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Abstract. In recent years, deep Convolutional Neural Networks (CNNs)
have broken all records in salient object detection. However, training such
a deep model requires a large amount of manual annotations. Our goal is
to overcome this limitation by automatically converting an existing deep
contour detection model into a salient object detection model without us-
ing any manual salient object masks. For this purpose, we have created a
deep network architecture, namely Contour-to-Saliency Network (C2S-
Net), by grafting a new branch onto a well-trained contour detection
network. Therefore, our C2S-Net has two branches for performing two
different tasks: 1) predicting contours with the original contour branch,
and 2) estimating per-pixel saliency score of each image with the newly-
added saliency branch. To bridge the gap between these two tasks, we
further propose a contour-to-saliency transferring method to automati-
cally generate salient object masks which can be used to train the saliency
branch from outputs of the contour branch. Finally, we introduce a novel
alternating training pipeline to gradually update the network parame-
ters. In this scheme, the contour branch generates saliency masks for
training the saliency branch, while the saliency branch, in turn, feeds
back saliency knowledge in the form of saliency-aware contour labels,
for fine-tuning the contour branch. The proposed method achieves state-
of-the-art performance on five well-known benchmarks, outperforming
existing fully supervised methods while also maintaining high efficiency.
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1 Introduction

Salient object detection, which aims at locating the most visually conspicuous
object(s) in natural images, is critically important to computer vision. It can be
used in a variety of tasks such as human pose estimation [5], semantic segmenta-
tion [11], image/video captioning [25], and dense semantic correspondences [34].

* Both authors contribute equally to this work.
Code and pre-trained models are available at https://github.com/lixin666/C2SNet.
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Fig. 1. Saliency maps produced by currently best deep saliency models (DSS [8],
UCF [38], and Amulet [37]) and ours. Different from these fully supervised methods,
our method requires no groundtruth salient object mask for training deep CNNs.

Over the past decades, the techniques of salient object detection have evolved
dramatically. Traditional methods [3, 4, 20] only use low-level features and cues
for identifying salient regions in an image, leading to their inability to summa-
rize high-level semantic knowledge. Therefore, these methods are unsuitable for
handling images with complex scenes. Recently, fully-supervised approaches [8,
9, 21, 24] based on deep Convolutional Neural Networks (CNNs) have greatly im-
proved the performance of salient object detection. The success of these methods
depends mostly on a huge number of training images containing manually an-
notated salient objects. Unfortunately, in salient object detection, annotations
are provided in the form of pixel-wise masks. Annotating a large-scale training
dataset requires tremendous cost and effort.

To eliminate the need for time-consuming image annotation, we propose to
facilitate feature learning in salient object detection by borrowing knowledge
from an existing contour detection model. Although salient object detection
and contour extraction seem inherently different, they are actually related to
each other. On one hand, contours provide useful priors or cues for identifying
salient regions in an image. For example, salient regions are often surrounded
by contours. On the other hand, saliency knowledge helps remove background
clutter, and thus improves contour detection results. Therefore, it is reasonable
to transfer knowledge between these two involved domains [16–18].

Our goal is to convert a trained contour detection model (CEDN) [35] into
a saliency detection model without using any manually labeled salient object
masks. With this goal, we first graft a new branch onto the existing CEDN to
form a multi-task network architecture, i.e., Contour-to-Saliency Network (C2S-
Net). Then, we employ the well-trained contour branch to generate contour
maps for all images and use a novel contour-to-saliency transferring method to
produce the corresponding saliency masks. The newly-added branch is trained
under the strong supervision of these automatically generated saliency masks.
After that, the trained branch in turn transfers the learned saliency knowledge,
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in the form of saliency-aware contour labels, to the contour branch. In this
way, the original contour branch learns to detect the contours of only the most
attention-grabbing object(s). The interaction between the original branch and
newly-added branch is iterated in order to increase accuracy. Although the gen-
erated salient object masks and saliency-aware contour labels may contain errors
in the beginning, they gradually become more reliable after several iterations.
More importantly, the well-trained CEDN undergoes essential changes through
the alternating training procedure between the two branches (i.e., Contour-to-
Saliency procedure and Saliency-to-Contour procedure), becoming a powerful
saliency detection model, where one branch focuses on salient object contour
detection and the other branch predicts saliency score of each pixel.

