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Abstract. Water bodies, such as puddles and flooded areas, on and off
road pose significant risks to autonomous cars. Detecting water from
moving camera is a challenging task as water surface is highly refractive,
and its appearance varies with viewing angle, surrounding scene, weather
conditions. In this paper, we present a water puddle detection method
based on a Fully Convolutional Network (FCN) with our newly proposed
Reflection Attention Units (RAUs). An RAU is a deep network unit de-
signed to embody the physics of reflection on water surface from sky and
nearby scene. To verify the performance of our proposed method, we col-
lect 11455 color stereo images with polarizers, and 985 of left images are
annotated and divided into 2 datasets: On Road (ONR) dataset and Off
Road (OFR) dataset. We show that FCN-8s with RAUs improves sig-
nificantly precision and recall metrics as compared to FCN-8s, DeepLab
V2 and Gaussian Mixture Model (GMM). We also show that focal loss
function can improve the performance of FCN-8s network due to the
extreme imbalance of water versus ground classification problem.

Keywords: Water puddle detection, Road hazard detection, Fully con-
volutional network, Deep learning, Reflection attention unit

1 Introduction

It is well-known that adverse weather conditions affect traffic safety [10,20,30,11].
Weather-related driving risks are elevated in wet weather not only for human
but also for autonomous cars [3,15]. Water and reflection on water surface can
cause serious problems in many scenarios. Running into deep water puddle could
cause damages to mechanical and electronic parts of the vehicle.

Detection of water puddles on road is, however, not a trivial task because
of the wide varieties of appearance and reflection of surrounding environment.
Many existing methods rely on special sensors such as dual-polarized cameras
[25], near field Radar [2]. However, such devices are not general applicable for
normal autonomous cars and are not providing sufficient detection accuracy.

Existing image based detection methods simplify the problem by utilizing
multi images along with hand-crafted features, such as average brightness[8],
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Gaussian fitting of brightness and saturation[16]. However, the water puddle
detection are highly ill-posed for hand-crafted features because the real outdoor
environments are far too complex to be properly modeled with those hand-
crafted features. For example, in Fig. 1, the reflections are coming from sky,
clouds and a variety of environment objects.

On the other hand, Deep neural nets can learn features autonomously and
have achieved great performance in outdoor navigation nowadays. However, to
the best of our knowledge, there is no existing work using deep nets to tackle the
water hazard detection. Note that it is not a trivial task because water puddles
do not have a well-defined appearance which varies drastically with surrounding
environment. Furthermore, there is no existing dataset that is large enough for
the training of deep nets.

In this paper, we propose a water detection method based on a Fully Con-
volutional Network (FCN) with reflection attention units (RAUs). The RAUs
are designed to allow the network to capture reflection correspondences between
different parts of the images. Because the reflection correspondences are mostly
vertical, feature maps in multi-scales are divided into several patches along ver-
tical directions. Then average of each patch is calculated. All the pixels are
compared with the averages in the same column to determine whether it is a
reflection of a certain patch. As shown in Fig. 1 (c), since the X8 is the reflec-
tion of X6, the subtraction results between pixels in X8 and the average of X6

should be lower than that of other pairs. Fig. 1 also shows the water hazard
detection results of our method (d) and FCN-8s (e). Because the reflections on
the water surface are detected by (c), our method clearly outperforms FCN-8s.
In addition we propose to replace cross entropy loss function by focal loss [12]
to deal with the data imbalance problem, as the size of the water puddle various
tremendously between images.

Furthermore, in order to verify the performance of our proposed method and
encouraging new research, we propose the ’Puddle-1000’ Dataset. We collect
11455 color stereo images with polarizers, and 985 of left images are annotated
and divided into 2 datasets: On Road (ONR) sub-dataset and Off Road (OFR)
sub-dataset.

As far as we know, this is the first work to exploit deep neural networks on
water hazard detection. And our main contributions are as follows:

– We propose a reflection attention unit (RAU), and insert it after every last
convolutional layer of 5 group layers in the FCN-8s network [13]. These units
are designed to pick up reflection correspondences relationships between dif-
ferent vertical parts of images.

