
DYAN: A Dynamical Atoms-Based Network

For Video Prediction⋆

Wenqian Liu[0000−0003−4274−8538], Abhishek Sharma[0000−0001−6128−5124],
Octavia Camps[0000−0003−1945−9172], and Mario Sznaier[0000−0003−4439−3988]

Electrical and Computer Engineering, Northeastern University, Boston, MA 02115
liu.wenqi,sharma.abhis@husky.neu.edu, camps,msznaier@northeastern.edu

http://robustsystems.coe.neu.edu

Abstract. The ability to anticipate the future is essential when making
real time critical decisions, provides valuable information to understand
dynamic natural scenes, and can help unsupervised video representation
learning. State-of-art video prediction is based on complex architectures
that need to learn large numbers of parameters, are potentially hard to
train, slow to run, and may produce blurry predictions. In this paper,
we introduce DYAN, a novel network with very few parameters and
easy to train, which produces accurate, high quality frame predictions,
faster than previous approaches. DYAN owes its good qualities to its
encoder and decoder, which are designed following concepts from systems
identification theory and exploit the dynamics-based invariants of the
data. Extensive experiments using several standard video datasets show
that DYAN is superior generating frames and that it generalizes well
across domains.

Keywords: video autoencoder · sparse coding · video prediction

1 Introduction

The recent exponential growth in data collection capabilities and the use of su-
pervised deep learning approaches have helped to make tremendous progress
in computer vision. However, learning good representations for the analysis and
understanding of dynamic scenes, with limited or no supervision, remains a chal-
lenging task. This is in no small part due to the complexity of the changes in
appearance and of the motions that are observed in video sequences of natu-
ral scenes. Yet, these changes and motions provide powerful cues to understand
dynamic scenes such as the one shown in Figure 1(a), and they can be used to
predict what is going to happen next. Furthermore, the ability of anticipating
the future is essential to make decisions and take action in critical real time
systems such as autonomous driving. Indeed, recent approaches to video under-
standing [17, 22, 31] suggest that being capable to accurately generate/predict

⋆ This work was supported in part by NSF grants IIS–1318145, ECCS–1404163, and
CMMI–1638234; AFOSR grant FA9550-15-1-0392; and the Alert DHS Center of
Excellence under Award Number 2013-ST-061-ED0001.

2 W. Liu, A. Sharma, O. Camps, M. Sznaier

T

H

W

HW

T

N

HW

T+1

H

W

T+1

HW

Input Data, time horizon T DYAN ENCODER, N atoms

T

N

Sparse Features

DYAN DECODER, T+1 horizon

T+1

N

Output Data, time horizon T+1

A
ct
iv
it
y

(a) (b)

Fig. 1. (a) Dynamics and motion provide powerful cues to understand scenes and
predict the future. (b) DYAN’s architecture: Given T consecutive H ×W frames, the
network uses a dynamical atoms-based encoder to generate a set of sparse N × HW
features that capture the dynamics of each pixel, with N ≫ T . These features can
be passed to its dynamical atoms-based decoder to reconstruct the given frames and
predict the next one, or they can be used for other tasks such as action classification.

future frames in video sequences can help to learn useful features with limited
or no supervision.

Predicting future frames to anticipate what is going to happen next requires
good generative models that can make forecasts based on the available past
data. Recurrent Neural Networks (RNN) and in particular Long Short-Term
Memory (LSTM) have been widely used to process sequential data and make
such predictions. Unfortunately, RNNs are hard to train due to the exploding
and vanishing gradient problems. As a result, they can easily learn short term
but not long-term dependencies. On the other hand, LSTMs and the related
Gated Recurrent Units (GRU), addressed the vanishing gradient problem and
are easier to use. However, their design is ad-hoc, with many components whose
purpose is not easy to interpret [13].

More recent approaches [22, 37, 35, 20] advocate using generative adversarial
network (GAN) learning [7]. Intuitively, this is motivated by reasoning that the
better the generative models, the better the prediction will be, and vice-versa:
by learning how to distinguish predictions from real data, the network will learn
better models. However, GANs are also reportedly hard to train, since training
requires finding a Nash equilibrium of a game, which might be hard to get using
gradient descent techniques.

In this paper, we present a novel DYnamical Atoms-based Network, DYAN,
shown in Figure 1(b). DYAN is similar in spirit to LSTMs, in the sense that it also
captures short and long term dependencies. However, DYAN is designed using
concepts from dynamic systems identification theory, which help to drastically re-
duce its size and provide easy interpretation of its parameters. By adopting ideas
from atom-based system identification, DYAN learns a structured dictionary of
atoms to exploit dynamics-based affine invariants in video data sequences. Us-
ing this dictionary, the network is able to capture actionable information from
the dynamics of the data and map it into a set of very sparse features, which
can then be used in video processing tasks, such as frame prediction, activity
recognition, semantic segmentation, etc. We demonstrate the power of DYAN’s

DYAN 3

autoencoding by using it to generate future frames in video sequences. Our ex-
tensive experiments using several standard video datasets show that DYAN can
predict future frames more accurately and efficiently than current state-of-art
approaches.

In summary, the main contributions of this paper are:

– A novel auto-encoder network that captures long and short term temporal
information and explicitly incorporates dynamics-based affine invariants;

– The proposed network is shallow, with very few parameters. It is easy to
train and it does not take large disk space to save the learned model.

