyRI)
dataset. Employing a game engine, we simulate the appearance of hundreds of
subjects under different realistic illumination conditions, including indoor and
outdoor lighting (see Fig. 1). We first carefully designed 100 virtual humans
based on 3D scans of real people. These digital humans are then rendered using
realistic backgrounds and lighting conditions captured in a variety of high dy-
namic range (HDR) environment maps. We use HDR maps as the virtual light
source and background plate when rendering the 3D virtual scenes. With the
increased diversity in lighting conditions, the learned re-identification models
gain additional generalization properties, thus performing significantly better in
unseen lighting conditions.

To further improve recognition performance, we propose a novel three-step

domain adaptation technique, which translates our dataset to the target
conditions by employing cycle-consistent adversarial networks [52]. Since the
cycle-consistent formulation often produces semantic shifts (the color of clothing
may change drastically during translation), we propose an additional regulariza-
tion term to limit the magnitude of the translation [37], as well as an additional
masking technique to force the network to focus on the foreground object. The
translated images are then used to fine-tune the model to the specific lighting
conditions. In summary, our main contributions are:

– We introduce a new dataset with 100 virtual humans rendered with 140 HDR
environment maps. We demonstrate how this dataset can increase generaliza-

https://github.com/swbak/SyRI
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tion capabilities of trained models in unseen illumination conditions without
fine-tuning.

– We improve re-identification accuracy in an unsupervised fashion using a
novel three-step domain adaptation technique. We use cycle-consistency trans-
lation with a new regularization term for preserving identities. The trans-
lated synthetic images are used to fine-tune the re-identification model for a
specific target domain.

2 Related work

Person re-identification: Most successful person re-identification approaches
employ supervised learning [3,22,23]. This includes novel deep architectures and
the debate as to whether the triplet or multi-classification loss is more effec-
tive for training re-identification networks [3, 16, 43]. Larger architectures have
improved accuracy, but also increased the demand for larger re-identification
datasets [12,47,48]. However all of these approaches require fine-tuning [2,47] to
become effective in unseen target illumination conditions, which is infeasible for
large camera networks. To overcome this scalability issue, semi-supervised and
unsupervised methods have been proposed [20, 21, 35]. This includes transfer
learning [18, 35, 49] and dictionary learning [1, 10, 28]. However, without labeled
data, these techniques usually look for feature invariance, which reduces discrim-
inativity, and makes the methods uncompetitive with supervised techniques.
Synthetic data: Recently, data synthesis and its application for training deep
neural architectures has drawn increasing attention [37]. It can potentially gen-
erate unlimited labeled data. Many computer vision tasks have already been
successfully tackled with synthetic data: human pose estimation [36], pedestrian
detectors [7,14,19] and semantic segmentation [30,34]. The underlying challenge
when training with synthetic visual data is to overcome the significant differ-
ences between synthetic and real image statistics. With increasing capacity of
neural networks, there is a risk that the network will learn details only present
in synthetic data and fail to generalize to real images. One solution is to focus on
rendering techniques to make synthetic images appear more realistic. However,
as the best renderers are not differentiable, the loss from the classifier cannot be
directly back-propagated, thus leaving us with simple sampling strategies [19].
Instead, we take an approach closer to [37]: rather than optimizing renderer pa-
rameters, we cast the problem as a domain adaptation task. In our case, the
domain adaptation performs two tasks simultaneously: (1) makes the synthetic
images look more realistic and (2) minimizes the domain shift between the source
and the target illumination conditions.
Domain adaptation: Typically, domain adaptation is a way of handling dataset
bias [40]. Not surprisingly, domain adaptation is also used to minimize the visual
gap betwen synthetic and real images [37]. Often this shift between distributions
of the source and target domain is measured by the distance between the source
and target subspace representations [8]. Thus, many techniques focus on learning
feature space transformations to align the source and the target domains [18,41].
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Fig. 2: Example HDR environment maps used to relight virtual hu-

mans. The environment maps capture a wide variety of realistic indoor (left)
and outdoor (right) lighting conditions. The images have been tonemapped for
display purposes with γ = 2.2. Please zoom-in for more details.

.