– We take the advantage of focal loss[12] to deal with this imbalanced water
detection problem where water puddles account for a small fraction of total
number of pixels.

– To the best of knowledge, we propose the first single image deep neural net
based method on water hazard detection in real driving scenes. And the
proposed method achieves the state-of-the-art performance.
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Fig. 1. Single image water hazard detection using a deep net with and without RAUs.
(c) illustrates the proposed Reflection Attention Unit (RAU) to automatically learn
the reflection relationship within a single image.

– We have pixel-wise annotated 985 images mostly containing water puddles.
These include 357 on road images and 628 off road images. This newly an-
notated dataset and source codes of deep networks are available to public.

2 Related work

Traversable area detection and semantic segmentation deep neural
networks

Water hazard detection is often considered as complementary to the traversable
area detection, or the road detection. Traditional methods are based on hand-
crafted features and color priors. For example, Lu et al. [14] used Gaussian
Mixture Model (GMM) to estimate the priors.

Recently, CNN based semantic segmentation methods have demonstrated a
superior performance. Long et al. [13] first proposed a fully convolutional network
(FCN). And after that, by taking the benefit from ResNet [7], Chen et al. [4]
proposed the Deeplab and futher improved the performance. Zhao et al. [31]
proposed a new network structure, called pyramid pooling module, to exploit
global context information. Recently, Han et al. [6] proposed a semi-supervised
learning semantic segmentation method based on generative adversarial network
(GAN). However, the hyper-parameters of GAN were selected empirically which
are not robust to various water detection scenes.

Puddle detection

Active imaging based methods: To determine different road surface conditions
such as dry, wet, snowy and frozen, Fukamizu et al. [5] relied on the reflectance
of a projected visible and infrared light source. Viikari et al. [25] proposed to
use the backscattering of dual polarized RADARs, while Bertozzi et al. [2] used
backscattering of short infrared light source. These techniques however have

https://cloudstor.aarnet.edu.au/plus/s/oSeR8zogqzaXN6X
https://cloudstor.aarnet.edu.au/plus/s/oSeR8zogqzaXN6X
https://github.com/Cow911/SingleImageWaterHazardDetectionWithRAU.git
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limited working range which is up to 2m. For larger distance, images extracted
from cameras are required.

Single image method Zhao et al. [32] exploits the water region detection
using color constancy and texture. However they assume a close-up image of
water puddles with uniform reflection of the sky. Such assumptions simply do
not hold in real driving conditions.

Stereo images/Video based methods Texture cues of water surface have been
used including smoothness descriptor [29], and local binary pattern [17,18]. Color
cue in HSV space have also been used by Yan [29]. Rankin and Matthies [21]
further showed that color of water puddle varies with viewing distance and angle.
Temporal fluctuation (or dynamic texture) of water surface was also exploited by
Santana et al. [23] (optical flow), and Mettes et al. [17,18] (temporal deviation
and L1-norm FFT) to successfully detect running water bodies or still water
under windy condition from a fixed camera position. Stereo depth was also ex-
ploited by Matthies et al. [16], Yan [29], and Kim et al. [9]. As light reflected
from water surfaces is polarized [26], this provides a strong cue to detect water
puddles as used in several works [24,28,29,9,19]. While Xie et al. [28] used 3
cameras, others used stereo cameras attached to horizontal and vertical polar-
izers. Nguyen et al. [19] further showed that sky polarization strongly effect the
appearance of water.

Other imaging wavelengths including infrared and thermal imaging are also
used by [16,2,22] to allow water detection at any time without active light
sources. Rankin et al. [22] also showed that the relative intensity of water versus
ground changes distinctively between night and day and this provide a strong
cue of water.
Classification techniques

From obtained cues of water, different classification techniques have been
utilized including hard coded and adaptive thresholding [28,21,29,9], K-means
[23], decision forest [17], support vector machine [9], and Gaussian mixture model
[19].