– The proposed network is easy to interpret and it is easy to visualize what it
learns, since the parameters of the network have a clear physical meaning.

– The proposed network can predict future frames accurately and efficiently
without introducing blurriness.

– The model is differentiable, so it can be fine-tuned for another task if neces-
sary. For example, the front end (encoder) of the proposed network can be
easily incorporated at the front of other networks designed for video tasks
such as activity recognition, semantic video segmentation, etc.

The rest of the paper is organized as follows. Section 2 discusses related pre-
vious work. Section 3 gives a brief summary of the concepts and procedures from
dynamic systems theory, which are used in the design of DYAN. Section 4 de-
scribes the design of DYAN, its components and how it is trained. Section 5 gives
more details of the actual implementation of DYAN, followed by section 6 where
we report experiments comparing its performance in frame prediction against
the state-of-art approaches. Finally, section 7 provides concluding remarks and
directions for future applications of DYAN.

2 Related Work

There exist an extensive literature devoted to the problem of extracting optical
flow from images [10], including recent deep learning approaches [5, 12]. Most
of these methods focus on Lagrangian optical flow, where the flow field repre-
sents the displacement between corresponding pixels or features across frames.
In contrast, DYAN can also work with Eulerian optical flow, where the motion
is captured by the changes at individual pixels, without requiring finding corre-
spondences or tracking features. Eulerian flow has been shown to be useful for
tasks such as motion enhancement [33] and video frame interpolation [23].

State-of-art algorithms for action detection and recognition also exploit tem-
poral information. Most deep learning approaches to action recognition use
spatio-temporal data, starting with detections at the frame level [29, 27] and
linking them across time by using very short-term temporal features such as
optical flow. However, using such a short horizon misses the longer term dy-
namics of the action and can negatively impact performance. This issue is often
addressed by following up with some costly hierarchical aggregation over time.
More recently, some approaches detect tubelets [15, 11] starting with a longer

4 W. Liu, A. Sharma, O. Camps, M. Sznaier

temporal support than optical flow. However, they still rely on a relatively small
number of frames, which is fixed a priori, regardless of the complexity of the
action. Finally, most of these approaches do not provide explicit encoding and
decoding of the involved dynamics, which if available could be useful for inference
and generative problems.

In contrast to the large volume of literature on action recognition and mo-
tion detection, there are relatively few approaches to frame prediction. Recurrent
Neural Networks (RNN) and in particular Long Short-Term Memory (LSTM)
have been used to predict frames. Ranzato et al. [28] proposed a RNN to predict
frames based on a discrete set of patch clusters, where an average of 64 overlap-
ping tile predictions were used to avoid blockiness effects. In [31] Srivastava et al.
used instead an LSTM architecture with an ℓ2 loss function. Both of these ap-
proaches produce blurry predictions due to using averaging. Other LSTM-based
approaches include the work of Luo et al. [21] using an encoding/decoding archi-
tecture with optical flow and the work of Kalchbrenner et al. [14] that estimates
the probability distribution of the pixels.

In [22], Mathieu et al. used generative adversarial network (GAN) [7] learning
together with a multi-scale approach and a new loss based on image gradients to
improve image sharpness in the predictions. Zhou and Berg [37] used a similar
approach to predict future state of objects and Xue et al. [35] used a variational
autoencoder to predict future frames from a single frame. More recently, Luc
et al. [20] proposed an autoregressive convolutional network to predict semantic
segmentations in future frames bypassing pixel prediction. Liu et al. [18] intro-
duced a network that synthesizes frames by estimating voxel flow. However, it
assumes that the optical flow is constant across multiple frames. Finally, Liang
et al. [17] proposed a dual motion GAN architecture that combines frame and
flow predictions to generate future frames. All of these approaches involve large
networks, potentially hard to train.

Lastly, DYAN’s encoder was inspired by the sparsification layers introduced
by Sun et al. in [32] to perform image classification. However, DYAN’s encoder
is fundamentally different since it must use a structured dictionary (see (6)) in
order to model dynamic data, while the sparsification layers in [32] do not.

3 Background

3.1 Dynamics-based Invariants

The power of geometric invariants in computer vision has been recognized for a
long time [25]. On the other hand, dynamics-based affine invariants have been
used far less. These dynamics-based invariants, which were originally proposed
for tracking [1], activity recognition [16], and chronological sorting of images [3],
tap on the properties of linear time invariant (LTI) dynamical systems. As briefly
summarized below, the main idea behind these invariants, is that if the available
sequential data (i.e. the trajectory of a target being tracked or the values of a
pixel as a function of time) can be modeled as the output of some unknown

DYAN 5

LTI system, then, this underlying system has several attributes/properties that
are invariant to affine transformations (i.e. viewpoint or illumination changes).
In this paper, as described in detail in section 4, we propose to use this affine
invariance property to reduce the number of parameters in the proposed network,
by leveraging the fact that multiple observations of one motion, captured in
different conditions, can be described using one single set of these invariants.

Let S be a LTI system, described either by an autoregressive model or a state
space model:

yk =
n
∑

i=1

aiyk−i % Autoregressive Representation (1)

xk+1 = Axk; yk = Cxk % State Space Representation (2)

with xk =







yk−n
...
yk






, A =











0 1 . . . 0
...

