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Abstract. Recent studies on face attribute transfer have achieved great
success. A lot of models are able to transfer face attributes with an in-
put image. However, they suffer from three limitations: (1) incapability
of generating image by exemplars; (2) being unable to transfer multiple
face attributes simultaneously; (3) low quality of generated images, such
as low-resolution or artifacts. To address these limitations, we propose
a novel model which receives two images of opposite attributes as in-
puts. Our model can transfer exactly the same type of attributes from
one image to another by exchanging certain part of their encodings. All
the attributes are encoded in a disentangled manner in the latent space,
which enables us to manipulate several attributes simultaneously. Be-
sides, our model learns the residual images so as to facilitate training
on higher resolution images. With the help of multi-scale discrimina-
tors for adversarial training, it can even generate high-quality images
with finer details and less artifacts. We demonstrate the effectiveness of
our model on overcoming the above three limitations by comparing with
other methods on the CelebA face database. A pytorch implementation
is available at https://github.com/Prinsphield/ELEGANT.

Keywords: Face Attribute Transfer, Image Generation by Exemplars,
Attributes Disentanglement, Generative Adversarial Networks

1 Introduction

The task of transferring face attributes is a type of conditional image genera-
tion. A source face image is modified to contain the targeted attribute, while the
person identity should be preserved. As an example shown in Fig. 1, the bangs
attribute is manipulated (added or removed) without changing the person iden-
tity. For each pair of images, the right image is purely generated from the left
one, without the corresponding images in the training set.

A lot of methods have been proposed to accomplish this task, but they still
suffer from different kinds of limitations.

Gardner et al. [3] has proposed a method called Deep Manifold Traversal
that was able to approximate the natural image manifold and compute the at-
tribute vector from the source domain to the target domain by using maximum

⋆ Corresponding author

https://github.com/Prinsphield/ELEGANT


2 Taihong Xiao, Jiapeng Hong, Jinwen Ma

(a) removing bangs (b) adding bangs

Fig. 1: Results of ELEGANT in transferring the bangs attribute. Out of four
images in a row, the bangs style of the first image is transferred to the last one.

mean discrepancy (MMD) [6]. By this method, the attribute vector is a linear
combination of the feature representations of training images extracted from
VGG-19 [22] network. However, it suffers from unbearable time and memory
cost, and thus is not useful in practice.

Under the Linear Feature Space assumptions [1], one can transfer face at-
tribute in a much simpler manner [24]: adding an attribute vector to the original
image in the feature space, and then obtaining the solution in the image space
inversely from the computed feature. For example, transferring a no-bangs image
B to a bangs image A would be formulated as A = f−1(f(B) + vbangs), where
f is a mapping (usually deep neural networks) from the image space to the fea-
ture space, and the attribute vector vbangs can be computed as the difference
between the cluster centers of features of bangs images and no-bangs images.
The universal attribute vector is applicable to a variety of faces, leading to the
same style of bangs in the generated face images. But there are many styles of
bangs. Fig. 1 would be a good illustration of different styles of bangs. Some kinds
of bangs are thick enough to cover the entire forehead, some tend to go either
left or right side, exposing the other half forehead, and some others may divide
from the middle, etc.
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(a) feminizing (b) virilizing

Fig. 2: Results of ELEGANT in transferring the gender attribute.

To address the diversity issue, the Visual Analogy-Making [19] has used a
pair of reference images to specify the attribute vector. Such a pair of images
consists of two images of the same person where one has one certain attribute and
the other one does not. This method could increase the richness and diversity
of generated images, however, it is usually hard to obtain a large quantity of
such paired images. For example, if transferring the attribute gender over face
images, we need to obtain both male and female images of a same person, which
is impossible. (See Fig. 2)

Recently, more and more methods based on GANs [5] have been proposed to
overcome this difficulty [10, 18, 31]. The task of face attribute transfer can be
viewed as a kind of image-to-image translation problem. Images with/without
one certain attribute lies in different image domains. The dual learning ap-
proaches [7, 11, 21, 28, 32] have been further exploited to map between source
image domain and target image domain. The maps between the two domains are
continuous and inverse to each other under the cycle consistency loss. According
to the Invariance of Domain Theorem 1, the intrinsic dimensions of two image
domains should be the same. This leads to a contradiction, because the intrinsic
dimensions of two image domains are not always the same. Taking transferring
eyeglasses (Fig. 3) as an example, domain A contains face images wearing eye-

1 https://en.wikipedia.org/wiki/Invariance_of_domain

https://en.wikipedia.org/wiki/Invariance_of_domain


4 Taihong Xiao, Jiapeng Hong, Jinwen Ma

(a) removing eyeglasses (b) adding eyeglasses

Fig. 3: Results of ELEGANT in transferring the eyeglasses attribute. In each
row, the type of eyeglasses in the first image is transferred to the last one.

glasses, and domain B contains face images wearing no eyeglasses. The intrinsic
dimension of A is larger than that of B due to the variety of eyeglasses.

