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Abstract. This paper presents a weakly-supervised approach to object
instance segmentation. Starting with known or predicted object bound-
ing boxes, we learn object masks by playing a game of cut-and-paste in
an adversarial learning setup. A mask generator takes a detection box
and Faster R-CNN features, and constructs a segmentation mask that is
used to cut-and-paste the object into a new image location. The discrim-
inator tries to distinguish between real objects, and those cut and pasted
via the generator, giving a learning signal that leads to improved object
masks. We verify our method experimentally using Cityscapes, COCO,
and aerial image datasets, learning to segment objects without ever hav-
ing seen a mask in training. Our method exceeds the performance of
existing weakly supervised methods, without requiring hand-tuned seg-
ment proposals, and reaches 90% of supervised performance.
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1 Introduction

Instance segmentation has seen much progress in recent years, with methods
such as Mask R-CNN [1] now able to generate realistic masks, by building on
the success of convolutional object detectors [2,3]. Success has come at the cost
of a significant labelling effort; the COCO segmentation dataset [4] required
around 40 person-years of labelling time for its 80 object categories.

Modern object detection datasets have bounding boxes for up to 30k cate-
gories [5]. While still a considerable labelling effort, these bounding boxes can
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Fig. 1. Learning to Segment by Cut and Paste. We iterate to learn accurate
segmentation masks by trying to generate realistic images. A poor mask estimate (a)
generates an unconvincing paste (b), while a good mask (c) results in a convincing
one (d). Training a discriminator network to distinguish pasted from real images (e)
creates a learning signal that encourages the generator to create better segmentations.
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Fig. 2. Our method learns to segment objects without ever seeing ground truth masks
and uses only bounding boxes as input.

be generated roughly 10 times faster than the per-pixel segmentation masks re-
quired for fully supervised instance segmentation training. Moreover, labelling
boxes has fixed complexity, whereas pixel-level labelling takes longer for objects
with complex boundaries. In the COCO dataset, for example, some complex
object classes, such as ‘bicycle’, are at best approximately labelled (see Figure
15 in [4]). This motivates the question we address in this paper (Figure 2): can
we learn instance segmentation directly from bounding box data, and without
ground truth masks? We will propose a simple idea, which we call the “cut-and-
paste prior”, to solve this problem (see Figure 1).

We are not the first to address the problem of box-supervised instance or
semantic segmentation. Dai et al. propose a box-supervised method that uses
an unsupervised candidate mask generator to create regression targets for se-
mantic segmentation [6]. The process is then iterated with the learned mask
generator. Papandreou et al [7] propose a similar alternation, but using EM to
calculate the pixel labels (E-step), and optimise the segmentation network pa-
rameters (M-step). “Simple Does It” by Khoreva et al. [8] also follow Dai et
al. in proposing synthetic regression targets. They experiment with using detec-
tion boxes alone, as well as Grabcut [9] and MCG [10] proposal generators, and
also extend their approach to instance segmentation (using just 1 iteration in
this case). Deepcut [11] propose a modification to Grabcut using a CNN+CRF
model. All of these approaches involve initialization and iteration between label
estimation and generator training stages. Pathak et al. [12] take a different ap-
proach, specifying hand-tuned constraints on the output label space (e.g., 75%
of pixels taking on the true label). Also related is [13], who grow object seg-
mentation regions by sequentially discovering and erasing discriminative image
regions, using classification rather than box supervision.

Our approach is qualitatively different from all these prior approaches. We re-
quire no segment proposals, pre-trained boundary detectors, or other hand-tuned
initialization/constraints. Neither do we require iteration towards prediction and
label consistency. Instead, our priors will be encapsulated in the structure of our
generator/discriminator networks, and in our “cut-and-paste” prior for object
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segmentation. The cut-and-paste prior encapsulates the basic idea that objects
can move independently of their background. More precisely, objects may be cut
out from one portion of an image, and pasted into another, and still appear re-
alistic (see Figure 1). With the help of a discriminator network to judge realism,
we can use this process to provide a training signal for an instance segmentation
network.