Despite not using manually annotated salient object labels for training, our
proposed method is capable of generating a reliable saliency map for each input
(See Fig. 1). The experiments show that our proposed method yields higher
accuracy than the existing fully-supervised deep models. Furthermore, it takes
only 0.03 second to perform each image, which is much faster than most existing
methods.

In summary, this paper makes the following three major contributions:

– We present a new idea and solution for salient object detection by automati-
cally converting a well-trained contour detection model into a saliency detec-
tion model, without requiring any groudtruth salient object labels.

– We propose a novel Contour-to-Saliency Network (C2S-Net) based on the
well-trained contour detection network. In this architecture, the same feature
encoder is used by both the original contour branch and the newly-added
saliency branch. We also introduce cross-domain connections to enable the
saliency branch to fully encode contour knowledge during the learning process.

– We introduce a simple yet effective contour-to-saliency transferring method
to bridge the gap between contours and salient object regions. Therefore, the
results generated by the well-trained contour branch can be used to generate
reliable saliency masks for training the saliency branch. In addition, we propose
a novel alternating training pipeline to update the network parameters of our
C2S-Net.

2 Related Work

Salient object detection has evolved quickly over the past two decades. Earlier
methods [3, 4, 20] rely on low-level features and cues such as intensity, color, and
texture. Although these methods can produce accurate saliency maps in most
simple cases, they are unable to deal with complex images due to the lack of
semantic knowledge.

In recent years, fully-supervised CNNs have demonstrated highly accurate
performance in salient object detection tasks. These methods can be catego-
rized into two groups: region-based methods and pixel-wise saliency prediction
methods. Region-based methods predict saliency score in a region-wise manner.
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Zhao et al. [39] integrate both global and local context into a multi-context
CNN framework for saliency detection. In [13], a multi-layer fully connected
network is proposed for estimating the saliency score of each super pixel. Wang
et al. [28] proposed the integration of both local estimation and global search
for patch-wise saliency score estimation. All these methods treat image patches
as independent units, and thus they may result in spatial information loss and
redundant computations. To overcome these drawbacks, pixel-wise saliency pre-
diction methods directly map an input image to the corresponding saliency map
by using a trained deep Fully Convolutional Network (FCN). Li et al. [19] pro-
posed the use of a multi-task fully-convolutional neural network for salient object
detection. Wang et al. [30] proposed a recurrent FCN to encode saliency prior
knowledge for salient object detection. In [8], Hou et al. introduce short connec-
tions into the Holistically-nested Edge Detector (HED) network architecture [31]
so as to solve scale-space problems in salient object detection. Li et al. [21] de-
veloped a multi-scale cascade network, which can encode multi-scale context
information and thus produce a better result. In general, these fully-supervised
CNN-based methods can achieve good performance even when handling complex
scenes. However, training deep CNN models requires a large amount of pixel-
level annotations, which have to be created manually in a time-consuming and
expensive way.

Notable previous attempts at detecting salient object(s), while using no
saliency mask for training, are Weakly Supervised Saliency (WSS) [29] and Su-
pervision by Fusion (SBF) [37] methods. WSS takes advantage of image-level
tags to generate pixel-wise annotations for training a deep saliency model. SBF
trains the desirable deep saliency model by automatically generating reliable
supervisory signals from the fusion process of weak saliency models. However,
due to the lack of detailed object shape information, these methods perform
far worse in challenging cases compared to fully-supervised methods. Compared
with the methods proposed in [29, 37], our method can achieve much higher ac-
curacy. This is because our solution obviates the need for image-level tags in
training, and thus the accuracy can be increased by using a much larger number
of training images from any class (not limited to predefined categories). Fur-
thermore, the contour knowledge is successfully transferred for salient region
detection. This enables the deep CNN network to learn detailed object shape
information and improve the overall performance. To the best of our knowledge,
the idea of transferring contour knowledge for salient object detection has not
been investigated before.