Some other methods [15, 23, 30] are actually the variants of combinations
of GAN and VAE. These models employ the autoencoder structure for image
generation instead of using two maps interconnecting two image domains. They
successfully bypass the problem of unequal intrinsic dimensions. However, most
of these models are limited to manipulating only one face attribute each time.

To control multiple attributes simultaneously, lots of conditional image gen-
eration methods [2, 13, 18, 29] receive image labels as conditions. Admittedly,
these models could transfer several attributes at the same time, but fail to gen-
erate images by exemplars, that is, generating images with exactly the same
attributes in another reference image. Consequently, the style of attributes in
the generated image might be similar, thus lacking of richness and diversity.

BicycleGAN [33] introduces a noise term to increase the diversity, but fails
to generate images of specified attributes. TD-GAN [25] and DNA-GAN [27]
can generate images by exemplars. But TD-GAN requires explicit identity in-
formation in the label so as to preserve the person identity, which limits its
application in many datasets without labeled identity information. DNA-GAN
suffers from the training difficulty on high-resolution images. There also exist
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(a) removing smile (b) adding smile

Fig. 4: Results of ELEGANT in transferring the smiling attribute. In each row,
the style of smiling of the first image is transplanted into the last one.

many other methods [14], however, their results are not visually satisfying, ei-
ther low-resolution or lots of artifacts in the generated images.

2 Purpose and Intuition

As discussed above, there are many approaches to transferring face attributes.
However, most of them suffer from one or more following limitations:

1. Incapability of generating image by exemplars;
2. Being unable to transfer multiple face attributes simultaneously;
3. Low quality of generated images, such as low-resolution or artifacts.

To overcome these three limitations, we propose a novel model integrated
with different advantages for multiple face attribute transfer.

To generate images by exemplars, a model must receive a reference for con-
ditional image generation. Most of previous methods [2, 13, 17, 18] use labels
directly for guiding conditional image generation. But the information provided
by a label is very limited, which is not commensurate with the diversity of images
of that label. Various kinds of smiling face images can be classified into smiling,
but cannot be generated inversely from the same label smiling. So we set the
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(a) black hair to non-black (b) non-black hair to black

Fig. 5: Results of ELEGANT in transferring the black hair attribute. In each
row, the color of the first image turns to be the color of the third one, apart
from turning the color of the third image into black.

latent encodings of images as the reference as the encodings of an image can be
viewed as a unique identifier of an image given the encoder. The encodings of
reference images are added to inputs so as to guide the generation process. In
this way, the generated image will have exactly the same style of attributes in
the reference images.

For manipulating multiple attributes simultaneously, the latent encodings of
an image can be divided into different parts, where each part encodes informa-
tion of a single attribute [27]. In this way, multiple attributes are encoded in
a disentangled manner. When transferring several certain face attributes, the
encodings parts corresponding to those attributes should be changed.

To improve the quality of generated images, we adopt the idea of residual
learning [8, 21] and multi-scale discriminators [26]. The local property of face
attributes is unique in the task of face attributes transfer, contrast to the task
of image style transfer [4], where the image style is a holistic property. Such
property allows us to modify only a local part of the image so as to transfer face
attributes, which helps alleviate the training difficulty. The multi-scale discrimi-
nators can capture different levels of information that is useful for the generation
of both holistic content and local details.
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3 Our Method

In this section, we formally propose our method ELEGANT, the abbreviation
of Exchanging Latent Encodings with GAN for Transferring multiple face at-
tributes.

3.1 The ELEGANT Model

The ELEGANT model receives two sets of training images as inputs: a positive
set and a negative set. In our convention, the image A from the positive set has
the attribute, whereas the image B from the negative set does not. As shown in
Fig. 6, image A has the attribute smiling and image B does not. The positive
set and negative set need not to be paired. (The person from the positive set
needs not to be the same as the one from the negative set.)