We build on the successful approach of Generative Adversarial Networks
(GANs) [14], which have proved to be effective in modelling realistic images, e.g.,
hallucinating faces [15] and translating between image modalities [16]. However,
rather than trying to generate images, we aim to generate segmentation masks.
This allows us to use objective measures of performance (e.g., IoU against ground
truth) for evaluation. Related to our approach is the work of Luc et al. [17], who
also use an adversarial network to train a (semantic) segmentation algorithm.
However, different to our approach, they use ground truth label maps as input
to the discriminator. In our work we assume no such ground truth is available
at training time. Also related is the work of Hu et al. [18] who use a partially
supervised approach to generate object masks for a very large set of categories.
They achieve this by joint learning using a set of fully supervised object classes
and a larger set of box-only supervised classes, with a transfer function to map
between box estimation and mask segmentation parameters. This seems to be a
promising approach. However, in this work we focus on the unsupervised case,
with only bounding boxes available for training.

Note that our approach of using cut-and-paste to form a loss function is not
the same as training data augmentation via cut-and-paste, e.g., [19], which takes
existing masks and creates more training data out of it. This and related meth-
ods [20,21] do however exploit the same idea that image compositing can be used
to create realistic imagery for training. They also note that object placement,
lighting etc. are important; we revisit this topic in Sections 2.1 and 4.3.

1.1 Contributions

The main contributions of this paper can be summarized as follows:

– We propose and formalize a new cut-and-paste adversarial training scheme
for box-supervised instance segmentation, which captures an intuitive prior,
that objects can move independently of their background.

– We discuss the problem of identifying where to paste new objects in an image.
Even though objects are rarely truly independent of their background (e.g.,
cars do not typically appear in the middle of blue skies or on top of trees),
we show that simple randomized heuristics for selecting pasting locations are
surprisingly effective on real data.

– Finally we showcase the success and generality of our approach by demon-
strating that our method effectively learns to segment objects on a variety of
datasets (street scenes, everyday objects, aerial imagery), without ever hav-
ing access to masks as supervision. We also show that our training method is
stable and yields models that outperform existing weakly supervised meth-
ods, reaching 90% of supervised model performance.
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Fig. 3. Learning by cut-and-paste. A generator network receives a bounding box
containing a car and predicts its mask. The discriminator alternately sees a cut+pasted
car with a new background, or a real car image. Simultaneous training of generator and
discriminator leads to improved object masks. Trainable blocks are outlined in bold.

2 An Adversarial Formulation of the Cut and Paste Loss

An overview of our learning approach is shown in Figure 3. We wish to train
a model taking the form: M = G(X,B) that predicts an instance mask M

given an image X and a bounding box B surrounding the instance of interest.
For simplicity we will ignore classes and typically assume that instances are of
the same class (e.g., ‘person’ or ‘car’), training an independent model per class.
Intuitively, we would like to assign a low loss to a predicted mask if copying the
pixels from the mask M and pasting into a new part of the image X yields a
plausible image patch and high loss otherwise (see Figure 1).

In order to measure the notion of “plausibility”, we use a GAN, viewing the
function G as a generator. Given a generated mask M, we synthesize a new
image patch F by compositing image XB from bounding box B with a new
background image XB′ from location B′ (typically in the same image):

F = MXB + (1−M)XB′ . (1)

The fake image F is fed to a second model, the discriminator, whose job is
to distinguish whether F is real or synthesized. We now simultaneously train
the discriminator to distinguish reals from fakes and the generator to make
the discriminator’s error rate as high as possible. More formally, we maximize
with respect to parameters of the discriminator D and minimize with respect to
parameters of the generator G in the following loss function:

LCPGAN = E logD(XB) + log(1−D(F )). (2)

We refer to this as the cut-and-paste loss, since it aims to align real images
and their cut-and-pasted counterparts. Note that the fake image F is a function
of the generator G via the mask M = G(X,B), as specified in Equation 1. The
expectations are over (X,B) ∼ pdata being the input set of images and bounding
boxes, with B′ drawn randomly as described in the Section 2.1 below.
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(a) (b)

Fig. 4. Cut-and-paste locations. A few objects have been cut-and-pasted to new
locations in the original image. In (a) they were pasted along the same scanline as their
original position, making it harder to tell them apart (can you spot them?); In (b) they
were pasted at random positions making it much easier.

