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Abstract. A critical issue in pedestrian detection is to detect small-scale
objects that will introduce feeble contrast and motion blur in images
and videos, which in our opinion should partially resort to deep-rooted
annotation bias. Motivated by this, we propose a novel method inte-
grated with somatic topological line localization (TLL) and temporal
feature aggregation for detecting multi-scale pedestrians, which works
particularly well with small-scale pedestrians that are relatively far from
the camera. Moreover, a post-processing scheme based on Markov Ran-
dom Field (MRF) is introduced to eliminate ambiguities in occlusion
cases. Applying with these methodologies comprehensively, we achieve
best detection performance on Caltech benchmark and improve per-
formance of small-scale objects significantly (miss rate decreases from
74.53% to 60.79%). Beyond this, we also achieve competitive perfor-
mance on CityPersons dataset and show the existence of annotation bias
in KITTI dataset.
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1 Introduction

Pedestrian detection is a critical problem in computer vision with significant im-
pact on a number of applications, such as urban autonomous driving, surveillance
and robotics. In recent years many works have been devoted to this detection
task [1,2,3], however, there still leaves a critical bottleneck caused by various
scales of pedestrians in an image [4,5]. Despite current detectors work reason-
ably well with large-scale pedestrians near the camera, their performance always
sustains a significant deterioration in the presence of small-scale pedestrians that
are relatively far from the camera.

Accurately detecting small-scale pedestrian instances is quite difficult due
to the following inherent challenges: Firstly, most of the small-scale instances
appear with blurred boundaries and obscure appearance, thus it is hard to dis-
tinguish them from the background clutters and other overlapped instances.
Secondly and more insightfully, existing methods(e.g., Faster-RCNN [6], R-FCN
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Fig. 1. Pedestrians over different scales could be modeled as a group of 2D Gaussian
kernels, indicating that the top-bottom topological line possess high certainty. Our
approach attempt to locate this topological line for pedestrian detection.

[7]) heavily rely on bounding-box based annotations, which inevitably incorpo-
rates parts of false positives(e.g., background pixels that usually occupy more
than half of the rectangular area), introducing ambiguities and uncertainties to
confuse classifiers. This issue is more pronounced for small-scale pedestrian in-
stances as they retain much less information compared with large-scale instances,
thus the signal to noise ratio (SNR) is considerably decreased. In most related
works [3,4,5] that aim to detect small-scale objects, one will ONLY resort to
the perceptive fields of convolution. However, in our opinion, what impacts the
performance of small-scale objects other than perceptive fields may reside in the
very initial phase of machine learning pipeline, which is to say, the annotation
phase.

On the other hand, according to the causal modeling idea proposed by [8],
if one wonders whether there is a bias in bounding-box based annotations, he
must figure out corresponding counterfactual: would the performance still be
identical or even improved what if we had NOT applied bounding-box based
annotations?

Motivated by above insight and counterfactual argument, we aim to address
the scale variation problem with an alternative annotation, by simply locating
the somatic topological line of each pedestrian as illustrated in Fig. 1. This top-
bottom topology is proposed due to the following consideration factors: Firstly,
human bodies of various scales could be modeled as a group of 2D Gaussian ker-
nels with different scale variances [9,10]. It intuitionally supposes that pixels on
the top-bottom topological centre line of a human body possess high certainty,
while pixels close to pedestrian contour have relatively low confidence. This hy-
pothesis especially aligns well with the fact that small-scale instances sustain
blurred boundaries and obscure appearance. Secondly, body skeletons of large-
size instances, which demonstrate the detailed topology of human bodies, can
provide rich information for pedestrian detection [11,12,13]. However, 1) skele-
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tons for small-scale instances cannot be recognized easily and 2) annotations of
all the datasets are almost bounding-box, which is labor-intensive to transform
them into skeletons. On the contrary, the proposed top-bottom topological line is
a trade-off pivot to fuse the advantages of both automatic annotation generation
and uncertainty elimination. Lastly, a simple but effective subjective test shows
that compared with bounding-box based annotation, the proposed topological
line demonstrates a much more consistency between annotators, especially for
the small-scale instances as shown in Sec. 3.

On basis of the topological line annotation, we devise a fully convolutional
network (FCN) that takes multi-scale feature representations and regresses the
confidence of topological elements, i.e., top and bottom vertex, as well as the link
edge between them. To eliminate ambiguous matching problem in crowded cases,
a post-processing scheme based on Markov Random Field (MRF) is introduced
to keep each predicted instance away from the other predicted instance with dif-
ferent designated objects, making the detection results less sensitive to occlusion.
Moreover, we design a scheme to utilize temporal information by aggregating fea-
tures of adjacent frames to further improve performance. Empirical evaluation
reveals the novel TLL networks with or without temporal feature aggregation
both lead to state-of-the-art performance on Caltech [14] and CityPersons [15]
datasets.