This enables knowledge transfer (e.g . how to perform a particular task) between
the two domains. Recently, adversarial training has achieved impressive results
not only in image generation [11], but also in unsupervised domain adapta-
tion [9]. In this work, we are inspired by a recent approach for unsupervised
image-to-image translation [52], where the main goal is to learn the mapping
between images, rather than maximizing the performance of the model in par-
ticular task. Given our synthesized images and the domain translation, we are
able to hallucinate labeled training data in the target domain that can be used
for fine-tuning (adaptation).

3 SyRI Dataset

Given sufficient real data covering all possible illumination variations, we should
be able to learn re-identification models that have good generalization capabil-
ities without the need for fine-tuning. Unfortunately, gathering and annotating
such a dataset is prohibitive. Instead, we propose training with synthesized data.
The underlying challenge is to create photo-realistic scenes with realistic light-
ing conditions. Rather than hand-crafting the illumination conditions, we use
High Dynamic Range (HDR) environment maps [5]. These can be seen as 360◦

panoramas of the real world that contain accurate lighting information, and can
be used to relight virtual objects and provide realistic backgrounds.

Environment maps To accurately model realistic lighting, a database of 140
HDR environment maps was acquired. First, 40 of those environment maps were
gathered from several sources online3. Further, we also captured an additional
100 environment maps. A Canon 5D Mark III camera with a Sigma 8mm fisheye
lens was mounted on a tripod equipped with panoramic tripod head. 7 brack-
eted exposures were shot at 60◦ increments, for a total of 42 RAW photos per
panorama. The resulting set of photos were automatically merged and stitched
into a 22 f-stop HDR 360◦ environment map using the PTGui Pro commercial

3 The following online sources were used: http://gl.ict.usc.edu/Data/HighResProbes/,
http://dativ.at/lightprobes, http://www.unparent.com/photos_probes.html,
http://www.hdrlabs.com/sibl/archive.html

https://github.com/swbak/SyRI
http://gl.ict.usc.edu/Data/HighResProbes/
http://dativ.at/lightprobes
http://www.unparent.com/photos_probes.html
http://www.hdrlabs.com/sibl/archive.html
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Fig. 3: Sample 3D virtual humans from SyRI dataset.

software. Our dataset represents a wide variety of indoor and outdoor environ-
ments, such as offices, theaters, shopping malls, museums, classrooms, hallways,
corridors, etc. Fig. 2 shows example environment maps from our dataset.

3D virtual humans and animations Our 3D virtual humans are carefully
designed with Adobe Fuse CC that provides 3D content, including body scans
of real people with customizable body parts and clothing. We generate 100 char-
acter prototypes, where we customize body shapes, clothing, material textures
and colors (see Fig. 3). These characters are then animated using rigs to obtain
realistic looking walking poses.

Rendering We use Unreal Engine 4 to achieve real-time rendering speeds. To
relight our 3D virtual humans, the HDR environment map is texture mapped
on a large sphere surrounding the scene. This sphere is then used as a the sole
light source (light emitter) to render the scene. We position a 3D character at
the center of the sphere. The character is animated using either a male or female
walking rig, depending on the model gender. We also add a rotation animation
to acquire multiple viewpoints of each subject. The camera position is matched
with existing re-identification datasets. Each subject is rendered twice under the
same HDR map rotating the sphere about its vertical axis by two random angles.
This effectively provides two different backgrounds and lighting conditions for
each environment map. We render 2-second videos at 30 fps as the character is
being rotated. In the end, we render 100 (subjects)× 140 (environment maps)×
2 (rotations) × 2 (seconds) × 30 (fps) = 1, 680, 000 frames. Both the rendered
dataset as well as the Unreal Engine project that will allow a user to render
more data are going to be made publicly available.

4 Method

We cast person re-identification as a domain adaptation problem, where the do-
main is assumed to be an illumination condition (i.e., a camera-specific lighting).
Our objective is to find an effective and unsupervised strategy for performing
person re-identification under the target illumination condition.