Over training iterations, the hope is that the only way that the generator
can successfully “fool” the discriminator is by generating correct masks. We now
discuss several critical stepping stones to get such a model to train effectively.

2.1 Where to Paste

The choice of where to paste an object to generate a realistic looking result is
clearly important for human observers, e.g., see Figure 4. It is also data de-
pendent. For example, buildings may appear at any (x, y) location in our aerial
imagery with equal probability (Figure 11), but realistic pedestrian placement
and scale is highly constrained in street scenes. Whilst sophisticated pasting
strategies might be devised, we find that good results can still be obtained using
simple ones. In this work we experiment with two main pasting strategies: 1)
Uniform pasting: paste anywhere into the same image, taking care not to overlap
the same object class, 2) Depth sensitive pasting: we take care to preserve the
correct scale when pasting using knowledge of the scene geometry. We discuss
this further in the experiments reported in Section 4.3 on the Cityscapes, COCO,
and aerial imagery datasets.

2.2 Avoiding Degenerate Solutions

Our learning objective is based on realism in the pasted result; this strategy usu-
ally leads to good solutions, but there are a few degenerate cases. For example,
realistic images can be generated by choosing all of the pixels or none of the
pixels in the bounding box (though in the latter case this doesn’t contain the
object). Also, some objects are modular and part of the object can be pasted
and still give a realistic image. We examine each of these cases in turn.

The first case (generator marks all pixels as foreground) can be mitigated by
giving the discriminator a larger viewport than the region into which the gener-
ator pastes. Giving the discriminator a small band of context around the pasted
object (typically 10% of box width) allows for easy identification of this failure
mode, as the background will change abruptly at the bounding box borders.1

1 Note that this strategy will fail in cases where source and destination backgrounds
are identical, e.g., pasting an airplane from one blue sky to another, but these cases
are rare for most classes.
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If the generator decides to label none of the pixels as belonging to the ob-
ject, the resulting fake image will look realistic, but will not contain the object
of interest. This case should be automatically solved in our framework, since
the discriminator will expect to see the object present. However, we found that
adding an explicit classification loss significantly aids stability and improves per-
formance in some cases. To this end we add an additional classification network
DCLS which explicitly encourages the model to ensure that the object of interest
is really present (see Figure 10(b)). One way to think about this new loss is that
our generator is now trying to fool two discriminators: one that had been trained
on a previous classification task (and is frozen), and another that is training and
evolving with the generator. This gives an additional classification loss term for
the generator:

LCLS = E log(1−DCLS(F )). (3)

A final failure mode can occur if the generator chooses to paste some sub-
part of an object that may still be realistic in isolation, e.g., part of a building or
other modular structure. This is to some extent addressed by the classification
loss LCLS , which favours complete objects being pasted.

2.3 Overall Loss Function

Our overall loss function is the sum of the cut+paste and classification losses:

L = LCPGAN + wclsLCLS . (4)

In practice, we use a LSGAN [22] formulation, which converts min/max opti-
mization of GAN loss terms of the form L = E log(1−D(X)) + log(1−D(G(X)))
into separate optimizations for the discriminator and generator:

min
D

E (D(G(X))2 + (D(X)− 1)2, min
G

E (D(G(X)− 1)2. (5)

3 Architecture

There are three modules in our model: (1) the generator, which predicts a mask,
(2) the cut-and-paste module, which produces a “fake patch” given the predicted
mask, and (3), the discriminator, which distinguishes between real and fake
patches, see Figure 3. In the following, we describe the architecture for each of
these modules that we have used in our experiments.
Generator: Our generator is similar to that of Mask R-CNN [1]. A ResNet-50
backbone is used to extract ROI-aligned features and a mask prediction head
is applied to these features. Our mask prediction head is described in Table
1, and is comprised of a series of convolutions, bilinear upsampling operations,
and a Sigmoid nonlinearity resulting in a 28 × 28 mask output. We find that
using corner-aligned bilinear upsampling generally provides better results than
transposed convolutions and nearest neighbour upsampling layers.
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Generator Discriminator
Output size Layer
7×7×2048 Input, ROI-aligned features
7×7×256 Conv, 1×1 × 256, stride 1
7×7×256 Conv, 3×3×256, stride 1
14×14×256 Bilinear upsampling
14×14×256 Conv, 3×3×256, stride 1
28×28×256 Bilinear upsampling
28×28×256 Conv, 3×3×256, stride 1
28×28×1 Conv, 3×3×1, stride 1
28×28×1 Sigmoid