All of n transferred attributes are predefined. It is not naturally guaranteed
that each attribute is encoded into different parts. Such disentangled represen-
tations have to be learned. We adopt the iterative training strategy: training the
model with respect to a particular attribute each time by feeding with a pair of
images with opposite attribute and go over all attributes repeatedly.

When training ELEGANT about the i-th attribute smiling at this iteration,
a set of smiling images and another set of non-smiling images are collected as
inputs. Formally, the attribute labels of A and B are required to be in this form
Y A = (yA1 , . . . , 1i, . . . , y

A
n ) and Y B = (yB1 , . . . , 0i, . . . , y

B
n ), respectively.

An encoder was then used to obtain the latent encodings of images A and
B, denoted by zA and zB , respectively.

zA = Enc(A) = [a1, . . . , ai, . . . , an], zB = Enc(B) = [b1, . . . , bi, . . . , bn] (1)

where ai (or bi) is the feature tensor that encodes the smiling information of
image A (or B). In practice, we split the tensor zA (or zB) into n parts along
with its channel dimension. Once obtained zA and zB , we exchange the i-th part
in their latent encodings so as to obtain novel encodings zC and zD.

zC = [a1, . . . , bi, . . . , an], zD = [b1, . . . , ai, . . . , bn] (2)

We expect that zC is the encoding of the non-smiling version of image A, and
zD the encodings of the smiling version of image B. As shown in Fig. 6, A and
B are both reference images for each other, C and D are generated by swapping
the latent encodings.

Then we need to design a reasonable structure to decipher the latent en-
codings into images. As discussed in Sec. 2, it would be much better to learn
the residual images rather than the original image. So we recombine the latent
encodings and employ a decoder to do this job.

Dec([zA, zA]) =RA, A′ =A+RA Dec([zC , zA]) =RC , C =A+RC (3)

Dec([zB , zB ]) =RB , B′ =B +RB Dec([zD, zB ]) =RD, D =B +RD (4)
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Fig. 6: The ELEGANT model architecture.

where RA, RB , RC and RD are residual images, A′ and B′ are reconstructed im-
ages, C and D are images of novel attributes, [zC , zA] denotes the concatenation
of encodings zC and zA. The concatenation could be replaced by difference of two
encodings, but we still use the form of concatenation, because the subtraction
operation could be learnt by the Dec.

Besides, we use the U-Net[20] structure for better visual results. The struc-
tures of Enc and Dec are symmetrical, and their intermediary layers are con-
nected by shortcuts, as displayed in Fig. 6. These shortcuts bring the original
images as a context condition, so as to generate seamless novel attributes.

The Enc and Dec together act as the generator. We also need discriminators
for adversarial training. However, the receptive field of a single discriminator
is limited when the input image size becomes large. To address this issue, we
adopt multi-scale discriminators [26]: two discriminators having identical net-
work structures whereas operating at different image scales. We denote the dis-
criminator operating at a larger scale by D1 and the other one by D2. D1 has a
smaller receptive field compared with D2. Therefore, D1 is specialized in guiding
the Enc and Dec to produce finer details, whereas D2 is adept in handling the
holistic image content so as to avoid generating grimaces.

The discriminators should also receive image labels as conditional inputs.
There are n attributes in total. The output of discriminators in each iteration
reflects how real-looking the generated images are with respect to one attribute.
It is necessary to let discriminators know which attribute they are dealing with
in each iteration. Mathematically, it would be a conditional form. For example,
D1(A|Y

A) represents the output score by D1 for image A given its label Y A. We
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should pay attention to the attribute labels of C and D, since they have novel
attributes.

Y A = (yA1 , . . . , 1i, . . . , y
A
n ) Y B = (yB1 , . . . , 0i, . . . , y

B
n ) (5)

Y C = (yA1 , . . . , 0i, . . . , y
A
n ) Y D = (yB1 , . . . , 1i, . . . , y

B
n ) (6)

where Y C differs from Y A only in the i-th element, by replacing 1 with 0, since
we do not expect C to have the i-th attribute. The same applies to Y D and Y B .

3.2 Loss Functions

The multi-scale discriminators D1 and D2 receive the standard adversarial loss

LD1
= − E(log(D1(A|Y

A)))− E(log(1−D1(C|Y C)))

− E(log(D1(B|Y B)))− E(log(1−D1(D|Y D)))
(7)

LD2
= − E(log(D2(A|Y

A)))− E(log(1−D2(C|Y C)))

− E(log(D2(B|Y B)))− E(log(1−D2(D|Y D)))
(8)

LD = LD1
+ LD2

(9)

When minimizing LD, we are actually maximizing the scores for real images and
minimizing scores for fake images in the meantime. This drives D1 and D2 to
discriminate the fake images from the real ones.

