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Abstract. Humans have the amazing ability to perform very subtle
manipulation task using a closed-loop control system with imprecise me-
chanics (i.e., our body parts) but rich sensory information (e.g., vision,
tactile, etc.). In the closed-loop system, the ability to monitor the state
of the task via rich sensory information is important but often less stud-
ied. In this work, we take liquid pouring as a concrete example and aim
at learning to continuously monitor whether liquid pouring is successful
(e.g., no spilling) or not via rich sensory inputs. We mimic humans’ rich
sensories using synchronized observation from a chest-mounted camera
and a wrist-mounted IMU sensor. Given many success and failure demon-
strations of liquid pouring, we train a hierarchical LSTM with late fusion
for monitoring. To improve the robustness of the system, we propose two
auxiliary tasks during training: inferring (1) the initial state of containers
and (2) forecasting the one-step future 3D trajectory of the hand with
an adversarial training procedure. These tasks encourage our method to
learn representation sensitive to container states and how objects are
manipulated in 3D. With these novel components, our method achieves
∼ 8% and ∼ 11% better monitoring accuracy than the baseline method
without auxiliary tasks on unseen containers and unseen users respec-
tively.

Keywords: Monitoring Manipulation, Multimodal Fusion, Auxiliary Tasks.

1 Introduction

Researchers in cognitive science community have conducted several studies [1,2]
of mental simulation, and proved that humans have some internal mechanisms
to reason daily life physics with relative ease. Some robotics research borrows a
hand from human demonstrations to tackle manipulation problems; for example,
recently, Edmonds et al. [3] leverage multimodal sensor to capture poses and
contact forces to learn the manipulation of opening medicine bottles. Humans

⋆ indicates equal contribution
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can be viewed as closed-loop control systems with imprecise mechanics (i.e., our
body parts) but rich sensory information (e.g., vision, tactile, etc.). The sensory
feedback helps us continuously reason the environment, and plan our next action
according to it. In the closed-loop system, the ability to monitor the state of the
task via rich sensory information is important but often less studied. Monitoring
subtle manipulation task is useful for both in-home elder care system and virtual
training in medical scenarios (e.g., training surgical operation), since a system
with this kind of ability can further assist people to accomplish subtle tasks.

Liquid pouring is a subtle manipulation task that humans learn during child-
hood and can easily perform on a daily basis. This task requires continuously
monitoring environmental states such as the liquid level in containers and the
relative position and motion between containers in order to adjust future ac-
tions toward not spilling. For instance, if the receiver container is empty and
the source container is tilting slowly, one should speed-up the tilting action. In
contrast, if the receiver container is almost full and the source container is tilting
fast, one should slow down the tilting action to prevent overflow. This suggests
that both object states, relative position and motion are very important cues for
subtle manipulation tasks such as liquid pouring. With the ability to monitor
liquid pouring, an intelligent system can either stop the user from spilling, or
bring a duster to the user when the liquid is spilled.

Monitoring liquid pouring activity is a very subtle task compared to main-
stream activity recognition tasks such as action classification or temporal detec-
tion [4,5]. Hence, only a few works have made progress toward this direction in
computer vision. Alayrac et al. [6] propose to discover object states and manip-
ulation actions in videos. However, they only consider empty versus full (binary)
container states and multiple discrete actions where pouring is one of them. Re-
cently, Mottaghi et al. [7] propose to reason about volume and content in liquid
containers to predict how much liquid will remain in the container if we tilt it
by x degrees (referred to as pouring prediction). However, we argue that such
prediction target has limited application since it does not directly answer how
to pour liquid successfully or whether the pouring action results in success or
failure.