. . .
. . . 0

0 0 . . . 1
an an−1 . . . a1











; C =
[

0 . . . 0 1
]

where yk
1 is the observation at time k, and n is the (unknown a priori) order

of the model (memory of the system). Consider now a given initial condition xo
and its corresponding sequence x. The Z-transform of a sequence x is defined
as X(z) =

∑∞
k=0 xkz

−k, where z is a complex variable z = rejφ. Taking Z
transforms on both sides of (2) yields:

z(X(z)−xo) = AX(z) ⇒ X(z) = z(zI−A)−1xo, Y (z) = zC(zI−A)−1xo (3)

where G(z)
.
= zC(zI − A)−1 is the transfer function from initial conditions to

outputs. Using the explicit expression for the matrix inversion and assuming
non-repeated poles, leads to

Y (z) =
zCadj(zI−A)xo

det(zI−A)

.
=

n
∑

i=1

zci
z − pi

⇐⇒ yk =

n
∑

i=1

cip
k
i , k = 0, 1, . . . (4)

where the roots of the denominator, pi, are the eigenvalues of A (e.g. poles of the
system) and the coefficients ci depend on the initial conditions. Consider now
an affine transformation Π. Then, substituting2 in (1) we have, y′k

.
= Π(yk) =

Π(
∑n
i=1 aiyk−i) =

∑n
i=1 aiΠ(yk−i). Hence, the order n, the model coefficients

ai (and hence the poles pi) are affine invariant since the sequence y′k is explained
by the same autoregressive model as the sequence yk.

3.2 LTI System Identification using Atoms

Next, we briefly summarize an atoms-based algorithm [36] to identify an LTI
system from a given output sequence.

1 For simplicity of notation, we consider here yk scalar, but the invariants also hold
for yk ∈ R

d.
2 (using homogeneous coordinates)

6 W. Liu, A. Sharma, O. Camps, M. Sznaier

First, consider a set with an infinite number of atoms, where each atom is
the impulse response of a LTI first order (or second order) system with a single
real pole p (or two conjugate complex poles, p and p∗). Their transfer functions
can be written as:

Gp(z) =
wz

z − p
and Gp(z) =

wz

z − p
+

w∗z

z − p∗

where w ∈ C, and their impulse responses are given by gp = w[1, p, p2, p3, . . .]′

and gp = w[1, p, p2, p3, . . .]′ + w∗[1, p∗, p∗2, p∗3, . . .]′, for first and second order
systems, respectively.

Next, from (3), every proper transfer function can be approximated to arbi-
trary precision as a linear combination of the above transfer functions3:

G(z) =
∑

i

ciGpi(z)

Hence, low order dynamical models can be estimated from output data y =
[y1, y2, y3, y4, . . .]

′ by solving the following sparsification problem:

min
c={ci}

‖c‖o subject to: ‖y −
∑

cigp‖
2
2 ≤ η2

where ‖.‖o denotes cardinality and the constraint imposes fidelity to the data.
Finally, note that solving the above optimization is not trivial since minimizing
cardinality is an NP-hard problem and the number of poles to consider is infinite.
The authors in [36] proposed to address these issues by 1) using the ℓ1 norm
relaxation for cardinality, 2) using impulse responses of the atoms truncated to
the length of the available data, and 3) using a finite set of atoms with uniformly
sampled poles in the unit disk. Then, using these ideas one could solve instead:

min
c

1

2
‖y1:T −D(T)c‖22 + λ‖c‖1 (5)

where y1:T = [y1, y2, . . . , yT]
′, D(T) is a structured dictionary matrix with T rows

and N columns:

D(T) =















p01 p02 . . . p0N
p1 p2 . . . pN
p21 p22 . . . p2N
...

...
...

...

pT−1
1 pT−1

2 . . . pT−1
N















(6)

where each column corresponds to the impulse response of a pole pi, i = 1, . . . , N
inside or near the unit disk in C. Note that the dictionary is completely param-
eterized by the magnitude and phase of its poles.

4 DYAN: A dynamical atoms-based network

In this section we describe in detail the architecture of DYAN, a dynamical
atoms-based network. Figure 1(b) shows its block diagram, depicting its two

3 Provided that if a complex pole pi is used, then its conjugate p∗i is also used.

DYAN 7

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

？

？

<latexit sha1_base64="pY5bRl2Du4zszLOAgzUe/lA5rFU=">AAAB/3icbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3S3U3YnSgl9OLdq/4FT+LVn+I/8Ge4aXPQ1gcDj/dmmJkXJoIbcN0vp7S0vLK6Vl6vbGxube9Ud/fuTZxqynwai1i3Q2KY4Ir5wEGwdqIZkaFgrXB0lfutB6YNj9UdjBMWSDJQPOKUgJVuoVLpVWtu3Z0CLxKvIDVUoNmrfnf7MU0lU0AFMabjuQkEGdHAqWCTSjc1LCF0RAasY6kikpkgm546wUdW6eMo1rYU4Kn6eyIj0pixDG2nJDA0814u/uvJVADX8ePcfojOg4yrJAWm6Gx9lAoMMc7TwH2uGQUxtoRQze0HmA6JJhRsZnk03nwQi8Q/qV/U3ZvTWuOyyKiMDtAhOkYeOkMNdI2ayEcUDdAzekGvzpPz5rw7H7PWklPM7KM/cD5/AIBVlnE=</latexit>