To exploit temporal constraint, state propagation techniques have been used
including segmentation guided label [23] and Markov random field [17].

3 Problem formation and physical insights

In this section, we aim to formulate the problem and explicitly explain why
water puddle detection in a single image is a challenging problem. Also, we aim
to introduce concept on reflection attention.
Appearance of water puddle: reflection Detecting water hazard from dis-
tance is challenging due to the very nature of reflection on water surface. Ex-
amples of water are given in Fig. 2. In (a) the shape and boundary of puddles
are very irregular. In (b) even though there are only reflections of sky, the colors
of water surfaces change with the distances. Both in (a) and (b), reflections of
puddles far away are very bright. In (c) the reflections are mainly about clouds
and trees, while in (d) they consist of blue sky, red fences, clouds and trees,
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Fig. 2. Examples from the proposed ’Puddle-1000’ dataset. Waters on ground could
have different reflections, colors, brightness, and shapes. Water surface can be still or
moving.

which makes the puddles look very different. The colors of the puddles in (a)
and (b) are different from those in (c) and (d), as the latter ones have more soil
sediments. In (e) the right puddle has waves due to the wind. The left puddle in
(f) looks very similar with road areas. (g) and (h) contain the same puddle but
captured at different distances. The puddle reflects of different parts of trees,
therefore the textures on puddle surface are quite different.
Appearance of water puddle: Inter reflection/refraction and scatter-
ing. The process of light reflecting and scattering from a water puddle is il-
lustrated in Fig 3. Modeling the appearance of a puddle with a provided envi-
ronmental luminance is, yet, ill-posed. Light source S1 from the sky or nearby
objects hit water surface at O1. It partially reflects back into the air and partially
refracts into water column as shown in the left of the figure. What we see from
the water puddle is a summation of a) reflection of the light source as at O1, and
b) the fraction from inside the water as at O2 and O3. Reflection as shown in
the top right in fact is the combination of specular reflection (i.e. clear image)
Rreflect and scatter reflection (i.e. blurry image) Rscatter. Similarly, the refrac-
tion as shown in the bottom right is the combination of light coming straight
from the ground bottom Rbottom as at S3 and light from sediment particles
Rparticles as at S2. This process is expressed as the following summation:

Rtotal = Rreflect +Rscatter +Rbottom +Rparticles (1)

An important property of reflection is that the light source and its reflected
image lie on a straight line perpendicular to the water surface (or the ground)
and that they have same height from the ground as shown in Fig 4. Perspective
view and imperfect camera lens introduce some distortions to captured images.
The line connecting the source and its reflection may not be exactly vertical in
the image, and the distances of the source and its reflection to the ground are
not exactly the same. As the distance from the camera increases, the different in
the height of the object and its reflection reduces. We aim to design a deep net-
work that captures this reflection effect and tolerates the distortion and camera
rotation.
Mining visual priors through deep learning. With recent rapid advance-
ments of Convolutional Neural Network (CNN) to effectively solve various tra-
ditional computer vision problems, we aim to apply this powerful tool to the
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Fig. 3. (a) shows the process of water reflection (S1O1R1), refraction (S2O2R2 and
S3O3R3) and scattering (O1S2O2 and O1S3O3) at a water puddle. (b) and (c) show
light components from the same water puddle. (b) shows reflection light on water
surface, magnified by passing through horizontal polariser. (c) shows fraction light
from inside water puddle, magnified passing through vertical polariser (wikipedia.org).

Fig. 4. (a) shows image formation of an object and its reflection. The light source and
its image is on a line SS” perpendicular at ground G where GS = GS”. However the
pixel distances on camera image are different, G’S’ 6=G’R’. (b) shows reflection on water
with vertical correspondences between tree tops and their reflections (wikipedia.org).

problem of water hazard detection. CNN in general and Fully Convolutional
Network (FCN) in particular recognise objects with distinct structures and pat-
terns. Therefore these networks do not work well with water reflection which
varies drastically depending on what is reflected. As a result, we want to ex-
tend the networks recognise the physics of the reflection phenomenon. The main
characteristics of reflection on water surface is that the reflection is a inverted
and disturbed transform of the sky or nearby objects above the water surface.
Specifically, we propose in this paper a new network module called Reflection
Attention Unit (RAU) that matches image pattern in the vertical direction.