In this work, we take liquid pouring as a concrete example and aim at learning
to continuously monitor whether liquid pouring is successful (e.g., not spilling)
or not via rich sensory inputs. Cognitive scientists suggest that people have the
ability to simulate pouring behaviors in their mind, which is mentioned in [1].
However, there remain discrepancies between the simulation and the real re-
sults. By continuously observe current environmental states, people can adjust
their ways to manipulate the object (e.g. the angle of the container) in order to
reach their goal. This process can be viewed as a closed-loop control. In order
to borrow a hand from humans’ physical reasoning ability, we mimic humans’
rich sensors using synchronized observation from a chest-mounted camera and a
wrist-mounted IMU sensor as the input (details in section 5). The target output
for monitoring is a binary class: a success or a failure pouring trial. To study liq-
uid pouring monitoring in the real world by leveraging human demonstrations,
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Fig. 1. Overview. From a series of visual observations and IMU data, our model can
monitor if this sequence is a success or failure with two auxiliary tasks: initial object
state classification (different containers with different initial liquid levels) to ensure the
recurrent model encode states sensitive features; forecasting 3D trajectory requires the
ability to model hand dynamics during the pouring process, providing a strong cue for
our monitoring task. The details of auxiliary tasks are described in section 4

we collect a liquid pouring dataset containing both successful and failed demon-
strations with all inputs and outputs information mentioned above. To the best
of our knowledge, this is the first dataset with multimodal sensor information
for studying monitoring in a subtle liquid pouring task.

Given many success and failure demonstrations of liquid pouring, we train a
hierarchical LSTM [8] with late fusion to incorporate rich sensories inputs with-
out significantly increasing the model parameters as compared to early fusion
models. To further improve the generalizability of our method, we introduce two
auxiliary tasks during training: (1) predicting the initial state of containers and
(2) forecasting the one-step future 3D trajectory of the hand with an adversarial
training procedure. These auxiliary tasks encourage our method to learn repre-
sentation sensitive to container states and how objects are manipulated in 3D.
In our experiments, our method achieves ∼ 8% and ∼ 11% better monitoring
accuracy than the baseline method without auxiliary tasks on unseen containers
and unseen users respectively.

2 Related Work

Activity Recognition. Activity recognition has received lots of attention from
the computer vision community and already has many released datasets [9,10,4,5,11]
containing diverse actions. Many prior works on activity recognition focus on
understanding human activity through observing body poses [12,13,14], scenes
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[15,16] or objects interacting with human [17,18,19,20]. There are also many
works [21,22,23] considering recognizing activity through egocentric videos, some
of which use depth sensor [24,25] as well in attempt to enhance the perception
of the changes in the environment. There are also methods [26] and datasets
[27,28] utilizing multimodal sensor inputs to perform activity recognition. These
established datasets mainly focus on diverse activity recognition and do not in-
clude failure cases. However, we focus more on distinguishing subtle differences
among behaviors targeting on the same objective (liquid pouring). Therefore,
we collect our own liquid pouring dataset with multimodal sensor data which
includes both success and failure cases (details in section 5).
Fine-grained activity recognition. Many methods focused on interacting
and manipulating motions between human and objects. Lei et al.[25] applied
RGB-D camera to achieve the robust object and action recognition. There are
also methods utilizing spatiotemporal information [29,30,31,32,33]. By combin-
ing spatiotemporal and object semantic features, Yang et al.[29] find key in-
teraction without using further object annotations. In this work, rather than
designing special procedures to mine unique spatiotemporal features, we intro-
duce auxiliary tasks to learn feature good for multiple tasks.
Environmental State Estimation. In liquid pouring sequences, container and
the liquid state can be estimated from RGB inputs. Alayrac et al.[6] model the
interaction between actions and objects in a discrete manner. Some methods
further demonstrate that liquid amount can be estimated by combining seman-
tic segmentation CNN and LSTM [34,7]. In contrast, our main goal is not to
explicitly recognize environmental states. We aim at implicitly learning environ-
mental state sensitive features such that our performance in monitoring can be
improved. Recently, Sermanet et al. [35] also propose to learn states sensitive
feature in a self-supervised manner.
Robot Liquid Pouring. In the robotics community, there are a number of
works [36,37,38,39,40,41,42] directly tackle the manipulating task of liquid pour-
ing without considering the monitoring task. [36] build a liquid dynamic model
using optical flow. [41,42] are developed in synthetic environments. Tamosiunaite
et al. [37] apply model-based reinforcement learning. Rozo et al. [38] propose a
parametric hidden Markov model to direct regress control commands. Brandl et
al. [39] learn to generalize pouring to unseen containers by warping the func-
tional parts of the unseen containers to mimic the functional parts of a seen
container. Schenck and Fox [40] propose to first estimate the volume of liquid
in a container; then, a simple PID controller is used to pour specific amounts
of liquid. However, all of the methods above are not evaluated on generalization
jointly across users, containers states, container instances.