<latexit sha1_base64="l+axwEEmKyHs8LlPGMd2cZB0N+E=">AAACAnicbVBNS8NAEN3Urxq/qh69LBahXkoqgnoretFbBdMW2lA22027djcJuxOlhB69e9W/4Em8+kf8B/4MN20O2vpg4PHeDDPz/FhwDY7zZRWWlldW14rr9sbm1vZOaXevqaNEUebSSESq7RPNBA+ZCxwEa8eKEekL1vJHV5nfemBK8yi8g3HMPEkGIQ84JWCk5k0Fjm27Vyo7VWcKvEhqOSmjHI1e6bvbj2giWQhUEK07NScGLyUKOBVsYncTzWJCR2TAOoaGRDLtpdNrJ/jIKH0cRMpUCHiq/p5IidR6LH3TKQkM9byXif96MhHAVfQ4tx+Ccy/lYZwAC+lsfZAIDBHOAsF9rhgFMTaEUMXNB5gOiSIUTGxZNLX5IBaJe1K9qDq3p+X6ZZ5RER2gQ1RBNXSG6ugaNZCLKLpHz+gFvVpP1pv1bn3MWgtWPrOP/sD6/AHoPpcp</latexit>

1

1

1

1

0 10 20 30 40 50 60 70

-1

-0.5

0

0.5

1

1.5

…

<latexit sha1_base64="ysUQWPVtWmedQK7pIMHjOMTiPR0=">AAACAnicbVBNS8NAEN3Urxq/qh69LBZBEEoignorevFYwbSFNpTNdtOu3eyG3YlSQo/evepf8CRe/SP+A3+GSZuDtj4YeLw3w8y8IBbcgON8WaWl5ZXVtfK6vbG5tb1T2d1rGpVoyjyqhNLtgBgmuGQecBCsHWtGokCwVjC6zv3WA9OGK3kH45j5ERlIHnJKIJOacOLatt2rVJ2aMwVeJG5BqqhAo1f57vYVTSImgQpiTMd1YvBTooFTwSZ2NzEsJnREBqyTUUkiZvx0eu0EH2VKH4dKZyUBT9XfEymJjBlHQdYZERiaeS8X//WiRADX6nFuP4QXfsplnACTdLY+TAQGhfNAcJ9rRkGMM0Ko5tkHmA6JJhSy2PJo3PkgFol3WrusObdn1fpVkVEZHaBDdIxcdI7q6AY1kIcoukfP6AW9Wk/Wm/VufcxaS1Yxs4/+wPr8AZUGlvU=</latexit>

Input Stage DYAN Encoder-Decoder Output Stage

Learned Pole Dictionary

+

b

a

+

d

c

0 5 10 15 20 25 30 35

-0.5

0

0.5

1

1.5

2

[a b 0 0 0 … 0]

[0 c 0 0 0 … d]

sparse representation

sparse representation

<latexit sha1_base64="l+axwEEmKyHs8LlPGMd2cZB0N+E=">AAACAnicbVBNS8NAEN3Urxq/qh69LBahXkoqgnoretFbBdMW2lA22027djcJuxOlhB69e9W/4Em8+kf8B/4MN20O2vpg4PHeDDPz/FhwDY7zZRWWlldW14rr9sbm1vZOaXevqaNEUebSSESq7RPNBA+ZCxwEa8eKEekL1vJHV5nfemBK8yi8g3HMPEkGIQ84JWCk5k0Fjm27Vyo7VWcKvEhqOSmjHI1e6bvbj2giWQhUEK07NScGLyUKOBVsYncTzWJCR2TAOoaGRDLtpdNrJ/jIKH0cRMpUCHiq/p5IidR6LH3TKQkM9byXif96MhHAVfQ4tx+Ccy/lYZwAC+lsfZAIDBHOAsF9rhgFMTaEUMXNB5gOiSIUTGxZNLX5IBaJe1K9qDq3p+X6ZZ5RER2gQ1RBNXSG6ugaNZCLKLpHz+gFvVpP1pv1bn3MWgtWPrOP/sD6/AHoPpcp</latexit>

<latexit sha1_base64="l+axwEEmKyHs8LlPGMd2cZB0N+E=">AAACAnicbVBNS8NAEN3Urxq/qh69LBahXkoqgnoretFbBdMW2lA22027djcJuxOlhB69e9W/4Em8+kf8B/4MN20O2vpg4PHeDDPz/FhwDY7zZRWWlldW14rr9sbm1vZOaXevqaNEUebSSESq7RPNBA+ZCxwEa8eKEekL1vJHV5nfemBK8yi8g3HMPEkGIQ84JWCk5k0Fjm27Vyo7VWcKvEhqOSmjHI1e6bvbj2giWQhUEK07NScGLyUKOBVsYncTzWJCR2TAOoaGRDLtpdNrJ/jIKH0cRMpUCHiq/p5IidR6LH3TKQkM9byXif96MhHAVfQ4tx+Ccy/lYZwAC+lsfZAIDBHOAsF9rhgFMTaEUMXNB5gOiSIUTGxZNLX5IBaJe1K9qDq3p+X6ZZ5RER2gQ1RBNXSG6ugaNZCLKLpHz+gFvVpP1pv1bn3MWgtWPrOP/sD6/AHoPpcp</latexit>

Prediction

Ground Truth

Fig. 2. DYAN identifies the dynamics for each pixel, expressing them as a linear com-
bination of a small subset of dynamics-based atoms from a dictionary (learned during
training). The selected atoms and the corresponding coefficients are represented using
sparse feature vectors, found by a sparsification step. These features are used by the
decoder to reconstruct the input data and predict the next frame by using the same
dictionary, but with an extended temporal horizon. See text for more details.

main components: a dynamics-based encoder and dynamics-based decoder. Fig-
ure 2 illustrates how these two modules work together to capture the dynamics
at each pixel, reconstruct the input data and predict future frames.