As for the Enc and Dec, there are two types of losses. The first type is the
reconstruction loss,

Lreconstruction = ||A−A′||+||B −B′|| (10)

which measures how well the original input is reconstructed after a sequence of
encoding and decoding. The second type is the standard adversarial loss

Ladv =− E(log(D1(C|Y C)))− E(log(D1(D|Y D)))

− E(log(D2(C|Y C)))− E(log(D2(D|Y D)))
(11)

which measures how realistic the generated images are. The total loss for the
generator is

LG = Lreconstruction + Ladv. (12)

4 Experiments

In this section, we carry out different types of experiments to validate the effec-
tiveness of our method in overcoming three limitations. First of all, we introduce
the dataset and our model in details.

The CelebA [16] dataset is a large-scale face database including 202599 face
images of 10177 identities, each with 40 attributes annotations and 5 landmark
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Fig. 7: Interpolation results of different bangs. The top-left is the original one,
and those at the other three corners are reference images of different styles of
bangs. The rest 16 images in the center are interpolation results.

locations. We use the 5-point landmarks to align all face images and crop them
into 256× 256. All of the following experiments are performed at this scale.

The encoder is equipped with 5 layers of Conv-Norm-LeakyReLU block, and
the decoder has 5 layers of Deconv-Norm-LeakyReLU block. The multi-scale dis-
criminators uses 5 layers of Conv-Norm-LeakyReLU blocks followed by a fully
connected layer. All networks are trained using Adam [12] initialized with learn-
ing rate 2e-4, β1 = 0.5 and β2 = 0.999. All input images are normalized into the
range [−1, 1], and the last layer of decoder is clipped into the range [−2, 2] using
2 · tanh, since the maximum difference between the input image and the output
image is 2. After adding the residual to the input image, we clip the output
image value into [−1, 1] to avoid the out-of-range error.

It is worth mentioning that the Batch-Normalization (BN) layer should be
avoided. ELEGANT receives two batches of images with opposite attribute as
inputs, thus the moving mean and moving variance of two batches of images in
each layer should make a big difference. If using BN, these running statistics in
each layer will always oscillate. To overcome this issue, we replace the BN by
ℓ2-normalization, x̂ = x

||x||2
· α + β, where α and β are learnable parameters.

Without computing moving statistics, ELEGANT converges stably and swaps
face attributes effectively.

4.1 Face Image Generation by Exemplars

In order to demonstrate that our model can generate face images by exemplars,
we choose UNIT [15], CycleGAN [32] and StarGAN [2] for comparison. As shown
in Fig. 8, ELEGANT can generate different face images with exactly the same
style of attribute in the reference images, whereas other methods are only able to
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Input ELEGANT UNIT CycleGAN StarGAN 

(a) bangs

Input ELEGANT UNIT CycleGAN StarGAN 

(b) smiling

Fig. 8: Face image generation by exemplars. The yellow and green box are the
input images outside the training data and the reference images, respectively.
Images in the red and blue box are the results of ELEGANT and other models.
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generate a common style of attribute for any input images. (The style of bangs
is the same in each column in the blue box.)

An important drawback of StarGAN should be pointed out here. StarGAN
could be trained to transfer multiple attributes, but when transferring only one
certain attribute, it may change other attributes. For example, in the last col-
umn of Fig. 8(a), Fei-Fei Li and Andrew Ng become younger when adding bangs
to them. This is because StarGAN requires an unambiguous label for the in-
put image, and these two images are both labeled as 1 in the attribute young.
However, both of them are middle-aged and cannot be simply labeled as either
young or old.

The mechanism of exchanging latent encodings in the ELEGANT model
effectively addresses this issue. ELEGANT focuses on the attribute that we are
dealing with and does not require labels for the input images at testing phase.
Moreover, ELEGANT could learn the subtle difference between different bangs
style in the reference images, as displayed in Fig. 7.

4.2 Dealing with Multiple Attributes Simultaneously

We compare ELEGANT with DNA-GAN [27], because both of them are able
to manipulate multiple face attributes and generate images by exemplars. Two
models are performed on the same face images and reference images with respect
to three attributes. As shown in Fig. 9, the ELEGANT is visually much better
than DNA-GAN, particularly in producing finer details (zooming in for a closer
look). The improvement compared with DNA-GAN is mainly the result of the
residual learning and multi-scale discriminators.