4 Fully convolutional network with reflection attention

units

Water hazard is hard to recognize for existing semantic segmentation methods
because of the reflections on the water surface. Therefore, we want to exploit
more information about local and global reflection contexts especially in the
vertical direction. The proposed Reflection Attention Units (RAUs) are then
used to learn the reflection relationships.
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Fig. 5. Illustration of a Reflection Attention Unit (RAU).

4.1 Reflection Attention Unit

We propose RAU based on a strong cue in a single image that water puddles usu-
ally contain vertical reflections. As illustrated by Fig 4, a reflection and its source
lies along a line nearly vertical in the image. Therefore to detect water puddles,
we can search for reflections by matching image regions along pixel columns of
an image. Furthermore, to tolerate perspective distortion, small camera rotation
(angle with line of horizon) and blurry reflection, multiple resolutions or scales
are used in the vertical matching.

The architecture of the proposed RAU is illustrated in Fig. 5. Given an input
feature map I of size [h,w, c], horizontal average pooling is applied to I reduce
to size [h,w/2, c]. Then vertical average pooling is applied to reduce this to
X of size [n,w/2, c]. In Fig. 5, n is set to be 8 for illustration purpose. After
that, each row Xi sized [1, w/2] of X is tiled or self replicated to size [n,w/2].
Those obtained from all rows are concatenated along the feature axis into a new
feature map of size of [n,w/2, c ∗ n]. Then, this feature map are up-sampled to
size [h,w, c ∗ n] and denoted as X ′. We then concatenate n times of I along the
feature axis to get I ′ with size [h,w, c ∗ n]. I ′ is subtracted from X ′ to produce
D with size [h,w, c∗n] which encode the reflection relationships. The subtracted
feature map is concatenated with I again, fed into a convolutional layer and
activated by ReLU function to generate the final output of the same size as I.

Fig.6 illustrate how the RAU computes the similarities between one pixel and
the averages of other different parts along vertical direction in the neighboring
2 columns in a certain scale. Take the first channel of X ′ as an example. This
single-channel image has 16 tiled rows and pixels along each column are the same.
A single row represents the blurry version of the top rows of the first channel of
I. Because the top rows of I contain mostly clouds, therefore in the difference D,
the clouds and reflection of clouds on the water surface has lower intensity than
ground, fences and trees. Furthermore, as the reflection lines are not strictly
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Fig. 6. Working principle of a Reflection Attention Unit. After the Convolutional layer
group 1, the input color image is transformed to a feature map I, and average pooling
is applied to I to get the downsampled feature map X. Then, self replication, concate-
nation and upsampling of I produce feature map X

′. I are concatenated to get I ′. I ′ is
subtracted from X

′ to produce a difference map D. Finally, D and I are concatenated
and fed into a convolutional layer and a ReLU to output a new feature map of the
same size as I. This is fed to pooling layer 1 of a normal convolutional layer group.

vertical due to distortion and image rotation, the two average poolings allow for
such misalignments from these. In addition, such misalignments are also taken
account for when several RAUs are applied to feature maps of different scales as
outputs of successive convolutional layer groups.

4.2 Network Architecture

Fig. 7 shows the network architectures of standard FCN-8s [27] (a) and our
method (b). To study the usefulness of different RAUs in a FCN-8s network, we
increasingly insert 5 RAUs after each group of convolutional layers to enable the
reflection awareness at different scales.

Fig. 7. Architectures of FCN-8s and our proposed FCN-8s with RAUs. For compact-
ness, we only show 2 out of 5 groups of convolutional layers and their corresponding
RAUs.

4.3 Focal Loss

The area of water puddles is found much smaller than that of the ground. Par-
ticularly, in ONR dataset and OFR dataset, introduced in the next section, the
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ratios between the pixel number of water and non-water are approximately 1:61
and 1:89. These lead to skewed training when using a common loss function,
such as cross entropy loss.