3 Overview

In this section, we first formulate the problem of monitoring liquid pouring.
Next, we describe our recurrent model for fusing multimodal data. Our method
with two auxiliary tasks will be mainly described in section 4.
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Fig. 2. Model architecture. Our model consists of a hierarchical LSTM LSTMhier

(details in subsection 3.2), a generator G, a discriminator D and a monitoring module
M (details in section 4). There are two auxiliary tasks in our method, which are 3D
trajectory forecasting (green shading) and initial state classification (blue shading). At
each time step t, LSTMhier will encode visual observation It and IMU data St to ht

(red shading). G will generate a trajectory X ′

t+1 according to hidden encoding ht. D
will distinguish if the input trajectory is generated or not corresponding to ht, which
models the dynamics during the manipulation. M will predict if this pouring sequence
is a success or failure based on the discriminator score dt and hidden encoding ht. At
the end of the sequence, the model will classify 36 initial states as an auxiliary task

3.1 Problem Formulation

Notations. For all of our notations, general font style stands for ground truth
data, and prime stands for predictions. For example, yt is the ground truth label
for whether the sequence is a success and y′t is the prediction. Notations with
boldface denote a sequence of data. t denotes a certain time step, and T stands
for the total time steps of the sequence.
Observation. To capture visual and motion information like liquid content,
container type and dynamics of the demonstrator’s hand during the pouring
process, we use a multimodal sensing system including a camera on the front
chest and an IMU sensor on the wrist. At each time step t, the camera ob-
serves visual observation It, and the 6DOF IMU sensor captures motion obser-
vation St = {a1,a2, ...,aN}, where ai is the i’th sample in the current time step,
i ∈ 1 ∼ N , and N denotes the number of samples in this time step. In practice,
N = 38, i.e., IMU sensor will capture 38 samples within two consecutively cap-
tured camera frames. a = {a1, a2, a3, a4, a5, a6} is a single piece of real-valued
data from the IMU, where (a1, a2, a3) is the acceleration and (a4, a5, a6) is the
angular velocity corresponding to x, y, and z axis. Simultaneously, at each time
step t, we obtain hand 3D trajectory ground truth Xt = (P,R) by a HTC Vive
tracker mounted on the wrist, where P = (px, py, pz) and R = (rx, ry, rz) stand
for the position part and rotation part in world coordinate respectively. Note
that HTC Vive system is only used in training.
Goal. In our task, we aim at learning to monitor whether the pouring liquid
sequence is a success or failure with two auxiliary tasks, which are initial object
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cal LSTM encoder LSTMhier consists
of 3 LSTM cells (LSTMimg, LSTMpos,
LSTMrot) at the first level and a LSTM
fusion layer to fuse these hidden encodings
at the second level, fusing multimodal in-
puts containing image feature Ft, hand po-
sition feature At and hand rotation feature
Bt computed from IMU sensor

state classification (IOSC) and next-step hand 3D trajectory forecasting (TF).
Considering the input sequence containing visual images I = {I1, I2, ..., IT } and
IMU data S = {S1, S2, ..., ST }, the output of our model for each time step t are
the prediction y′t indicating whether the sequence is a success for our monitor-
ing task and next-step trajectory prediction X ′

t+1 for 3D trajectory forecasting,
where t ∈ 1 ∼ T − 1, T denotes the total time steps of the sequence. In the end
of the whole sequence, our model will predict the initial object state z′ of the
sequence among the 36 variations (details in section 5).