The goal of DYAN is to capture the dynamics of the input by mapping them
to a latent space, which is learned during training, and to provide the inverse
mapping from this feature space back to the input domain. The implicit assump-
tion is that the dynamics of the input data should have a sparse representation
in this latent space, and that this representation should be enough to reconstruct
the input and to predict future frames.

Following the ideas from dynamic system identification presented in section 3,
we propose to use as latent space, the space spanned by a set of atoms that are
the impulse responses of a set of first (single real pole) and second order (pair
of complex conjugate poles) LTI systems, as illustrated in Figure 2. However,
instead of using a set of random poles in the unit disk as proposed in [36], the
proposed network learns a set of “good” poles by minimizing a loss function that
penalizes reconstruction and predictive poor quality.

The main advantages of the DYAN architecture are:

– Compactness: Each pole in the dictionary can be used by more than one
pixel, and affine invariance allows to re-use the same poles, even if the data
was captured under different conditions from the ones used in training. Thus,
the total number of poles needed to have a rich dictionary, capable of mod-
eling the dynamics of a wide range of inputs, is relatively small. Our exper-
iments show that the total number of parameters of the dictionary, which

8 W. Liu, A. Sharma, O. Camps, M. Sznaier

are the magnitude and phase of its poles, can be below two hundred and the
network still produces high quality frame predictions.

– Adaptiveness to the dynamics complexity: The network adapts to the
complexity of the dynamics of the input by automatically deciding how many
atoms it needs to use to explain them. The more complex the dynamics, the
higher the order of the model is needed, i.e. the higher the number of atoms
will be selected, and the longer term memory of the data will be used by the
decoder to reconstruct and predict frames.

– Interpretable: Similarly to CNNs that learn sets of convolutional filters,
which can be easily visualized, DYAN learns a basis of very simple dynamic
systems, which are also easy to visualize by looking at their poles and impulse
responses.

– Performance: Since pixels are processed in parallel, independently of each
other4, blurring in the predicted frames and computational time are both
reduced.

4.1 DYAN’s encoder

The encoder stage takes as input a set of T consecutive H × W frames (or
features), which are flattened into HW , T × 1 vectors, as shown in Figure 1(b).
Let one of these vectors be yl. Then, the output of the encoder is the collection
of the minimizers of HM sparsification optimization problems:

c∗l = argmin
c

1

2
‖yl −D(T)c‖22 + λ‖c‖1 l = 1, . . . , HW (7)

where D(T) is the dictionary with the learned atoms, which is shared by all pixels
and λ is a regularization parameter. Thus, using a T ×N dictionary, the output
of the encoder stage is a set of sparse HW N × 1 vectors, that can be reshaped
into H ×W ×N features.

In order to avoid working with complex poles pi, we use instead a dictionary

D
(T)
ρ,ψ with columns corresponding to the real and imaginary parts of increasing

powers of the poles pi = ρie
jψi in the first quadrant (0 ≤ ψi ≤ π/2), of their con-

jugates and of their mirror images in the third and fourth quadrant5: ρki cos(kψi),
ρki sin(kψi), (−ρi)

k cos(kψi), and (−ρi)
k sin(kψi) with k = 0, . . . , T − 1. In addi-

tion, we include a fixed atom at pi = 1 to model constant inputs.

D
(T)
ρ,ψ =















1 1 0 . . . 0
1 ρ1 cosψ1 ρ1 sinψ1 . . . −ρN sinψN
1 ρ21 cos 2ψ1 ρ21 sin 2ψ1 . . . (−ρN)2 sin 2ψN
...

...
...

...
...

1 ρT−1
1 cos(T − 1)ψ1 ρ

T−1
1 sin(T − 1)ψ1 . . . (−ρN)T−1 sin(T − 1)ψN















(8)

4 On the other hand, if modeling cross-pixel correlations is desired, it is easy to modify
the network to process jointly local neighborhoods using a group Lasso optimization
in the encoder.

5 But eliminating duplicate columns.

DYAN 9

Note that while equation (5) finds one c∗ (and a set of poles) for each feature y, it
is trivial to process all the features in parallel with significant computational time
savings. Furthermore, (5) can be easily modified to force neighboring features,
or features at the same location but from different channels, to select the same
poles by using a group Lasso formulation.