In summary our key contributions are as follows:

– From the counterfactual view, we attempt to prove that topological annota-
tion methodologies other than bounding box will introduce less ambiguity,
which results in better performance and is especially effective for small-scale
objects. Meanwhile, the deep-rooted bounding-box based annotation bias
is challenged by our work, which is thought-provoking to rethink how to
provide classifiers with discriminative information.

– We devise a unified FCN based network to locate the topological somatic
line for detecting multi-scale pedestrian instances while introduce a post-
processing scheme based on MRF to eliminate ambiguities in occlusion cases.
A temporal feature aggregation scheme is integrated to propagate temporal
cues across frames and further improves the detection performance.

– To the best of our knowledge, we achieve best detection performance on
Caltech benchmark and improve performance of small-scale objects signifi-
cantly (miss rate decreases from 74.53% to 60.79%). On CityPersons dataset,
our proposed method obtains superior performance in occlusion cases with-
out any bells and whistles. Beyond these, the existence of annotation bias in
KITTI dataset is disclosed and analyzed.

2 Related Work

2.1 Multi-scale Object Detection

State-of-the-art methods for multi-scale object detection are mainly based on the
pipeline of classifying region proposals and regressing the coordinates of bound-
ing boxes, e.g., Faster-RCNN [16,6,7], YOLO [17,18] and SSD [19]. RPN+BF
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method [3] uses boosted forests classiers on top of the region proposal network
(RPN) and high-resolution convolutional features to effective bootstrapping for
mining hard negatives. SA-FastRCNN [4] develops a divide-and-conquer strat-
egy based on Fast-RCNN that uses multiple built-in subnetworks to adaptively
detect pedestrians across scales. Similarly, [5] proposes a unified multi-scale con-
volutional neural network (MS-CNN), which performs detection at multiple in-
termediate layers to match objects of different scales, as well as an upsampling
operation to prevent insufficient resolution of feature maps for handling small in-
stances. Rather than using a single downstream classifier, the fused deep neural
network (F-DNN+SS) method [20] uses a derivation of the Faster R-CNN frame-
work fusing multiple parallel classifiers including Resnet [21] and Googlenet [22]
using soft-rejection, and further incorporates pixel-wise semantic segmentation
in a post-processing manner to suppress background proposals. Simultaneous De-
tection & Segmentation RCNN (SDS-RCNN) [23] improves object detection by
using semantic segmentation as a strong cue, infusing the segmentation masks
on top of shared feature maps as a reinforcement to the pedestrian detector.
Recently, an active detection model (ADM) [24] based on multi-layer feature
representations, executes sequences of coordinate transformation actions on a
set of initial bounding-box proposals to deliver accurate prediction of pedestrian
locations, and achieve a more balanced detection performance for different scale
pedestrian instances on the Caltech benchmark. However, the aboved bounding-
box based methods inevitably incorporates a large proportion of uncertain back-
ground pixels (false positive) to the human pattern, while impels the instances to
be predicted as false negatives. In practice, it may lead to compromised results
with particularly poor detections for small-scale instances. On the contrary, our
approach relies on locating the somatic topology with high certainty, which is
naturally flexible to object scale and aspect ratio variation.

2.2 Line Annotation

Line annotation is first proposed in [25,15] to produce high-quality bounding-
box ground truths(GTs). The annotation procedure ensures the boxes align well
with the center of the subjects, and these works show that better annotations
on localisation accuracy lead to a stronger model than obtained when using
original annotations. However, best results of these work are achieved on the
validation/test set with a sanitised version of annotations, which is unfair when
compared with other advanced methods evaluated on the original annotation
set. What’s more, the work in [25] shows that models trained on original/new
and tested on original/new perform better than training and testing on differ-
ent annotations. In contrast, our work utilizes the line annotation in a different
way: the line annotation is not used to produce bounding-box GTs, but GTs
themselves, and we design a FCN to regress the topological elements of the line.
Meanwhile, tight bounding-boxes with a uniform aspect ratio could be automat-
ically generated from each predicted topological lines and the detection results
could be evaluated on the original annotation, which leads a fair comparison
with the state-of-the-art methods.
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2.3 Temporal Feature Aggregation