For training, we assume we have access to M real source domains R =

{R1 . . . RM}, where each Rm = {xi, yi}
ZRm

i=1 consists of ZRm
real images xi and

their labels yi (person’s identity); and N source synthetic domains S = {S1 . . . SN},

where each Sn = {si, yi}
ZSn

i=1 consists of ZSn
synthetic images si and their labels

http://www.adobe.com/products/fuse.html
https://www.unrealengine.com/
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Fig. 4: Unsupervised Domain Adaptation. Given unlabelled input images
from target domain RM+1, we first select the closest synthetic domain Sk∗

through illumination inference. Afterwards, images from the selected domain
Sk∗ are translated by G : Sk∗ → RM+1 to better resemble the input images
in RM+1. Finally, the translated synthetic images G(s) along with their known
identities are used to fine-tune the re-identification network Φ(·).

yi (3D character’s identity). In our case N ≫ M as we have access to hundreds
of different illumination conditions (see Sec. 3). Our ultimate goal is to perform

re-identification in unknown target domain RM+1 = {xi}
ZRM+1

i=1 for which we do
not have labels.

4.1 Joint learning of re-identification network

We first learn a generic image feature representation for person re-identification.
The feature extractor Φ(·) is a Convolutional Neural Network (CNN) trained
to perform multi-classification task, i.e. given a cropped image of a person, the
CNN has to predict the person’s identity. We propose to merge all domains R

and S into a single large dataset and train the network jointly from scratch.
We adopt the CNN model from [43]. To learn discriminative and generalizable
features, the number of classes during training has to be significantly larger
than the dimensionality of the last hidden layer (feature layer). In our case the
training set consists of 3K+ classes (identities) and the feature layer has been
fixed to 256 dimensions.

One could assume that with our new dataset, the pre-trained model should
generalize well in novel target conditions. Although synthetic data helps (see
Sec. 5.1), there is still a significant performance gap between the pre-trained
model and its fine-tuned version on the target domain. We believe there are
two reasons for this gap: (1) our dataset does not cover all possible illumination
conditions, and (2) there is a gap between synthetic and real image distribu-
tions [37]. This motivates the investigation of domain adaptation techniques that
can potentially address both issues: making the synthetic images looking more
realistic, as well as minimizing the shifts between source and target illumination
conditions.

4.2 Domain adaptation

We formulate domain adaptation as the following three-step process, as illus-
trated in Fig. 4.
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1. Illumination inference: find the closest illumination condition (domain
Sk∗ ∈ S) for a given input RM+1.

2. Domain translation: translate domain Sk∗ to RM+1, by learning G,
G : Sk∗ → RM+1 while preserving a 3D character’s identity from s ∈ Sk∗.

3. Fine-tuning: update Φ(·) with the translated domain G(s).

Illumination inference Domain adaptation is commonly called a visual dataset
bias problem. Dataset bias was compellingly demonstrated in computer vision
by the name the dataset game of Torralba and Efros [40]. They trained a clas-
sifier to predict which dataset an image originated from, illustrating that visual
datasets are biased samples of the visual world. In this work, we employ a sim-
ilar idea to identify the synthetic domain Sk∗ ∈ S that is closest to the target
domain RM+1. To do so, we train a CNN classifier that takes an input image and
predicts which illumination condition the image was rendered with. In our case,
the classifier has to classify the image into one of N = 140 classes (the number
of different environment maps in our synthetic dataset). We used Resnet-18 [15]
pretrained on ImageNet and fine-tuned to perform illumination classification.
Given the trained classifier, we take a set of test images from RM+1 and predict
the closest lighting condition by

k∗ = argmax
k∈{1...N}

ZRM+1
∑

i=1

∆
(

L(xi), k
)

, s.t. ∆
(

L(xi), k
)

=

{

1, L(xi) = k

0, otherwise
. (1)

Here, k corresponds to domain class, L(xi) is the class predicted by the CNN
classifier and ∆ is a counting function. We use this formulation to find Sk∗: the
synthetic illumination condition that is most similar to the target domain RM+1

(i.e. requiring the minimum amout of domain shift). Sk∗ will be used to translate
images from Sk∗ to RM+1 while preserving each 3D character’s identity.

Domain translation Given two domains S and R (for convenience we skip
sub-indices here) and the training samples si ∈ S and xi ∈ R, our objective is
to learn a mapping function G : S → R. As we do not have corresponding pairs
between our synthetic and real domains, G is fairly unconstrained and standard
procedures will lead to the well-known problem of mode collapse (all input images
map to the same output image). To circumvent this problem, we adapt the
technique of [52], where rather than learning a single mapping G : S → R, we
exploit the property that translation should be cycle-consistent. In other words
there should exist the opposite mapping F : R → S, where G and F are inverses
of each other.