Algorithm 1 FISTA

Require: Dictionary D ∈ R
n×m, input signal y ∈ R

n, λ, L the largest eigenvalue of
DTD, A = I− 1

L
(DTD), b = 1

L
DT y , g = 1

L
. Initialize iterator t = 0, ct = 0 ∈ R

m,
γt = 0 ∈ R

m, s0 = 1.
1: while stopping criterion not satisfied do

2: γ = Dct + b
3: if γ > g : ct+1 ← γ − g
4: else γ < −g : ct+1 ← γ + g
5: st+1 ← (1 +

√

(1 + 4s2t))/2
6: ct ← ct+1((s0 − 1)/st+1 + 1))− ct((s0 − 1)/st+1)
7: t← t+ 1
8: end while

9: return sparse code ct

In principle, there are available several sparse recovery algorithms that could
be used to solve Problem (7), including LARS [9], ISTA and FISTA[2], and
LISTA [8]. Unfortunately, the structure of the dictionary needed here does not
admit a matrix factorization of its Gram kernel, making the LISTA algorithm a
poor choice in this case [24]. Thus, we chose to use FISTA, shown in Algorithm
1, since very efficient GPU implementations of this algorithm are available.

4.2 DYAN’s decoder

The decoder stage takes as input the output of the encoder, i.e. a set of sparse
HW N × 1 vectors and multiplies them with the encoder dictionary, extended
with one more row:

[

1 ρT1 cos(Tψ1) ρ
T
1 sin(Tψ1) . . . (−ρN)T sin(TψN)

]

(9)

to reconstruct the T input frames and to predict the T + 1 frame. Thus, the
output of the decoder is a set of HW (T + 1)× 1 vectors that can be reshaped
into (T + 1), H ×W frames.

4.3 DYAN’s training

The parameters of the dictionary are learned using Steepest Gradient Descent
(SGD) and the ℓ2 loss function. The back propagation rules for the encoder,

decoder layers can be derived by taking the subgradient of the empirical loss
function with respect to the magnitudes and phases of the first quadrant poles

10 W. Liu, A. Sharma, O. Camps, M. Sznaier

and the regularizing parameters. Here, for simplicity, we give the derivation for

D
(T)
p , but the one for D

(T)
ρ,ψ can be derived in a similar manner.

Let c∗ be the solution of one of the minimization problems in (5), where we
dropped the subscript l and the superscript (T) to simplify notation, and define

F =
1

2
‖y −Dc∗‖22 + λ

N
∑

i=1

c∗i sign(c
∗
i)

Taking subgradients with respect to c∗:

∂F

∂c∗
= 0 = −DT (y −Dc∗) + λv = 0

where v =
[

v1 . . . vN
]T

, vi = sign(c∗i) if c
∗
i 6= 0, and vi = g, where −1 ≤ g ≤ 1,

otherwise. Then,
c∗ = (DT

ΛDΛ)
−1

[

DT
Λy − λv

]

and
∂c∗

∂Dij

∣

∣

∣

∣

Λ

= (DT
ΛDΛ)

−1

[

∂DT
Λy

∂Dij

−
∂DT

ΛDΛ

∂Dij

c∗
]

where the subscript .|Λ denotes the active set of the sparse code c, DΛ is com-
posed of the active columns of D, and cΛ is the vector with the active elements
of the sparse code. Using the structure of the dictionary, we have

∂c∗Λ
∂pk

=

M
∑

i=1

(i−1)pi−2
k

∂c∗Λ
∂Dik

;
∂c∗Λ
∂yj

= (DT
ΛDΛ)

−1 ∂D
T
Λy

∂yj
;
∂c∗Λ
∂λ

= −(DT
ΛDΛ)

−1sign(c∗Λ)

Fig. 3. Temporal evolution of a dictionary trained with the KITTI dataset.

Figure 3 shows how a set of 160 uniformly distributed poles within a ring
around the unit circle move while training DYAN with videos from the KITTI

DYAN 11

video dataset [6], using the above back propagation and a ℓ2 loss function. As
shown in the figure, after only 1 epoch, the poles have already moved significantly
and after 30 epochs the poles move slower and slower.

5 Implementation Details

We implemented6 DYAN using Pytorch version-0.3. A DYAN trained using raw
pixels as input produces nearly perfect reconstruction of the input frames. How-
ever, predicted frames may exhibit small lags at edges due to changes in pixel
visibility. This problem can be easily addressed by training DYAN using optical
flow as input. Therefore, given a video with F input frames, we use coarse to
fine optical flow [26] to obtain T = F −1 optical flow frames. Then, we use these
optical flow frames to predict with DYAN the next optical flow frame to warp
frame F into the predicted frame F + 1. The dictionary is initialized with 40
poles, uniformly distributed on a grid of 0.05× 0.05 in the first quadrant within
a ring around the unit circle defined by 0.85 ≤ ρ ≤ 1.15, their 3 mirror images in
the other quadrants, and a fixed pole at p = 1. Hence, the resulting encoder and
decoder dictionaries have N = 161 columns7 and T and T +1 rows, respectively.
Each of the columns in the encoding dictionary was normalized to have norm 1.
The maximum number of iterations for the FISTA step was set to 100.

6 Experiments

In this section, we describe a set of experiments using DYAN to predict the
next frame and compare its performance against the state-of-art video predic-
tion algorithms. The experiments were run on widely used public datasets, and
illustrate the generative and generalization capabilities of our network.