3 Approach

3.1 Overview

This paper tackles the problem of borrowing contour knowledge for salient object
detection without the need of labeled data. Given an existing contour detection
network (CEDN) [35], our objective is to convert this already well-trained model
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Fig. 2. The proposed alternating training pipeline. Our training algorithm is com-
posed of two procedures: (a) contour-to-saliency procedure and (b) saliency-to-contour
procedure. In the contour-to-saliency procedure, we use the generated saliency masks
to train the newly-added saliency branch. In the saliency-to-contour procedure, the
generated saliency-aware contours are used to fine-tune the original contour branch.

into an accurate deep saliency detection model without using any manually
labeled saliency mask.

First, we propose a novel Contour-to-Saliency Network by grafting a new
branch onto the existing CEDN. In this architecture, the original contour branch
and the newly-added saliency branch share the same feature extractor (or en-
coder). The feature extractor and contour branch are initialized using CEDN,
and the saliency branch is randomly initialized. Therefore, our C2S-Net has the
ability to naturally detect contours of the input image after parameter initial-
ization.

Then, we train the saliency branch and update the parameters of the contour
branch on two different unlabeled image sets through a novel alternating training
pipeline. The training algorithm is composed of two procedures: 1) contour-
to-saliency procedure and 2) saliency-to-contour procedure. In the contour-to-
saliency procedure, the contour branch is first used to detect contours in each
image. Next, a novel contour-to-saliency transfer method is utilized to generate
salient object masks based on the detected contours. These generated masks are
used to simulate strong supervision over the saliency branch. In the saliency-to-
contour procedure, we employ the opposite process to update the parameters of
the contour branch. Alternating the two procedures above enables the saliency
branch to progressively derive semantically strong features for salient object
detection, and the contour branch learns to identify only the contours of salient
regions. Fig. 2 illustrates the main steps of the alternating training pipeline. In
the following sections, we will give a detailed description of C2S-Net, contour-
to-saliency transfer method, and our alternating training pipeline.

3.2 Contour-to-Saliency Network

Architecture. Fig. 3 illustrates the detailed configuration of our Contour-to-
Saliency Network (C2S-Net). Our C2S-Net is rooted in a fully Convolutional
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Fig. 3. The two-branch C2S-Net roots in the CEDN [35] for salient object detection.
With cross-domain connections (the dashed line), the saliency branch is naturally ca-
pable of consolidating both saliency and contour knowledge.

Encoder-Decoder Network (CEDN) [35] originally designed for contour detec-
tion. We update the network by grafting a new decoder for saliency detection
onto the original encoder. By doing this, our C2S-Net is made of three major
components: encoder (fenc), contour decoder (fcont) and saliency decoder (fsal).
In our network, the encoder extracts high-level feature representations from an
input image, the contour decoder identifies contours of the salient region, and
the saliency decoder estimates the saliency score of each pixel.
Encoder. The encoder takes an image Ii as its input, and outputs a feature
map Fi. Following CEDN, we employ VGG-16 [27] for feature extractor part
(encoder fenc) with the last two layers removed.
Contour Decoder. The contour decoder is built upon the feature extractor, and
it takes a feature map Fi, and produces a saliency-aware contour map C(Fi, θc)
where θc denotes the model parameter of contour branch. The training of contour
decoder can be treated as a per-pixel regression problem to the ground-truth
contour labels, by minimizing the following objective function:

min
θc

∑

i

econt(Lcont(Ii), C(Fi; θc)), (1)