To deal with unbalanced classification, we propose to use focal loss with our
network. Given such a binary classification problem, we define y = {0, 1} as the
ground truth classes and p as the probability that one sample belongs to class
y = 1. Then standard cross entropy loss is defined as follows:

CE(p, y) =

{

−log(p) if y = 1
−log(1− p) otherwise

(2)

If we define pt as follows:

pt =

{

p if y = 1
1− p otherwise

(3)

Then equation 2 can be rewritten as:

CE(p, y) = CE(pt) = −log(pt) (4)

The focal loss is defined as follows to down-weight easy examples and focus on
hard examples:

FL(pt) = −(1− pt)
γ log(pt) (5)

where −(1 − pt)
γ is the modulating factor and γ ≥ 0 is a tunable focusing

parameter.

5 Puddle-1000 dataset

To enable deep learning based methods and systematical tests, in this paper we
present a new and practical water puddle detection dataset. Note that a previous
dataset of water puddles was published by [19] recorded at two different locations
for on road and off road conditions near Canberra city, Australia. This dataset
only contains 126 and 157 annotated left frames for on road sequence (ONR) and
off road sequence (OFR). For this paper, the annotated frame are too limited
for training deep networks.
Proposed dataset In this paper, we extend the existing dataset with 5 times
more pixel-wise labeled images. The labeled data are all from the above dataset
captured by the ZED stereo camera, and since we aim for a single image solution,
only left images are annotated and used to validate the performance of different
networks. Specifically, ONR now has 357 annotated frames, while OFR now has
628 annotated frames. Fig. 8(a) and (b) show color images from ONR and OFR
datasets, and (c) and (d) show examples of the pixel-wise annotation masks with
two classes. In the ONR dataset, the waters are very muddy and the reflections
are mainly from sky, clouds, pillars and fences, while in the OFR dataset the
water surfaces are the combined reflections of blue sky, clouds, trees, telegraphs,
buildings and some fences. The appearances of ground and other obstacles in
those two datasets are also much different. In ONR, there are asphalt roads with
moving cars and containers. In OFR the grounds are just wet dirt roads, however
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Fig. 8. Examples in the proposed dataset and the ZED camera.

it has more different kinds of obstacles, such as fences, buildings, many kinds of
trees, mounds and building materials. Therefore there are significant differences
in water reflections. These new annotated frames will also be released to the
public.

6 Experiments

We systematically evaluate the proposed network using the proposed dataset.
We compare with existing single image based methods and also compare with
a various of existing network structures. We also provide detailed analysis on
training time, robustness to over-fitting in the supplementary material (because
of the length limit.)

6.1 Implementation details

Our network is implemented using Tensorflow[1] framework and is trained on an
NVIDIA TITAN XP GPU with 12GB of memory. In experiments, the resolution
of images and ground truths are downsampled to 360px×640px. The batch size is
1 during training. Learning rate is set to 10−6 at first, and decreases by a factor
of 0.2 every 5K iterations after 20K iterations. The number of training iteration
of both FCN-8s and FCN-8S-focal-loss is 100K, and that of both Deeplab-V2
and our proposed network is 60K.

The ONR and OFR datasets are randomly divided into training and testing
categories in the following experiments. For ONR dataset, we use 272 images
to train the networks, and 85 images to verify the performances. As for OFR
dataset, 530 images are used for training and 98 images for testing. Furthermore,
we also carry out the experiments on both datasets combined together. The
metrics used for evaluation are F-measure, precision, recall and accuracy. In all
experiments, we do not use data augmentation.

The details of 5 RAUs are shown in Table 1.