6.1 Car Mounted Camera Videos Dataset

We first evaluate our model on street view videos taken by car mounted cameras.
Following the experiments settings in [17], we trained our model on the KITTI
dataset [6], including 57 recoding sessions (around 41k frames), from the City,
Residential, and Road categories. Frames were center-cropped and resized to
128 × 160 as done in [19]. For these experiments, we trained our model with
10 input frames (F = 10, T = 9) and λ = 0.01 to predict frame 11. Then, we
directly tested our model without fine tuning on the Caltech Pedestrian dataset
[4], testing partition (4 sets of videos), which consists of 66 video sequences.
During testing time, each sequence was split into sequences of 10 frames, and
frames were also center-cropped and resized to 128×160. Also following [17], the

6 Code will be made available in Github.
7 Note that the dictionaries do not have repeated columns, for example conjugate
poles share the column corresponding to their real parts, so the number of columns
is equal to the number of poles.

12 W. Liu, A. Sharma, O. Camps, M. Sznaier

Fig. 4. Qualitative results for our model trained on the KITTI dataset and tested on
the Caltech dataset, without fine tuning. The figure shows examples from Caltech test
set S10, sequence V010, with ground truth on the top row and predicted frames below.
As shown in the figure, our model produces sharp images and fully captures the motion
of the vehicles and the camera.

quality of the predictions for these experiments was measured using MSE[19] and
SSIM[34] scores, where lower MSE and higher SSIM indicate better prediction
results.

Qualitative results on the Caltech dataset are shown in Figure 4, where it
can be seen that our model accurately predicts sharp, future frames. Also note
that even though in this sequence there are cars moving towards opposite di-
rections or occluding each other, our model can predict all motions well. We
compared DYAN’s performance against three state-of-the-art approaches: Dual-
MoGAN[17], BeyondMSE[22] and Prednet[19]. For a fair comparison, we nor-
malized our image values between 0 and 1 before computing the MSE score. As
shown in Table 1, our model outperforms all other algorithms, even without fine
tuning on the new dataset. This result shows the superior predictive ability of
DYAN, as well as its transferability.

For these experiments, the network was trained on 2 NVIDIA TITAN XP
GPUs, using one GPU for each of the optical flow channels. The model was
trained for 200 epochs and it only takes 3KB to store it on disk. Training only
takes 10 seconds/epoch, and it takes an average of 230ms (including warping)
to predict the next frame, given a sequence of 10 input frames. In comparison,
[17] takes 300ms to predict a frame.

Table 1. MSE and SSIM scores of next frame prediction test on Caltech dataset after
training on KITTI datset.

Caltech
CopyLast
(F=10)

BeyondMSE [22]
(F = 10)

PredNet [19]
(F = 10)

DualMoGan [17]
(F = 10)

Ours
(F = 10)

MSE 0.00795 0.00326 0.00313 0.00241 0.00087

SSIM 0.762 0.881 0.884 0.899 0.952

DYAN 13

Input Frames

PredictionGround Truth

Input Frames

PredictionGround Truth

Input Frames

PredictionGround Truth

Input Frames

PredictionGround Truth

Fig. 5. Qualitative results for next frame prediction test on UCF-101. For each se-
quence, the first row shows the 4 input frames, while the ground truth and our pre-
diction are shown on the second row. We also enlarge the main moving portion inside
each frame to show how similar our predictions are compared to the ground truth.

6.2 Human Action Videos Dataset

We also tested DYAN on generic videos from the UCF-101 dataset [30]. This
dataset contains 13,320 videos under 101 different action categories with an
average length of 6.2 seconds. Input frames are 240× 320. Following state-of-art
algorithms [18] and [22], we trained using the first split and using F = 4 frames
as input to predict the 5th frame. While testing, we adopted the test set provided
by [22] and the evaluation script and optical masks provided by [18] to mask in
only the moving object(s) within each frame, resized to 256× 256. There are in
total 378 video sequences in the test set: every 10th video sequence was extracted
from UCF-101 test list and then 5 consecutive frames are used, 4 for input and
1 for ground truth. Quantitative results with PSNR[22] and SSIM[34] scores,
where the higher the score the better the prediction, are given in Table 2 and
qualitative results are shown in Figure 5. These experiments show that DYAN
predictions achieve superior PSNR and SSIM scores by identifying the dynamics
of the optical flow instead of assuming it is constant as DVF does.

Finally, we also conducted a multi-step prediction experiment in which we
applied our F = 4 model to predict the next three future frames, where each
prediction was used as a new available input frame. Figure 6 shows the results
of this experiment, compared against the scores for BeyondMSE [22] and DVF
[18], where it can be seen that the PSNR scores of DYAN’s predictions are
consistently higher than the ones obtained using previous approaches.

For these experiments, DYAN was trained on 2 NVIDIA GeForce GTX
GPUs, using one GPU for each of the optical flow channels. Training takes
around 65 minutes/epoch, and predicting one frame takes 390ms (including

14 W. Liu, A. Sharma, O. Camps, M. Sznaier

Step1 Step2 Step3
20

25

30

35

P
S

N
R

(%
)

Beyond MSE

DVF

Ours

Fig. 6. Qualitative result for our model trained on UCF-101 dataset with F = 4. Other
scores were obtained by running the code provided by the respective authors. All scores
were computed using masks from [18].

warping). Training converged at 7 epochs for F = 4. In contrast, DVF takes
severals day to train. DYAN’s saved model only takes 3KB on hard disk.

Table 2. PSNR and SSIM scores of next frame prediction on UCF-101 dataset. Results
for [22, 18] were obtained by running the code provided by the respective authors.