3.2 Multimodal Data Fusion

To catch and combine the temporal sequence of input from image and IMU
sensor, we adopt a hierarchical LSTM proposed by [8] to handle scale differ-
ences among multimodal inputs. In the first layer of our module LSTMhier (see
Figure 3), there are 3 LSTM cells (LSTMimg, LSTMpos, LSTMrot) with dif-
ferent hidden layer sizes to encode the inputs from three different sources: (1)
image feature Ft = Res50(It) extracted from the pool5 layer of ResNet50 [43]
with dimension of 1 × 2048, (2) hand position feature: the aggregation of ac-
celeration along 3 axis At = {(ai1, a

i
2, a

i
3)}

N
i=1 ⊂ St with dimension of 1 × 3N

and (3) hand rotation feature: the aggregation of angular velocity along 3 axis
Bt = {(ai4, a

i
5, a

i
6)}

N
i=1 ⊂ St with dimension of 1×3N . Then the encoded features

are concatenated as the input to the second layer consisting of a single LSTM
cell. The output encoded feature ht = LSTMhier(Ft, At, Bt) of the hierarchi-
cal LSTM will be passed to the generator G, discriminator D and the monitor
module (please refer to section 4).

4 Monitoring with Auxiliary Tasks

Monitoring the success of a pouring sequence is a challenging task since subtle
changes in states of the environment are hard to perceive. Intuitively, the initial
object state and the hand dynamics are the strong cues for monitoring pouring
process. We model the object and manipulator (i.e., hand) states implicitly by a
hierarchical LSTM LSTMhier and introduce two auxiliary tasks, 3D trajectory
forecasting (TF) and initial object state classification (IOSC). In this section,
we describe the details of the two auxiliary tasks and our monitoring module.
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4.1 Forecasting 3D Trajectory

Forecasting 3D trajectory is a path for us to learn to model the dynamics of
the manipulator during the pouring sequence. The most naive way to predict
trajectory is to train direct regression on demonstration sequences; however, the
generated trajectory will be very limited to the data distribution of training data
as the amount and the diversity of training data is limited. To model the distri-
bution of successful demonstration and to generate more diverse trajectories, we
introduce adversarial training loss Ladv proposed by Goodfellow et al. [44] here
with a generator G to generate trajectory prediction and a discriminator D to
distinguish if the input trajectory is generated or not (see Figure 2).
Generator. Taking the encoded feature ht from LSTMhier as input, our gen-
erator predicts next-step trajectory X ′

t+1 = GθG(ht) as output, where GθG is a
three-layer fully-connected feed-forward network parametrized by θG. Our gen-
erator has two objectives:

(1) Generate the trajectory which is close to the ground truth demonstra-
tion. (modeled by the regression loss). (2) Fool discriminator with the generated
trajectory (modeled by the adversarial loss).

Thus, our loss function for the generator can be derived as follows,

LGen = Lreg + λ ∗ Ladv, (1)

where λ is the weighting between the two different losses (we empirically set λ
to 1), Lreg is the regression loss, and Ladv stands for the adversarial loss.

The regression loss is defined as follows,

Lreg =
1

T − 1

T−1∑

t=1

dist(Xt+1, GθG(ht)), (2)

where dist() is the distance function,Xt+1 is the ground truth trajectory,GθG(ht)
is the generated trajectory, and T denotes the total time steps of the sequence.
Recall the trajectoryXt+1 is composed of two parts, position P = (px, py, pz) and
rotation R = (rx, ry, rz); likewise GθG(ht) = (P ′, R′), where P ′ = (p′x, p

′
y, p

′
z),

R′ = (r′x, r
′
y, r

′
z).