Output size Layer
34×34×3 Input image patch
32×32×64 Conv, 3×3×64, stride 1, valid
15×15×128 Conv, 3×3×128, stride 2, valid
7×7×256 Conv, 3×3×256, stride 2, valid
3×3×512 Conv, 3×3×512, stride 2, valid
4608 Flatten
2 Fully connected
2 Softmax

Table 1. Generator and discriminator architectures. Our generator takes ROI-
aligned features from a Faster R-CNN detector and applies a mask prediction head
similar to that used in Mask R-CNN [1]. Our discriminator is applied directly on 34×34
image patches. After each convolution we use ReLU nonlinearities for the generator
and Leaky ReLUs (with α = 0.2) for the discriminator.

Cut-and-Paste Module: We implement the cut-and-paste operation using
standard alpha compositing (Equation 1). The inferred mask is typically at a
lower resolution than the foreground and background images, so we downsample
to the mask resolution before compositing. Note that careful sampling in this step
is critical, as convolutional networks can easily detect any aliasing or blurring
artifacts, which are easy indicators that an image is fake. As explained in Section
2.2, we allow the discriminator a larger viewport than the original mask size,
therefore our 28× 28 masks are padded with 3 pixels of zeros on each side.

Discriminator: Our discriminator receives an N×N image patch as input, and
predicts whether the given patch is real or fake. Our discriminator architecture
is presented in Table 1, and is comprised of a series of valid convolutions (con-
volutions without padding) followed by a fully connected layer and a Softmax.

Training Procedure: Our models are implemented in TensorFlow [23] and are
trained using a batch size of 4 instances for the generator and 8 instances for the
discriminator (4 real and 4 fake). We use the Adam optimizer [24] with learning
rate of 5 · 10−5, β1 = 0.9, β2 = 0.999, and ǫ = 10−8. We train for 1 million
iterations, alternating optimization equally between generator and discrimina-
tor. Our supervised model is trained similarly but with a cross-entropy loss on
the ground truth masks. The backbone generating the features for our generator
was pretrained on the COCO detection challenge data and is held frozen through
training. The rest of the generator and discriminator layers are initialized us-
ing random Xavier initialization [25]. CityScapes and COCO training data are
augmented by adding random horizontal flips.

4 Experiments

In this section we present the results of experiments using street scenes (Cityscapes),
common objects (COCO) and aerial image datasets. Overall results (Tables 2
and 3) indicate that our models are competitive or better than other weakly su-
pervised baselines. We also investigate some of the strengths and failure modes of
our approach, including analysing dataset specific performance, effect of pasting
strategies, settings for loss hyperparameters, and the effect of data scaling.
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Method Car Person
Traffic-
light

Traffic-
sign

Box 0.62 0.49 0.76 0.79

GrabCut [9] 0.62 0.50 0.64 0.65

Simple Does It [8] 0.68 0.53 0.60 0.51

Cut&Paste (Ours) 0.67 0.54 0.77 0.79

FullySupervised 0.80 0.61 0.79 0.81

Table 2. mIOU performance on Cityscapes

4.1 Evaluation Methodology and Baselines.

We compare our proposed approach (which we will refer to in below tables as
Cut&Paste) to a few baseline methods, all of which take as input (1) an image
and (2) a bounding box surrounding the instance to be segmented, and output
a segmentation mask. The simplest baseline strategy (which we call Box) is
to simply declare all pixels within the given ground truth bounding box to be
the foreground/object. Since bounding boxes are tight around the objects in the
datasets that we use, this is often a reasonable guess, assuming that no additional
information is available. Another baseline is the GrabCut [9] algorithm. We use
5 iterations of the OpenCV implementation, guiding with a central foreground
rectangle 40% of the box size if the initial iterations return a zero-mask.