6.2 Validation of the Reflection Attention Units

We train four different networks on the dataset. Three of them are FCN-8s with
RAUs, the difference is that, the number of RAUs in these networks are 1, 3 and
5 respectively. They are named as FCN-8s-FL-1RAU, FCN-8s-FL-3RAU and
FCN-8s-FL-5RAU. In FCN-8s-FL-1RAU the single RAU is placed before the
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Table 1. Details of RAUs

Name N
Convolutional Kernel

Feature map size
Input channels Output channels kernel size

RAU1 16 64*(16+1) 64 [3,3] 360×640
RAU2 16 128*(16+1) 128 [3,3] 180×320
RAU3 16 256*(16+1) 256 [3,3] 90×160
RAU4 16 512*(16+1) 512 [3,3] 45×80
RAU5 8 512*(8+1) 512 [3,3] 23×40

Table 2. Performances of the networks with different number of RAUs.

Dataset Method F-measure Precision Recall Accuracy

ONR

FCN-8s-FL-5Conv 55.76% 55.68% 55.85% 99.06%
FCN-8s-FL-1RAU 59.63% 61.64% 57.75% 99.17%
FCN-8s-FL-3RAU 61.97% 63.43% 60.57% 99.20%
FCN-8s-FL-5RAU 70.11% 67.78% 72.61% 99.35%

OFR

FCN-8s-FL-5Conv 78.56% 89.33% 70.11% 99.32%
FCN-8s-FL-1RAU 71.67% 87.45% 60.71% 99.14%
FCN-8s-FL-3RAU 79.09% 91.36% 69.72% 99.34%
FCN-8s-FL-5RAU 81.67% 87.21% 76.79% 99.38%

BOTH

FCN-8s-FL-5Conv 63.44% 62.52% 64.44% 99.21%
FCN-8s-FL-1RAU 67.64% 74.66% 61.82% 99.14%
FCN-8s-FL-3RAU 67.63% 75.27% 64.40% 99.15%
FCN-8s-FL-5RAU 76.91% 78.03% 75.81% 99.34%

first pooling layer. In FCN-8s-FL-3RAU the RAUs are added before the first,
the third and the fifth pooling layers. And FCN-8s-FL-5RAU is the proposed
network. In the last one network we do not use RAUs and only add 5 more
convolutional layers. In all the networks we use the focal loss. Table 2 shows
that, the performances are improved with increasing using of RAUs.

6.3 Validation of the Focal Loss

We train the FCN-8s with the cross entropy loss function and the focal loss, re-
spectively. The results are shown in table 3. From this table, we can see that using
focal loss can get obviously better performances on OFR and BOTH datasets.
The reason why there is no significant improvement on ONR dataset is because
the data imbalance of ONR dataset is much slighter than that of OFR dataset.
Even so, the FCN-8s-FL still gets better F-measure and Recall.

6.4 Cross dataset validation

To further validate the robustness of our method, we train two networks on ONR
and OFR dataset, and verify them on the opposite datasets. The results (Table
4) of our method are better than the FCN-8s-FL in all the experiments. This
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Table 3. Performances of FCN-8s with and without focal loss.

Dataset Method F-measure Precision Recall Accuracy

ONR
FCN-8s 56.99% 59.01% 55.11% 99.12%

FCN-8s-FL 57.85% 50.49% 67.71% 98.96%

OFR
FCN-8s 64.33% 78.18% 54.64% 98.92%

FCN-8s-FL 74.05% 84.88% 65.66% 99.18%

BOTH
FCN-8s 65.21% 69.81% 61.18% 99.05%

FCN-8s-FL 70.62% 74.38% 67.22% 99.19%

Table 4. Performances of different methods on cross dataset validations.

Testing
Dataset

Training
Dataset

Method F-measure Precision Recall Accuracy

ONR OFR
FCN-8s-FL 9.16% 15.80% 6.45% 98.65%

FCN-8s-FL-RAU 31.43% 50.99% 22.72% 98.95%

OFR ONR
FCN-8s-FL 22.98% 27.20% 19.89% 97.62%

FCN-8s-FL-RAU 36.60% 60.71% 26.20% 98.38%

indicates our method has much better generalization performance on different
datasets.