The distance function is defined as

dist(Xt+1, GθG(ht)) = MSE(P, P ′) +
∑

k=x,y,z

(1− cos (rk − r′k)), (3)

where MSE denotes Mean Squared Error. Here we use different distance metrics
for rotation and translation because adopting cosine distance in angular differ-
ence is more reasonable. In particular, the cosine distance between 359◦ and 0◦

is small, but its mean square error is large. Note that we empirically adopt the
same weighting for the position loss and rotation loss since the effect of different
weightings is marginal on the performance.

The adversarial loss is defined as follows,

Ladv =
1

T − 1

T−1∑

t=1

− logDθD (ht, GθG(ht)), (4)
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where DθD is the discriminator of our model and will be elaborated later.
Discriminator. In training time, the discriminator takes both the encoded fea-
ture at that time step ht and the predicted trajectory X ′

t+1 = GθG(ht) from
the generator or ground truth trajectory Xt+1 as inputs with the objective of
catching generated trajectory from the generator. Adopting similar design from
the generator, our discriminator DθD is also modeled with a three-layer fully-
connected feed-forward network parameterized by θD. The discriminator loss is
defined as follows,

LDis =
1

T − 1

T−1∑

t=1

[− log (DθD (ht, Xt+1))− log(1−DθD (ht, GθG(ht)))] (5)

In testing time, given the encoded feature ht and generated trajectoryX ′
t+1 of the

certain time step t, the discriminator will predict the score dt = DθD (ht, X
′
t+1), t ∈

1 ∼ T − 1 of whether the input sequence is generated or not.

4.2 Initial Object State Classification

As we mention above, hand motion and initial object states are the two strong
cues for monitoring pouring sequences. Learning the embedding of the data
sequence is critical since the amount of training data is limited. To learn a good
representation for monitoring, we train the classification on the initial object
state based on the hidden encoding from the hierarchical LSTM LSTMhier in
the end of each successful demonstration sequence (see Figure 2) as follows,

q = Softmax(θq, hT−1), (6)

z′ = argmax
c∈Z

q(c), (7)

Lcls = − log q(z), (8)

where hT−1 is the hidden encoding at the last time step of the sequence, θq is
the parameter of the classifier and q ∈ R|Z| is the softmax probability of initial
object states in Z. z′ is the prediction of the initial object state and z denotes
the ground truth initial object state. In our case, |Z| = 36, which means there
are 36 variations of initial object states (details can be referred to section 5).

4.3 Monitoring Module

We propose a monitoring module M, which is designed as a single-layer network
to predict whether a pouring sequence is a success or not given the hidden
representation ht from LSTMhier and the discriminator score dt as inputs (see
Figure 2). The output of the monitoring module is defined as,

y′t = MθM (ht, dt), (9)

where θM is the parameter of M and y′t is the prediction of success or failure.
We train our monitoring module with cross-entropy loss. The architecture of our
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monitoring module is compact and effective since our model has already learned
powerful feature that can capture the appearance changes and hand dynamics
during the pouring process through auxiliary tasks.

4.4 Implementation Details

We use ResNet50[43] trained on ImageNet[45] as the visual feature extractor.
The input size of LSTMimg is 2048, and the input size of both LSTMpos and
LSTMrot are 3N (N = 38 in our case). LSTMimg hidden size is 512, and both
LSTMpos and LSTMrot hidden size are 128. The second layer of hierarchical
LSTM has its hidden size 512. Generator G and discriminator D are the 3-
layered fully-connected network with each layer of size 128. Monitor module is a
fully-connected layer of size 256. We train our model for 3000 epochs with batch
size 24. Learning rate is 1e−4. We optimize all objectives with equal weightings.