We train both mappings G and F simultaneously, and use two cycle con-

sistency losses to regularize the training: s → G(s) → F (G(s)) ≈ s and x →
F (x) → G(F (x)) ≈ x. G and F are generator functions, where G tries to gen-
erate images G(s) that look similar to images from domain R, and F generates
images F (x) that should look like images from domain S. Additionally, two ad-
versarial discriminators DS and DR are trained, where DS tries to discriminate
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S R

{s}{F (x)} {x}{G(s)}

G

DS DR
F

MASK

Fig. 5: Semantic Shift Regularization. The Cycle-GAN loss only applies to
F (G(s)) and G(F (x)). There is no constraint on what G() and F () can do indi-
vidually, which can result in drastic color changes. We incorporate an additional
regularization loss requiring s and G(s) to be similar. The loss should only apply
to the foreground (to preserve identity), since the target camera may have a very
different background than the synthetic data.

between images {s} and translated images {F (x)}; and analogously DR aims to
distinguish between {x} and {G(s)} (see Fig. 5).

The training objective contains adversarial losses [11] for both G and F , as
well as two cycle consistency losses. The adversarial loss for G is defined as

LGAN (G,DR, S,R) = Ex∼pdata(x)[logDR(x)] + Es∼pdata(s)[log(1−DR(G(s)))], (2)

and we can analogously define adversarial loss for F , i.e. LGAN (F,DS , R, S).
Both cycle consistency losses can be expressed as

Lcyc(G,F ) = Es∼pdata(s)[||F (G(s))− s||1] + Ex∼pdata(x)[||G(F (x))− x||1]. (3)

The final objective is

LCycleGAN (G,F,DS , DR) = LGAN (G,DR, S,R) + LGAN (F,DS , R, S) + λ1Lcyc(G,F ), (4)

where λ1 controls the relative importance of the cycle consistency losses.
Semantic Shift Regularization In the above formulation, there is no con-
straint that the color distribution of the generated image G(s) should be close to
instance s. With large capacity models, the approach can map the colors within
s to any distribution, as long as this distribution is indistinguishable from the
emperical distribution within R (F (x) will learn the inverse mapping). In our
application, the color of a person’s shirt (e.g . red) can drastically switch under
G(s) (e.g . to blue) as long as F (G(S)) is able to reverse this process (see Fig. 8).
This semantic shift corrupts the training data, since a synthetic image and its
corresponding domain translated variant could look very different (e.g . the la-
bels are not consistent). Semantic shift can occur because the cycle-consistency

loss does not regulate the amount by which the domains can be shifted.
As mentioned in [52], one can adopt the technique from [39] and introduce

an additional loss that forces the network to learn an identity mapping when
samples from the target domain are provided as input to the generator, i.e.
Lid(G,F ) = Ex∼pdata(x)[||G(x)− x||1] +Es∼pdata(s)[||F (s)− s||1]. Although, this
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Fig. 6: Domain translation results for VIPeR (left) and PRID (right)
datasets. From top to bottom: domain images s ∈ Sk∗, translated images G(s),
target images x ∈ RM+1.

loss helps to some degree, many subjects still exhibited drastic shifts in appear-
ance.

Alternatively, we can integrate the loss from [37] which ensures the trans-
lated synthetic image is not too different from the original synthetic image i.e.
LRef (G) = Es∼pdata(s)[||G(s)− s||1]. We found this loss often leads to artifacts
in the translated synthetic images, since the regularization does not distinguish
between background/foreground. In practice, only the appearance of the person
needs to be preserved. The background of synthetic image could be very different
than what appears in the real images captured by the target camera.

To circumvent this issue, we apply a masking function which forces the net-
work to focus on the foreground region

LMask(G) = Es∼pdata(s)

[

∥

∥

(

G(s)− s
)

∗m
∥

∥

1

]

, (5)

where m is a mask that encourages the mapping to preserve the appearance
only near to the center (see Fig. 5). Because re-identification datasets have well
cropped images, the foreground region is typically in the middle of the bounding
box, with the background around the periphery. Therefore, we pre-define a soft
matte that resembles a 2D Gaussian kernel.