We also evaluate the performance of the recent Simple Does It approach
by Khoreva et al., [8] by running their publicly available pretrained instance
segmentation model DeepLabBOX , which was trained on PASCAL VOC [26]
and COCO.

In addition to these baselines, we also train a fully supervised version of
our model (called FullySupervised), which uses the same architecture as our
generator, but is trained using cross entropy loss against ground truth masks.
This gives us an idea of the best performance we should expect from our weakly
supervised methods.

For methods outputting low-resolution masks (this includes Cut&Paste,
FullySupervised, and Simple Does It), we resize their masks using bicubic
interpolation back to the original image resolution prior to evaluation.

In contrast to typical generative models of images based on GANs, we can
evaluate our method based on objective measures. We present results in this sec-
tion in terms of the mean intersection-over-union (mIoU ) measure, a commonly
used metric for segmentation. Since our bounding boxes are assumed to be given,
we refrain from presenting average precision/recall based measures such as those
used by the COCO dataset since they depend on the detected boxes.

4.2 CityScapes

The CityScapes dataset [27] consists of densely annotated imagery of street
scenes from cameras mounted on a car. Images are usually wide enough that it
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Fig. 5. Cityscapes mask comparison. From left to right: the original image, the
ground truth mask (GT), the mask predicted by Simple Does It [8], and our mask.

Fig. 6. Cityscapes examples. Masks produced by our method.

is easy to find plausible pasting positions for fake objects, so one would expect
our method to perform well on this kind of data.

To prepare the CityScapes data for training our models, we separate the offi-
cial training set into a training set and a development set (the latter containing
the sequences of Aachen, Bremen and Bochum), using the official validation set
as a test set for all methods. We extract instance segmentation masks from the
fine-grained annotated “left-camera” images for four classes: “car”, “person”,
“traffic-light” and “traffic-sign”2, removing any cars or people smaller than 100
pixels along either axis, and any traffic lights or signs smaller than 25 pixels.
Ground truth instance segmentations are used for evaluation, and for training
the supervised version of our model. For the box-supervised version, we use a
combination of ground truth bounding boxes from the 2, 975 annotated images,
and additional bounding boxes generated by running a Faster R-CNN object
detector3 on the 89, 240 unannotated images in the leftImg8bit sequence set.

Our results, shown in Table 2, demonstrate that across all four classes, we
are consistently better than the Box and GrabCut baselines. Note that Box

2 “Traffic-light” and “Traffic-sign” instance segmentation masks are not provided with
the dataset, but semantic segmentation masks are provided; thus to extract masks,
we consider each connected component of these classes as a separate instance.

3 The detector is pretrained on the COCO dataset, the model can be found in Tensor-
Flow Object Detection API model zoo: https://github.com/tensorflow/models/
blob/master/research/object_detection/

https://github.com/tensorflow/models/blob/master/research/object_detection/
https://github.com/tensorflow/models/blob/master/research/object_detection/


10 Tal Remez, Jonathan Huang, and Matthew Brown

performs suprisingly well on some of these classes, notably signs and traffic
lights, for which the ground truth bounding box is typically already a good fit.
We also outperform the Simple Does It approach and are within 90% of our
fully supervised baseline on all but the “Car” class. Figure 5 shows a qualitative
comparison between masks generated by our method and those by Simple Does

It. Typically the masks from both methods are comparable in quality, except in
the case of people where our Cut&Paste method performs noticeably better,
especially in fine details such as arms and legs. Figure 6 presents more examples
of our masks. These results used the LCPGAN loss, with zero weight to the
classification loss term (wcls = 0). See Section 4.6 for discussion and results
of loss term weightings. All methods were evaluated on images at 600 × 1200
resolution.

Figure 7 shows “fake images” created by cut-and-pasting objects using our
generated masks. Generally, the task of generating a realistic composite is well
aligned with accurate object segmentation, but there are examples where this is
not the case. One such example is the shadows beneath cars, which are important
to include in order to synthesize realistic images, but not actually part of the
object.