where Lcont(Ii) denotes the ground-truth contour labels of the i-th example,
and econt(Lcont(Ii), C(Fi; θc)) is the per-pixel loss function.
Saliency Decoder. The saliency decoder fsal share the same encoder fenc with
the contour decoder fenc. Similarly, it takes the feature map Fi as input and pro-
duces a single-channel saliency map S(Fi, θs), where θs is the model parameter
of saliency decoder. Because salient object detection is a more difficult task than
contour detection, we add another convolutional layer in each saliency decoder
group. The objective of the saliency branch is to minimize the per-pixel error
between the ground-truths and estimated saliency maps. Formally, the objective
function can be written as:

min
θs

∑

i

esal(Lsal(Ii), S(Fi; θs)), (2)
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where Lsal(Ii) is the ground-truth salient object mask of the i-th image, and
esal(Lsal(Ii), C(Fi; θs)) is the per-pixel loss of S(Fi; θs)) with respect to Lsal(Ii).

Cross-Domain Connections. In order to make full use of contour information,
we introduce cross-domain connections into our C2S-Net to enable the saliency
branch to encode contour knowledge as well.

Specifically, in the saliency decoder stage, the feature learning of the second
convolutional layer encodes both the learned features f cont

si
from contour branch

and the convolutional features fsal
si

of its previous layer. Therefore, the second

convolutional feature map f̃sal
si

on the i-th level in the saliency branch is formally
written as:

f̃sal
si

= σ(cat(f cont
si

, fsal
si

)⊗ wsal
si

+ bsalsi
), (3)

where wsal
si

and bsalsi
are convolutional filters and biases for the i-th decoder

stage in the saliency branch, respectively. ⊗ represents convolution operation,
and cat(·) is used to concatenate the two learned feature maps of different tasks.
RELU serves as the non-linear function σ(·).

Our C2S-Net use pixel-level saliency-aware contour labels Lcont and saliency
masks Lsal as supervision. Unlike the fully supervised methods, in this paper,
these labels are automatically generated, rather than manually annotated. This
is achieved by a novel transferring method, which will be introduced in the
following section.

3.3 Contour-to-Saliency Transfer

Since our C2S-Net is rooted in a well-trained contour detection network [35], its
contour branch is able to identity contours after parameter initialization. The
detected contours provide important cues for salient object detection. As ob-
served by many previous works [6, 7], salient objects are usually well-surrounded
by contours or edges. Therefore, we can leverage this important cue to bridge
the gap between object contours and salient object regions.

With detected contour maps in a large collection of unlabeled images, our
goal is to utilize them to generate corresponding salient object masks, so as
to simulate strong human supervision over saliency branch training. First, we
adopt Multiscale Combinatorial Grouping (MCG) [1] to generate some proposal
candidate masks C from our detected contours in each image. Then, different
from [2], we design an objective function to pick out only a very few masks B
from C that are most likely to cover the entire salient regions to form the salient
object mask Lsal for each image. Formally, our objective function is defined as:

max
B

{S(B)− α ·O(B)− κ ·N(B)}

s.t. B ⊆ C
(4)

where S(·) is the data term that encourages the selection of region proposals with
a higher saliency score. O(·) denotes the overlap term which penalizes intersec-
tion between selected region proposals. N(·) is number term which penalizes the
number of selected region masks. α and κ are the weights of overlap term and
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Fig. 4. Update of contour labels and saliency masks. Here we show the generated (a)
saliency masks and (b) contour labels in Iter #1, Iter #2 and Iter #3. These updated
labels and masks will be used as the supervision for the next iteration.

number term, respectively. By maximizing the objective function above, we can
determine a small number of region proposals whose union serves as the salient
object mask Lsal used for training.