5 Dataset

In order to examine our method on monitoring whether the pouring sequence be-
longs to successful / failure sequences, we collect both successful and failure pour-
ing sequences with our multimodal sensing system. We have one chest-mounted
camera to capture the first-person view observation; one wrist-mounted 6DOF
IMU sensor and one tracker of the HTC Vive motion tracking system on the right
wrist to catch both the motion observation and the ground truth trajectory si-
multaneously. Figure 4.a is the illustration of the devices on the demonstrator.
We illustrate how we collect different kinds of demonstrations below.
Variations of pouring sequences. Our single pouring sequence consists of
pouring liquid from the source container with initial liquid amount α to target
container with β amount of liquid. Similar to [7], we roughly divide the con-
tainer states into discrete labels. In successful sequences, the demonstrator tries
to fill target container with the liquid in the source container without spilling
out any liquid. If target container is filled to about 80% full, the demonstra-
tion will stop even if there is still liquid left in the source container. For single
demonstrator, we will record the demonstrations with different kinds of contain-
ers and different initial liquid amounts to obtain more diverse demonstrations.
For source container, we use 4 different containers b, c, d, e in Figure 4.b with
three different initial liquid amount α: {10%, 50%, 80%}. We use container a in
Figure 4.b as the target container with three different initial liquid amount β:
{0%, 30%, 50%}. Combining the different settings in source container, α, and β,
we can obtain total 36 different initial object states. In practice, we will record 5
repeated sequences for each initial object state setting. As a result, for a single
demonstrator, we can obtain 180 demonstration sequences.
Pouring styles. In addition to different variations in the liquid amount and con-
tainer appearances, we collect demonstrations conducted by 5 different demon-
strators to ensure the diversity in pouring styles from person to person.
Failure sequences. In general, there can be many ways to conduct a failure
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Fig. 4. Settings to collect our dataset. (a) A camera is mounted on the chest to
capture visual images. On the wrist, there is a vive tracker and an IMU sensor. (b) We
use these containers to create variations of initial settings (details in section 5)

sequence. However, to model the monitoring tasks, we choose one of the most
common mistakes made by humans during the pouring sequences: Spill out (The
demonstrator accidentally spill out some liquid during the pouring action.) Re-
garding the variations and pouring styles, we use the same settings from the
successful sequences: (1) 5 repeated sequences for each of 36 variations. (2) 5
different demonstrators to ensure diverse pouring behaviors. Hence, the total
amount of demonstration is 2 ∗ 5 ∗ 5 ∗ 36 = 1800.

6 Experiments

In this section, we introduce the evaluation metrics and settings used in our
experiments. We then describe our monitoring experiments and discuss our ex-
perimental results with ablation studies.

6.1 Metrics

In our experiments, we observe that prediction varies a lot across users and thus,
to eliminate bias introduced by specific users, we evaluate our model in a leave-
one-out cross-validation fashion using the following metrics:
Success/Failure accuracy — metric for monitor task. It shows how well the
model discriminates a successful pouring sequence from a failed one. It directly
indicates the performance of our main task.
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Classification accuracy — metric for initial object state classification. It
shows how well the model recognizes what kinds of container and amount of
liquid in the containers in a pouring sequence.
Regression error — metric for trajectory forecasting. It is the error between
6-dimensional 3D trajectories recorded by HTC Vive and predicted 3D trajecto-
ries. Note that due to distinct properties of position and rotation error, the two
errors are calculated separately.