6.5 Comparison with existing methods

For further comparison, we implement and re-train other image segmentation
networks including FCN-8s, FCN-8s-FL, FCN-8s-5Conv and DeepLab (version
2) [4]. We also compared our method with the non deep learning method, such
as GMM&polarisation[19]. For DeepLab, we fine-tune it based on a pre-trained
Resnet101 model provided by Deeplab, and we do not apply CRF after the
inference.5

Table 5 shows the performances of different methods and the average infer-
ence time for one frame. Fig. 9 demonstrates the water hazard detection results
of them. We can see that our RAUs help improve the performances a lot. The
precision and recall have great improvements, showing that our RAUs can help
the networks to reduce the false-positives and false-negatives. Fig. 9 also demon-
strates that improvements too. 6

5 We respectfully mention that we don’t have access to source codes and datasets from
some other previous publications. And methods not working with single images are
not compared too.

6 The accuracy dose not increase significantly because the number of water pixels is
much smaller than that of non-water pixels, however, when we calculate the accuracy,
we count the detection accuracies both of water and non-water pixels.
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Table 5. Performance comparison between our proposed network and others.

Dataset Method F-measure Precision Recall Accuracy Time

ONR

FCN-8s-FL-RAU (ours) 70.11% 67.78% 72.61% 99.35% 0.32s
FCN-8s-FL 57.85% 50.49% 67.71% 98.96% 0.06s
FCN-8s [27] 56.99% 59.01% 55.11% 99.12% 0.06s
DeepLab [4] 21.97% 37.18% 15.60% 98.83% 0.27s

FCN-8s-FL-5Conv 55.76% 55.68% 55.85% 99.06% 0.07s
GMM & polarisation [19] 31.0% 18.7% 90.2% 96.5% NA

OFR

FCN-8s-FL-RAU (ours) 81.67% 87.21% 76.79% 99.38% 0.32s
FCN-8s-FL 74.05% 84.88% 65.66% 99.18% 0.06s
FCN-8s [27] 64.33% 78.18% 54.64% 98.92% 0.06s
DeepLab [4] 45.05% 71.31% 32.92% 98.56% 0.27s

FCN-8s-FL-5Conv 78.56% 89.33% 70.11% 99.32% 0.07s
GMM & polarization [19] 28.1% 16.8% 85.4% 95.2% NA

BOTH

FCN-8s-FL-RAU (ours) 76.91% 78.03% 75.81% 99.34% 0.32s
FCN-8s-FL 70.62% 74.38% 67.22% 99.19% 0.06s
FCN-8s [27] 65.21% 69.81% 61.18% 99.05% 0.06s
DeepLab [4] 30.36% 53.52% 21.19% 98.59% 0.27s

FCN-8s-FL-5Conv 63.44% 62.52% 64.44% 99.21% 0.07s

Fig. 9. Water hazards detection results trained on both datasets.
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Fig. 10. The challenging cases for water hazard detection by our method. The first
row are the color images, the second row are the ground truths and the last row are
our results.

7 Discussion and Conclusion

Challenging Cases Even with the help with RAUs, the water hazard detection
is still very challenging in various cases. Fig. 10 shows some examples. As shown
in red rectangles, some puddle areas are too small to be recognized, because they
only contain a few pixels. Besides, the wet areas are very similar with puddles,
as we present in blue rectangles in (c) and (e). Lastly, in (d) the green rectangles
show that some of the water surfaces almost look the same with the road. In all
these cases, the water surfaces contain very little reflection information, so that
our RAUs can not improve the performances.
Conclusion We propose a robust single image water hazard detection based
on fully convolutional networks with reflection attention units (RAUs) and focal
loss. We also collect on road and off road color images with water hazards,
and pixel-wisely annotate 985 images of them to build a dataset and verify
the performances. We apply RAUs on multi-scale feature maps. In this novelly
proposed RAUs, we calculate the distances between one pixel and the averages
of different patches in each 2 columns along vertical direction. The focal loss is
also used to deal with the serious data imbalance. Experiments of several deep
neural networks and one traditional method on these datasets are carried out,
and the results show the great effectiveness of our proposed method.
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