Our full objective loss is

Lour(G,F,DS , DR) = LGAN (G,DR, S,R) + LGAN (F,DS , R, S)

+ λ1Lcyc(G,F ) + λ2Lid(G,F ) + λ3LMask(G), (6)

where λ1 = λ2 = 10 and λ3 = 5 in our experiments (See Fig. 6).

Fine-Tuning Given our re-identification network (see Sec. 4.1), we can fine-
tune its feature extraction process to specialize for images generated from G(s),
which is our approximation of data coming from target domain (test camera).
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In practice, when we need to fine-tune our representation to a set of cameras,
for every camera we identify its closest synthetic domain Sk∗ through our illumi-
nation inference, and then use it to learn a generator network that can transfer
synthetic images to the given camera domain. The transferred synthetic images
G(s) : s ∈ Sk∗ are then used for fine-tuning the re-identification network, thus
maximizing the performance of Φ(G(s)).

5 Experiments

We carried out experiments on 5 datasets: VIPeR [13], iLIDS [50], CUHK01

[24], PRID2011 [17] and Market-1501 [48]. To learn a generic feature ex-
tractor we used two large scale re-identification datasets: CUHK03 [25] and
DukeMTMC4ReID [12, 33], and our SyRI dataset. Re-identification perfor-
mance is reported using rank-1 accuracy of the CMC curve [13].
Datasets: VIPeR contains 632 image pairs of pedestrians captured by two out-
door cameras. Large variations in lighting conditions, in background and in view-
point are present. PRID2011 consists of person images recorded from two non-
overlapping static surveillance cameras. Characteristic challenges of this dataset
are extreme illumination conditions. There are two camera views containing
385 and 749 identities, respectively. Only 200 people appear in both cameras.
i-LIDS consists of 476 images with 119 individuals. The images come from air-
port surveillance cameras. This dataset is challenging due to many occlusions.
CUHK01 consists of 3, 884 images of 971 identities. There are two images per
identity, per camera. The first camera captures the side view of pedestrians and
the second camera captures the front or back view. Market-1501 contains 1501
identities, registered by at most 6 cameras. All the images were cropped by an
automatic pedestrian detector, resulting in many inaccurate detections.
Evaluation protocol: We generate probe/gallery images accordingly to the set-
tings in [43]: VIPeR: 316/316; CUHK01: 486/486; i-LIDS: 60/60; and PRID2011:
100/649, where we follow a single shot setting [31]. For Market-1501 we employ
the protocol from [44], where 750 test identities are used in a single query setting.

5.1 Generalization properties

In this experiment, we train two feature extractors: one with only real images
R containing CUHK03 and DukeMTMC4ReID images (in total 3279 identi-
ties); and the other one with both real and our synthetic images R + S (our
SyRI dataset provides additional 100 identities but under 140 illumination
conditions, for a total of 3379 identities). For S we used 4 randomly sampled
images per illumination condition per identity, which results in 56, 000 images
(4 × 140 × 100). Table 1 reports the performance comparison of these models
on various target datasets. First, we evaluate the performance of the models
directly on the target datasets without fine-tuning (fully unsupervised scenario,
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Table 1: CMC rank-1 accuracy. The base model R is only trained on real
images from auxiliary re-identification datasets. Adding synthetic images S im-
proves the performance. Fine-tuning (R+ S*) to the training data of a specific
dataset implies the maximum performance that could be expected with the cor-
rect synthetic data. Adapting the synthetic data to the target domain leads
to significant gains, depending on the combination of semantic shift regular-
izations. Compared with state-of-the-art unsuperivsed techniques, our approach
yields significantly higher accuracy on 4 of the 5 datasets. We achieve competitive
performance to state-of-the-art on CUHK01

Method VIPeR CUHK01 iLIDS PRID Market

u
n
su

p
er

v
is

ed

State-of-the-Art 38.5 [42] 57.3 [44] 49.3 [32] 34.8 [42] 58.2 [42]
R 32.3 41.6 51.0 7.0 44.7
R+ S 36.4 49.5 54.8 15.0 54.3