4.3 Effect of Pasting Strategy

The CityScapes dataset contains object instances at a wide variety of scales cor-
responding to the wide range of scene depth. For realistic results, it is important
to paste objects at the appropriate scale (see Figure 4). A simple heuristic to
achieve this is to paste the object along the same horizontal scanline. We experi-
ment with this approach, shifting with a mean translation of 2×W and standard
deviation W (disallowing overlaps), where W is the bounding box width. This
strategy leads to a 4% absolute increase in per-pixel mask prediction accuracy
(from 68% to 72%), when compared to uniformly pasting objects along both the
horizontal and vertical axes. As a sanity check, we also tried pasting Cityscape
images into random COCO images for training. This reduced the accuracy to
60% on average and the training process was less stable.

4.4 Sampling Issues for the Discriminator Network

Convolutional networks are highly sensitive to low-level image statistics, and
unintended subtle cues may allow them to “cheat”, rather than solving the in-
tended problem. An example is described in [28], where a convnet used chromatic
aberration cues to judge image position. We find a similar effect with sampling
artifacts in our approach. In particular, we find that pasting with a mask at
lower resolution than the source/destination images leads to a significant drop
in performance. In our final implementation we perform compositing at the res-
olution of the mask. If we instead attempt to composite at 2× this resolution, we
observe that the performance decreases from 71% to 66% in terms of per-pixel
mask accuracy. We hypothesize that the discriminator picks up on the addi-
tional blurring incurred by the lower resolution mask in real vs fake images in
this case. This suggests that careful image processing is important when dealing
with adversarial networks.
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Fig. 7. Examples of Cityscapes images and masks generated by our method.
The top row shows the original image, and the middle row is the fake generated by
compositing onto a random background with the inferred mask (bottom row).

Method
Per-
son

Chair Car Cup
Bot-
tle

Book Bowl Hand-
bag

Pot-
ted
plant

Um-
brella

All

Box 0.53 0.54 0.64 0.75 0.67 0.58 0.70 0.52 0.58 0.51 0.57
GrabCut [9] 0.57 0.54 0.59 0.70 0.62 0.58 0.69 0.53 0.57 0.63 0.61
Simple Does It [8] 0.60 0.56 0.62 0.72 0.67 0.55 0.72 0.54 0.62 0.61 0.62
Cut&Paste (Ours) 0.60 0.56 0.66 0.78 0.74 0.61 0.77 0.58 0.65 0.61 0.64

FullySupervised 0.70 0.63 0.75 0.83 0.79 0.67 0.81 0.63 0.70 0.67 0.70

Table 3. mIoU performance on the 10 most common COCO categories. The
final column shows average performance across all 80 categories.

4.5 COCO

The COCO dataset [4] contains a much wider variety of scene content and ge-
ometry than our CityScapes and aerial imagery experiments, and the objects
typically occupy a much larger fraction of the image. Whilst these appear to be
more difficult conditions for our cut+paste approach, we find that our method
still works well.

Since our method requires an object to be pastable within the same image
at a new position, we remove objects that are more than 30% of image width
as well as very small objects (less than 14 pixels). This results in removing 36%
of the total number of objects, approximately half of which are too small and
half too large. For all instances, we define the ground truth bounding box as the
tightest axis-aligned box that encloses the instance mask. We set aside 15% of
the official training set as a development set.

Table 3 presents the results for the 10 most common COCO classes, and
summary results for all 80 classes. These models were trained using wcls = 0. Our
method exceeds the performance of GrabCut in all cases, and Simple Does

It [8] in 70% of all COCO classes. We perform particularly well in comparison to
[2] on “baseball bat” (0.43 vs 0.32 mIoU) and “skis” (0.27 vs 0.23 mIoU). These
objects occupy a small fraction of the bounding box, which is problematic for [8],
but fine for our method. We perform less well on “kite” (0.51 vs 0.56 mIoU)
and “airplane” (0.48 vs 0.55). This is perhaps due to the uniform backgrounds
that are common for these classes, which will reduce the training signal we see
from the cut-and-paste operation (the boundary is arbitrary when pasting with
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Image GT [8] Ours Image GT [8] Ours Image GT [8] Ours

Fig. 8. COCO examples. From left to right: the original image, the ground truth
mask (GT), the mask predicted by Simple Does It [8], and our mask.