Residual learning reduces training difficulty. DNA-GAN suffers from unstable
training, especially on high resolution images. On one hand, this difficulty comes
from an imbalance between the generator and discriminator. At the early stage
of DNA-GAN training, the generator outputs nonsense so that the discriminator
could easily learn how to tell generated images from real ones, which would break
the balance quickly. However, ELEGANT adopts the idea of residual learning,
thus the outputs of the generator are almost the same as original images at the
early stage. In this way, the discriminator cannot be well trained so fast, which
would help stabilize the training process. On the other hand, the burden of the
generator becomes heavier than that of the discriminator as the image size goes
larger. Because the output space of the generator gets larger (e.g., 256×256×3),
whereas the discriminator only needs to output a number as usual. However,
ELEGANT effectively reduces the dimension of generator’s output space by
learning residual images, where a small number of pixels need to be modified.

Multi-scale discriminators improve the quality of generated images. One dis-
criminator operating at the smaller input scale can guide the overall image con-
tent generation, and the other operating at the larger input scale can help the
generator to produce finer details. (Already discussed in Sec. 3.1)

Moreover, DNA-GAN utilizes an additional part to encode face id and back-
ground information. It is a good idea, but brings the problem of trivial solutions:
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ELEGANT DNA-GAN

(a) Bangs and Smiling

(b) Smiling and Mustache

(c) Bangs and Mustache

Fig. 9: Multiple Attributes Interpolation. The left and right columns are results of
ELEGANT and DNA-GAN, respectively. For each picture, the top-left, bottom-
left and top-right images are the original image, reference images of the first and
the second attributes. The original image gradually owns two different attributes
of the reference images in two directions.

two input images can be directly swapped so as to satisfy the loss constraints.
Xiao et al. [27] have proposed the so called annihilating operation to address this
issue. But this operation leads to a distortion on the parameter spaces, which
brings additional difficulty to training. ELEGANT learns the residual images
that account for the changes so that the face id and background information are
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Table 1: FID of Different Methods with respect to five attributes. The + (−)
represents the generated images by adding (removing) the attribute.

FID
bangs smiling mustache eyeglasses male

+ − + − + − + − + −

UNIT 135.41 137.94 120.25 125.04 119.32 131.33 111.49 139.43 152.16 154.59

CycleGAN 27.81 33.22 23.23 22.74 43.58 55.49 36.87 48.82 60.25 46.25

StarGAN 59.68 71.07 51.36 78.87 99.03 176.18 70.40 142.35 70.14 206.21

DNA-GAN 79.27 76.89 77.04 72.35 126.33 127.66 75.02 75.96 121.04 118.67

ELEGANT 30.71 31.12 25.71 24.88 37.51 49.13 47.35 60.71 59.37 56.80

automatically preserved. Moreover, it removes the annihilating operation and
the additional part in the latent encodings, which makes the whole framework
more elegant and easy to understand.

4.3 High-quality Generated Images

As displayed in Fig. 1 2 3 4 5, we present the results of ELEGANT with respect
to different attributes in a large size for a close look. Moreover, we use the Fréchet
Inception Distance [9] (FID) to measure the quality of generated images. FID
measures the distance of two distributions by

d2 = ||µ1 − µ2||
2+Tr(C1 + C2 − 2(C1C2)

1/2). (13)

where (µ1, C1) and (µ2, C2) are means and covariance matrices of two distribu-
tions. As shown in Table 1, we compute the FID between the distribution of real
images and generated images with respect to different attributes. ELEGANT
achieves competitive results compared with other methods.

The FID score is only for reference due to two reasons. ELEGANT and
DNA-GAN can generate images by exemplars, which is much more general and
difficult than other types of image translation methods. So it would be still
unfair to them using any kind of qualitative measures. Besides, the reasonable
qualitative measure for GAN is undetermined.

5 Conclusions

We have established a novel model ELEGANT for transferring multiple face
attributes. The model encodes different attributes into disentangled parts and
generate images with novel attributes by exchanging certain parts of latent en-
codings. Under the observation that only local part of the image should be
modified to transfer face attribute, we adopt the residual learning to facilitate
training on high-resolution images. A U-Net structure design and multi-scale dis-
criminators further improve the image quality. Experimental results on CelebA
face database demonstrate that ELEGANT successfully overcomes three com-
mon limitations existing in most of other methods.
Acknowledgement. This work was supported by High-performance Comput-
ing Platform of Peking University.
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