CycleGan 37.0 49.9 53.9 33.0 55.4
CycleGan+Lid 39.9 54.0 55.9 40.0 63.1
CycleGan+LRef 41.1 48.4 56.1 28.0 57.5
Ours 43.0 54.9 56.5 43.0 65.7

R+ S* 49.4 71.4 63.2 65.0 83.9

compare rows R and R+S, respectively) . Adding our synthetic dataset signif-
icantly increases the re-identification performance. The row marked with * are
the results after fine-tuning on the actual target datasets (e.g . in VIPeR column
we fine-tune the model only on VIPeR dataset). It represents the maximum per-
formance we expect to achieve if we could somehow hallucinate the perfect set
of domain translated synthetic training images. These results indicate that the
performance of supervised methods (using additional real data directly from the
target domain) is still significantly better than unsupervised methods using do-
main adaptation. Interestingly, although adding our synthetic dataset doubled
the performance on PRID2011, the lighting conditions in this dataset are so ex-
treme that the gap to the supervised model is still significant. Similar findings
have been reported in [2, 42].

5.2 Illumination inference

We carry out experiments to evaluate the importance of the illumination infer-
ence step. To do so, we compare the proposed illumination estimator to a random
selection of the target illumination condition Sk∗. After the illumination condi-
tion is selected, the proposed domain translation is applied. Table 2 illustrates
the comparison on multiple dataset. We report minimum performance obtained
by random procedure (MIN), the average across 10 experiments (Random),
and the average using our illumination inference. The results demonstrate that
reasoning about illumination greatly improves the recognition performance. Our
illumination condition estimator ensures that the source illumination is the clos-
est to the target domain, thus facilitating the domain translation task.
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Table 2: Impact of illumination inference. The selection of the right illumination
condition for the domain translation improves the recognition performance

Method VIPeR CUHK01 iLIDS PRID Market

R+ S 36.4 49.5 54.8 15.0 54.3
MIN 35.2 50.4 55.1 29.0 58.1
Random 38.9 51.2 56.1 36.0 60.9
Our 43.0 54.9 56.5 43.0 65.7
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Fig. 7: Comparison of image statistics. Domain translation decreases the
gap between synthetic and real image statistics.

5.3 Image statistics of SyRI

The effect of domain translation is reflected in the underlying image statis-
tics (see Fig. 7). The statistics of real and synthetic images are derived from
a single camera from the VIPeR dataset and its corresponding camera in our
SyRI dataset (selected by illumination inference). After passing through the gen-
erator function learned during domain translation (G(s)), the statistics of the
translated images are much closer to the statistics of real images.

5.4 Domain adaptation

Table 1 reports the performance of CycleGAN with different regularization
terms. Domain translation without any regularization term between s and G(s)
can deteriorate performance (compare R + S and CycleGAN for iLIDS). We
suspect this is due to the previously mentioned semantic shift (see Fig. 8).
Adding identity mapping Lid makes significant improvement on both visual ex-
amples and re-identification performance. Replacing Lid with LRef can lower
performance and tends to produce artifacts (notice artificial green regions in
Figure 8 for CUHK01). For CUHK01 and PRID datasets there are significant
drops in the performance when using LRef regularization. Unlike [37], our im-
ages have distinct foreground/background regions. Background is not useful for
re-identification, and it’s influecen in the loss function should be minimial. In-
corporating our mask makes significant improvements—especially for datasets
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Input CycleGAN +Lid +LRef Our CUHK01 Input CycleGAN +Lid +LRef Our iLIDS Input CycleGAN +Lid +LRef Our PRID

Fig. 8: Comparison of different regularization terms for translating syn-

thetic images to a target domain. Representative image pairs for CUHK01,
iLIDS and PRID datasets have been selected. Notice that CycleGAN without
any regularization tends to have semantic shifts, e.g . for CUHK01 blue color of
the t-shirt changed to red.

where images are less tightly cropped, such as PRID. In this case, adding syn-
thetic data improved performance from 7% to 15%. Our domain adaptation
technique boosts the performance to 43.0% rank1-accuracy. We surpass the cur-
rent state-of-the-art results by 8.2%.