Temporal cues could be incorporated for feature reinforcement in object de-
tection tasks. For example, TCNN [26] uses optical flow to map detections to
neighboring frames and suppresses low-confidence predictions while incorporat-
ing tracking algorithms. FGFA [27] improves detection accuracy by warping
and averaging features from nearby frames with adaptive weighting. However,
its flow-subnet is trained on synthetic dataset [28], which obstructs itself from
obtaining optical flow accurately in real scenes. A recent work, [29] creates
a recurrent-convolutional detection architecture by combining SSD [19] with
LSTM, and designs a bottleneck structure to reduce computational cost. In-
spired by the above ideas, we unify the proposed TLL with recurrent network
into a single temporally-aware architecture.

3 Annotation Comparison

To compare the line and bounding-box annotation methods, we design a sim-
ple subjective test. We extract 200 independent frames containing multi-scale
pedestrians from Caltech training video-data, and hire 10 annotators to pro-
duced duplicate annotations via the two annotation methods separately. In each
round, each annotator is shown the set of frames in random order and draws
pedestrian instances by one annotation measure with a label tool. Annotators
are asked to hallucinate head and feet if they are not visible. After that, pedes-
trian instances annotated by all 10 annotators are collected for evaluation. This
procedure is indispensable since it’s unreasonable to request each annotator ex-
haustedly outlines all, and the same instances from each image under the situa-
tion that many small-scales, defocus or blurred instances exist. Then we assess
the two annotations using IoU (intersection over union) calculated between the
overlap of 10 annotations and the union of them. Following [25], bounding-boxes
with uniform aspect ratio could be automatically generated such that its cen-
tre coincides with the centre point of the manually-drawn axis. In Fig. 2, we
compare the mean IoUs of two annotations for large-scale (pedestrian height ≥
80 pixels) and small-scale (pedestrian height < 80 pixels) pedestrians. Note the
bounding-box annotation instances are normalized to the same aspect ratio as
line annotation ones for fair statistics.

The test result emphasizes that line annotation promotes more precise local-
isation on pedestrian than marking a bounding box, especially for small-scale
instances. The reason lies in that annotators tend to align well with the center
of subjects when drawing lines. While for the small-scale cases, even a few pixels
mismatch on the bounding box annotation results in low IoUs, thus line annota-
tion has a much lower variation compared with bounding-box. Besides, this test
also tells us all the annotation methodologies are subjective and bounding-box
based ones are prone to produce bias as shown in Fig. 7(a), which confuses any
classifiers to deteriorate performance.
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Fig. 2. Mean-IoUs comparison of two annotation for di�erent scale pede strians.

4 TLL Detection Methodology

In this section, we describe the TLL detector for multi-scale pedestrians. As
the core of our work, we �rstly describe the single-shot network that regresses
somatic topological elements. Then we discuss how to utilize the multi-scale
representational features within the network, and employ the MRF scheme for
dealing with crowd occlusion. Finally, the scheme of integrating TLL with tem-
poral information for further detection improvement will be introd uced.

4.1 Topological Line Localization Network

An overview of the single-shot TLL detection scheme is depicted in Fig. 3. The
backbone of TLL is a Resnet-50 network, which is fast and accurate for object
recognition [21]. We extend it to a fully convolutional version for an input image
of arbitrary size, by using series of dilated-convolution, deconvolution, and skip
connection methods. Speci�cally, as the default network has a feature stride of
32 pixels, which is too large to localize small-scale pedestrians, thus we remove
the down-sampling in Conv5x and use dilated-convolution for keeping the recep-
tive �eld, resulted in the �nal feature map as 1/16 of input size. Follow ing the
representation theory, higher layer features tend to encode more global and se-
mantic information of objects that is robust against appearance variations, while
outputs of lower layers provide more precise localization. We extract features
from the last layer of each res-block started from Conv3 (i.e., Resnet50-Conv3d,
Conv4f, Conv5c, detailed in Sec. 4.2.) and recover their spatial resolutions to 1/4
of the input size using deconvolution. These multi-layer representations are skip
connected for regressing the top and bottom vertex con�dence maps, as well as
the map of link edge between them.

Every top and bottom vertex locations are modeled as a Gaussian peak. Let
pk be the ground-truth (GT) top/bottom vertex positions of i-th pedestrian in
the image, then the GT vertex con�dence map D(x), is formed by max aggre-
gation of all Nk pedestrian peaks in the image.

D(x) = max
k2 N k

d(x; pk ; � ) (1)






