Fig. 9. COCO examples. Examples of the masks produced by our method.

identical backgrounds). See Figures 8 and 9 for examples of masks produced by
our method and by Simple Does It.

4.6 Aerial Imagery

To demonstrate the effectiveness of our method in a different setting, we exper-
iment with building segmentation using a proprietary dataset of aerial images
consisting of 1000×1000 image tiles with annotated building masks. From this
dataset, we select a subset of images each of which contain no more than 15
houses (in order to allow space in the same image for pasting), yielding a dataset
with 1 million instances. We also similarly generate a validation set containing
2000 instances. The large size of this dataset also allows us to test performance
gains as a function dataset size.

For these experiments, we trained a Faster R-CNN Inception Resnet v2
(atrous) house detector using the TensorFlow Object Detection API [3] to be
used as a backbone for feature extraction. Since our aerial images are taken at a
single scale and orthorectified, we paste objects into images at locations selected
uniformly at random in both x and y directions, rejecting pasting locations that
overlap with other bounding boxes in the image.

Effect of Dataset Scale. Figure 10(a) shows the effect of data size on the aver-
age performance of our models. Increasing data size helps the training process,
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Fig. 10. Effect of classification loss and dataset scale on mask accuracy. (a)
demonstrates the effect of scale of the training set on mask accuracy for aerial imagery.
(b) demonstrates the effect of classification loss weight wcls on the accuracy of the
predicted masks; curves show mean and standard deviation over 4 runs for (a) and 5
models for (b).

Fig. 11. Aerial imagery examples. Examples of masks produced by our method.

increasing the number of training instances from 5K to 1M reduces the mask
prediction error by about 10%.

Effect of Loss Weightings. Figure 10(b) shows the effect of the classification loss
weight wcls on the overall performance of the model. With no classification loss
(wcls = 0) the performance is poor and the model is unstable, as indicated by
the error bars. With increasing classification loss, performance improves and the
error bars become tighter showing the training process is much more stable. The
optimal weight in this case is in the range of wcls ∈ [1, 4]. When conducting a
similar experiment for the Cityscapes dataset we found that the classification
weight increases stability but does not improve performance overall. This may
be due to the high incidence of occlusion in our aerial image data, e.g., a sub-
section of a mask often resembles a building occluded by trees. Figure 11 shows
a few examples of typical aerial images and the segmentation masks our method
produces when trained using wcls = 1.

4.7 Failure Cases

A few failure cases of our method are presented in Figure 12. For the Giraffe
and Kite examples, the mask is overestimated, but the non-unique backgrounds
lead to convincing fake images. Note that the shadow of the Giraffe is copied in
the first case, another common failure mode. Other examples include missing or
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Real

Fake

Our mask

Fig. 12. Failures. COCO images are on the left and Cityscapes are on the right.

added parts, such as the missing head and extra “skirt” connecting the legs for
the people towards the right of the figure. Next to these is an interesting exam-
ple with a person carrying a suitcase. The generator decides it would be more
realistic to change this to legs in this example, presumably because suitcases are
a rare occurrence in the training set. Note that the “fake” images are often still
realistic in many of these cases.

5 Conclusions

We have presented a new approach to instance segmentation that uses a simple
property of objects, namely that they are “cut-and-pastable”, coupled with a
generative adversarial network to learn object masks. Our method exceeds the
performance of existing box-supervised methods on the CityScapes and COCO
datasets, with no mask ground truth and without the need for pre-trained seg-
ment or boundary detectors.

We have shown that intelligent object placement in the paste step can sig-
nificantly improve mask estimation. This suggests an interesting direction for
future work, where the compositing step is also data-dependent. For example,
object placement, colour and illumination could depend on the destination im-
age. Related work shows this works well for data augmentation [19,20,21].

More generally, and as in work such as [29], we could envisage a range of
settings where vision+graphics imitate photography, with adversarial losses to
jointly optimise image understanding and rendering stages. Such methods could
open up the possibility of performing detailed visual perception with reduced
dependence on large-scale supervised datasets.
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