5.5 Comparison with state-of-the-art methods

We divide the state-of-the-art approaches into unsupervised and supervised tech-
niques as well as methods that employ hand-crafted features (including graph-
learning GL [20] and transfer learning TL [20]) and embeddings learned with
Convolutional Neural Newtworks (CNN) (including source identity knowledge
transfer learning CAMEL [44] and attribute knowledge transfer TJ-AIDL [42]).
Table 3 illustrates that: (1) our three-step domain adaptation technique outper-
forms the state-of-the-art unsupervised techniques—on 4 of the 5 datasets, we
outperform the state-of-the-art results by large margins: 5.1%, 7.2%, 8.2% and
7.5% on VIPeR, iLIDS, PRID and Market, respectively; on CUHK01 we achieve
competitive performance to CAMEL [44] (2.4% performance gap), but CAMEL
performs significantly worse than our approach on VIPeR and Market. Com-
pared with other augmentation techniques (e.g . SPGAN [6]), our illumination
inference step ensures that the source illumination, chosen from a large number
of options in our SyRI dataset, is closest to the target domain. (2) When com-
pared to unsupervised hand-crafted based approaches, the performance margins
for rank-1 are even larger: 11.5%, 13.9%, 7.2% and 18% on VIPeR, CUHK01,
iLIDS and PRID, respectively. (3) Our approach is also very competitive with the
best supervised techniques—regardless of the dataset. This confirms the effec-
tiveness of the proposed solution, which does not require any human supervision
and thus scales to large camera networks.
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Table 3: Comparison with state-of-the-art unsupervised and supervised

techniques. The best scores for unsupervised methods are shown in bold. The
best scores of supervised methods are highlighted in red

Method VIPeR CUHK01 iLIDS PRID Market

u
n
su

p
er

v
is

ed

h
a
n
d
-c

ra
ft GL [20] 33.5 41.0 - 25.0 -

DLLAP [21] 29.6 28.4 - 21.4 -
TSR [35] 27.7 23.3 - - -
TL [32] 31.5 27.1 49.3 24.2 -

C
N

N

SSDAL [38] 37.9 - - 20.1 39.4
CAMEL [44] 30.9 57.3 - - 54.5
SPGAN [6] - - - - 57.7
TJ-AIDL [42] 38.5 - - 34.8 58.2
Ours 43.0 54.9 56.5 43.0 65.7

su
p
er

v
is

ed

h
a
n
d
-c

ra
ft LOMO+XQDA [27] 40.0 63.2 - 26.7 -

Ensembles [31] 45.9 53.4 50.3 17.9 -
Null Space [45] 42.2 64.9 - 29.8 55.4
Gaussian+XQDA [29] 49.7 57.8 - - 66.5

C
N

N

Triplet Loss [4] 47.8 53.7 60.4 22.0 -
FT-JSTL+DGD [43] 38.6 66.6 64.6 64.0 73.2
SpindleNeT [46] 53.8 79.9 66.3 67.0 76.9

6 Conclusion

Re-identification datasets contain many identities, but rarely have a substantial
number of different lighting conditions. In practice, this lack of diversity limits
the generalization performance of learned re-identification models on new un-
seen data. Typically, the networks must be fine-tuned in a supervised manner
using data collected for each target camera pair, which is infeasible at scale. To
solve this issue, we propose a new synthetic dataset of virtual people rendered
in indoor and outdoor environments. Given example unlabelled images from a
test camera, we develop an illumination condition estimator to select the most
appropriate subset of our synthesized images to use for fine-tuning a pre-trained
re-identification model. Our approach is ideal for large scale deployments, since
no labelled data needs to be collected for each target domain.

We employ a deep network to modify the subset of synthesized images (se-
lected by the illumination estimator) so that they more closely resemble images
from the test domain (see Fig. 6). To accomplish this, we use the recently in-
troduced cycle-consistent adversarial architecture and integrate an additional
regularization term to ensure the learned domain shift (between synthetic and
real images) does not result in generating unrealistic training examples (e.g .
drastic changes in color). Because re-identification images have distinct fore-
ground/background regions, we also incorporate a soft matte to help the net-
work focus on ensuring the foreground region is correctly translated to the target
domain. Extensive experiments on multiple datasets (see Tab. 3) show that our
approach outperforms other unsupervised techniques, often by a large margin.
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