UCF-101
CopyLast
(F = 4)

BeyondMSE [22]
(F =4)

OpticalFlow [22]
(F = 4)

DVF [18]
(F = 4)

Ours
(F = 4)

PSNR 28.6 30.11 31.6 32.86 34.26

SSIM 0.89 0.88 0.93 0.93 0.96

7 Conclusion

We introduced a novel DYnamical Atoms-based Network, DYAN, designed using
concepts from dynamic systems identification theory, to capture dynamics-based
invariants in video sequences, and to predict future frames. DYAN has several
advantages compared to architectures previously used for similar tasks: it is
compact, easy to train, visualize and interpret, it is fast to train, it produces
high quality predictions fast, and generalizes well across domains. Finally, the
high quality of DYAN’s predictions show that the sparse features learned by its
encoder do capture the underlying dynamics of the input, suggesting that they
will be useful for other unsupervised learning and video processing tasks such as
activity recognition and video semantic segmentation.

DYAN 15

References

1. Ayazoglu, M., Li, B., Dicle, C., Sznaier, M., Camps, O.I.: Dynamic subspace-
based coordinated multicamera tracking. In: Computer Vision (ICCV), 2011 IEEE
International Conference on. pp. 2462–2469. IEEE (2011)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences 2(1), 183–202 (2009)

3. Dicle, C., Yilmaz, B., Camps, O., Sznaier, M.: Solving temporal puzzles. In: CVPR.
pp. 5896–5905 (2016)

4. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark.
In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. pp. 304–311. IEEE (2009)

5. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 2758–2766 (2015)

6. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)

7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

8. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10).
pp. 399–406 (2010)

9. Hesterberg, T., Choi, N.H., Meier, L., Fraley, C.: Least angle and l1 penalized
regression: A review. Statistics Surveys 2, 61–93 (2008)

10. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial intelligence 17(1-3),
185–203 (1981)

11. Hou, R., Chen, C., Shah, M.: Tube convolutional neural network (t-cnn) for action
detection in videos. arXiv preprint arXiv:1703.10664 (2017)

12. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with deep networks. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). vol. 2 (2017)

13. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: ICML. pp. 2342–2350 (2015)

14. Kalchbrenner, N., Oord, A.v.d., Simonyan, K., Danihelka, I., Vinyals, O., Graves,
A., Kavukcuoglu, K.: Video pixel networks. arXiv preprint arXiv:1610.00527 (2016)

15. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Action tubelet detector
for spatio-temporal action localization. arXiv preprint arXiv:1705.01861 (2017)

16. Li, B., Camps, O.I., Sznaier, M.: Cross-view activity recognition using hankelets.
In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
pp. 1362–1369. IEEE (2012)

17. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion gan for future-flow embedded
video prediction. arXiv preprint (2017)

18. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep
voxel flow. In: International Conference on Computer Vision (ICCV). vol. 2 (2017)

19. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video pre-
diction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

20. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into
the future of semantic segmentation. In: of: ICCV 2017-International Conference
on Computer Vision. p. 10 (2017)

16 W. Liu, A. Sharma, O. Camps, M. Sznaier

21. Luo, Z., Peng, B., Huang, D.A., Alahi, A., Fei-Fei, L.: Unsupervised learning of
long-term motion dynamics for videos. arXiv preprint arXiv:1701.01821 2 (2017)

22. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440 (2015)

23. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based
frame interpolation for video. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1410–1418 (2015)

24. Moreau, T., Bruna, J.: Understanding the learned iterative soft thresholding algo-
rithm with matrix factorization. arXiv preprint arXiv:1706.01338 (2017)

25. Mundy, J.L., Zisserman, A.: Geometric invariance in computer vision, vol. 92. MIT
press Cambridge, MA (1992)

26. Pathak, D., Girshick, R., Dollár, P., Darrell, T., Hariharan, B.: Learning features
by watching objects move. In: Computer Vision and Pattern Recognition (CVPR)
(2017)

27. Peng, X., Schmid, C.: Multi-region two-stream r-cnn for action detection. In:
ECCV. pp. 744–759. Springer (2016)

28. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video
(language) modeling: a baseline for generative models of natural videos. arXiv
preprint arXiv:1412.6604 (2014)

29. Saha, S., Singh, G., Sapienza, M., Torr, P.H., Cuzzolin, F.: Deep learning for de-
tecting multiple space-time action tubes in videos. arXiv preprint arXiv:1608.01529
(2016)

30. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

31. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: International conference on machine learning. pp.
843–852 (2015)

32. Sun, X., Nasrabadi, N.M., Tran, T.D.: Supervised multilayer sparse coding net-
works for image classification. arXiv preprint arXiv:1701.08349 (2017)

33. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video mo-
tion processing. ACM Transactions on Graphics (TOG) 32(4), 80 (2013)

34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)

35. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: Probabilistic future
frame synthesis via cross convolutional networks. In: Advances in Neural Informa-
tion Processing Systems. pp. 91–99 (2016)

36. Yilmaz, B., Bekiroglu, K., Lagoa, C., Sznaier, M.: A randomized algorithm for par-
simonious model identification. IEEE Transactions on Automatic Control 63(2),
532–539 (2018)

37. Zhou, Y., Berg, T.L.: Learning temporal transformations from time-lapse videos.
In: European Conference on Computer Vision. pp. 262–277 (2016)