6.2 Setting Variants

To study the effectiveness of each independent component in our network, we
evaluate different settings described below in the following experiments.
Vanilla RNN: Our fusion RNN without auxiliary tasks. The model is a LSTM
encoder (see subsection 3.2) followed by fully-connected layers. The fully-connected
layers perform success/failure classification based on the encoded features.
RNN w/ IOSC: Our fusion RNN with an auxiliary task, initial object state
classification (IOSC). The details of IOSC are described in subsection 4.2.
RNN w/ TF: Our fusion RNN with an auxiliary task, trajectory forecasting
(TF). The details of TF are described in subsection 4.1.
Ours w/o adv.: Our fusion RNN with two proposed auxiliary tasks, initial
object state classification and trajectory forecasting. In this setting, we treat
one-step trajectory forecasting as a regression task (see Equation 2).
Ours: Our fusion RNN with two proposed auxiliary tasks, initial object state
classification and trajectory forecasting. In this setting, we introduce the adver-
sarial training loss (see Equation 4) to generate more diverse trajectories.

6.3 Monitoring Liquid Pouring

We consider 3 scenarios to test our method’s generalization ability. Firstly, we
assume that our model is used to monitor a specific group of users with a specific
set of containers. Then, in a more challenging scenario, we assume the model
need to monitor unseen containers as well. Finally, we consider that the model
needs to monitor unseen users. More details are described below.
Cross Trial Experiment. This experiment is the most simple case. Models are
trained and tested on data of the same group of users with the same container
set, but training data and testing data are collected from different trials of pour-
ing. In this easiest scenario, success/failure classification poses minor challenge
here and is well solved. From Table 1, we can see that our method generates bet-
ter performance on monitoring than the baseline method (i.e. vanilla RNN),
which lacks two auxiliary tasks.
Cross Container Experiment. This is a common scenario that may occur in
the real use case. When using different containers to pour liquid, the whole pour-
ing sequences may be very different. For instance, there are huge changes in the
appearance and the pouring trajectories between the case of the teapot and the
bottle. We run leave-one-out cross-validation on the 4 different source containers
to test whether our model can generalize to unseen containers. The initial states
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are only related to the liquid amount in the source (10%, 50%, 80%) and target
container (0%, 30%, 50%), so we have 9 initial states (rather than 36 states) in
total. The results in Table 2 show that our method achieves better performance
on monitoring than the baseline method, since it successfully catches the change
of states and the hand dynamics during the pouring sequence.
Cross User Experiment. This is the most challenging scenario, since differ-
ent demonstrators may have very different pouring styles. Considering a specific
set of containers, models are trained on data of 4 different users and tested
on 1 user other than the 4 users in training set. The main difference among
cross-user data is the variance in pouring styles. To be more precise, this exper-
iment examines generalization ability in IMU sensor data sequences. By looking
at success/failure accuracy shown in Table 3, we can find that both auxiliary
tasks, initial-state classification and trajectory forecasting, brings considerable
improvement in monitoring object manipulation. From Figure 6, we can observe
that our model’s prediction correctly follows the visual cues. Initial object state
classification helps the model know what the source container and the target
container are, and the amount of liquid in both containers. Trajectory forecast-
ing helps the model learn local dynamics of pouring sequences. Remarkably, by
comparing our method and Ours w/o adv., we can find that adversarial train-
ing introduced in our method significantly boosts initial state classification and
slightly improves trajectory forecasting. From the results, we infer that there is
implicitly-shared knowledge between the two auxiliary tasks and a more robust
trajectory forecasting may enhance initial state classification. Adversarial train-
ing does help regarding obtaining a better understanding of pouring behaviors
and increase the performance of our model in monitoring task.

6.4 Discussion

In this section, we further discuss each component in our network and the future
feasibilities. Firstly, we do ablation study on LSTM architecture under the cross-
user scenario, comparing the hierarchical LSTM (see subsection 3.2) to a 2-
layer LSTM. The latter one is an early fusion method that data from different
modalities is directly concatenated together and fed into the 2-layer LSTM. The
results in Table 4 show that the hierarchical LSTM with late fusion outperforms
the naive 2-layer LSTM in all tasks and this may be due to the capability of the
hierarchical LSTM to handle scale difference and imbalanced dimension among
multimodal inputs.

Secondly, we study the effect of the adversarial loss to the whole network.
Recall that we introduce adversarial loss since there are multiple feasible tra-
jectories for each data sample. However, these errors assume that there is only
one truth position and rotation of each testing sample. As mentioned above,
our model learns a more general concept and will predict trajectory based on
common knowledge considering pouring, whereas prediction of “Ours w/o adv.”
heavily relies on knowledge of seen trajectories and will drastically fail if testing
pouring sequences have little in common with training data. This can be ob-
served in Figure 5.a. Also, the adversarial loss will allow the model to generate
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Table 1. The results of cross trial experiments

succ./fail. acc. classification acc. position error rotation error

V anilla RNN 99.65 % N/A N/A N/A

Ours w/o adv. 100 % 96.50 % 0.020 m 7.58◦

Ours 100 % 96.07 % 0.020 m 6.80◦

Table 2. The results of cross container experiments

succ./fail. acc. classification acc. position error rotation error

V anilla RNN 89.16 % N/A N/A N/A

Ours w/o adv. 96.45 % 63.92 % 0.040 m 11.11◦

Ours 97.11 % 67.69 % 0.038 m 11.30◦

Table 3. The results of cross user experiments

succ./fail. acc. classification acc. position error rotation error

V anilla RNN 81.95 % N/A N/A N/A

RNN w/ IOSC 89.25 % 68.51 % N/A N/A

RNN w/ TF 90.82 % N/A 0.033 m 14.15◦

Ours w/o adv. 92.97 % 64.15 % 0.033 m 14.20◦

Ours 93.25 % 75.69 % 0.033 m 14.06◦

Table 4. Ablation study on LSTM architecture

LSTM architecture succ./fail. acc. classification acc. position error rotation error

2-layer 87.06 % 58.92 % 0.033 m 14.72◦

hierachical 93.25 % 75.69 % 0.033 m 14.06◦

more diverse trajectories, which means the model will observe more diverse hid-
den states in later steps. The trajectory forecasting errors in Figure 5.b and 5.c
show that “Ours” and “Ours w/o adv.” have comparable errors at early steps,
but the former one perform better in later steps.

Our experiments show that introducing auxiliary tasks is beneficial for un-
derstanding the subtle liquid pouring task. By implicitly modeling the environ-
mental states and hand dynamics, we improve liquid pouring monitoring signif-
icantly. We believe the general idea applies to other subtle manipulating tasks
like opening doors, driving nails and cutting bread. Intuitively speaking, open-
ing doors also involves mapping visual (e.g., what types of doors) and non-visual
(e.g., hand motion) observations into environmental states to facilitate monitor-
ing whether the door is opened. Monitoring different tasks may need different
auxiliary tasks to make use of rich sensories in order to learn both visual and
non-visual signals.

7 Conclusion

In this work, we aim at learning to monitor whether liquid pouring is successful
(e.g., not spilling) or not using synchronized visual and IMU signals. We propose
a novel method containing two auxiliary tasks during training: inferring (1) the
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Fig. 5. Trajectory forecasting comparison between “Ours w/o adv.” and “Ours”.
(a) Ground truth, “Ours w/o adv.” and “Ours” are shown in blue, orange and green,
respectively. Time is visualized as color intensity goes from dark to light. Apparently,
“Ours w/o adv.” failed to forecast the trajectory at a later stage of liquid pouring,
while “Ours” can still follow the trend. (b)(c) “Ours” and “Ours w/o adv.” have
comparable errors at early steps, but the former one performs better in later steps
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Fig. 6. Monitoring along time. The prediction correctly follows the visual cues

initial state of containers and (2) forecasting the one-step future 3D trajectory
of the hand with an adversarial training procedure. These tasks encourage our
method to learn representation sensitive to container states and how objects are
manipulated in 3D. On our newly collected liquid pouring dataset, our method
achieves ∼ 8% and ∼ 11% better monitoring accuracy than the baseline method
without auxiliary tasks on unseen containers and unseen users respectively.
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