To be more specific, a binary variable ci is used to indicate the selection of
proposal bi from all candidate masks C. If bi is selected, we set ci = 1 otherwise
ci = 0. Therefore, we rewrite Eq.4 as follows:

max{
∑

bi⊆C

Sici − α ·
∑

bi,bj∈C
i 6=j

K(bi, bj)cicj − κ ·
∑

bi⊆C

ci}

s.t. ci, cj = 0 or 1

(5)

Here, K(bi, bj) is the Intersection-over-Union (IoU) score between two dif-
ferent region masks bi and bj . Si denotes the score reflecting the likelihood of
region mask bi to be a salient region mask. According to [6, 7], a region that is
better surrounded by contours is more likely to be a salient region. In addition,
the saliency map obtained in the previous stage provides useful prior knowledge.
Therefore, we also use it to estimate the saliency score of a given region mask.
Formally, the saliency score of each region proposal can be formally written as:

Si = K(cnt(bi), C
er ) + γ ·K(bi, S

er ) (6)

where cnt(bi) denotes a function that extracts contour map from a given region
mask bi. This is simply achieved through computing the gradient on the binary
region mask bi. C

er and Ser denote the detected contour and saliency map after
the r-th training epoch, respectively. As the parameters of saliency branch are
randomly initialized and our network cannot generate saliency maps at the very
beginning, we set the combination weight γ = 0 in the first epoch, and γ = 1 in
the following epoches.
Optimization. Seeking the solution to Eq. 5 is a NP-hard problem. Here, we
adopt a greedy algorithm described in [36] to address this problem efficiently.

3.4 Alternating Training

Our C2S-Net has three important components: encoder fenc, contour decoder
fcont and newly-added saliency decoder fsal. We initialize parameters of both
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fenc and fcont by parameter values of the existing well-trained contour detection
model (CEDN) [35], and initialize parameters of fsal randomly from the normal
distribution. To avoid the poor local optimum problem, we use two different sets
of unlabeled images (M and N ) to interactively train the saliency branch and
contour branch. During the training time, the network parameters are optimized
by back-propagation and stochastic gradient descent (SGD).

We iteratively perform contour-to-saliency procedure and saliency-to-contour
procedure, fixing one set of network parameters while solving for the other set.
Specifically, in the contour-to-saliency procedure, by fixing the encoder param-
eters θe and the contour decoder parameters θc, we generate contour map of
each image on the unlabeled set M by using the initialized C2S-Net in the first
time-step (and the updated C2S-Net in each following time-step). After that, we
use the proposed contour-to-saliency transfer method to produce salient object
masks Lsal as training samples for updating the saliency decoder parameters θs.
In this procedure, we also measure confidence score of every generated contour

map by C(Fi,θc)≥0.9
C(Fi,θc)≥0.1 , and choose contour maps whose scores are larger than a pre-

defined threshold (ϑ = 0.15) so as to filter out unreliable contour maps. In the
saliency-to-contour procedure, we fix the network parameters θe and θs , and use
the learned C2S-Net to generate both contour maps and saliency maps. These
generated results are then utilized to produce salient object masks on unlabeled
set N using Eq. 5. We adopt cnt(·) in Eq. 6 to generate saliency-aware contour
labels Lcont, and use these generated labels to update the contour decoder pa-
rameters θc. For each round of iteration, we update the network parameters to
improve the quality of estimated labels for the next round.

Our alternating training pipeline successfully takes advantage of the comple-
mentary benefits of two related domains. On one hand, the contour branch is able
to learn saliency knowledge, and thus it can focus more on the contours of those
attention-grabbing objects. More importantly, the training samples generated
by saliency branch are not limited to a small number of predefined categories.
Therefore, the contour branch can learn saliency properties from a large set of
images to detect contours of “unseen” objects. On the other hand, the saliency
branch learns detailed object shape information so that it can produce saliency
maps with clear boundaries. As shown in Fig. 4, the estimated salient object
masks and contour maps become more and more reliable, and then provide use-
ful information for network training.

4 Experiments

4.1 Experimental Setup

Dataset. The training set contains 10K images from MSRA10K (ignoring la-
bels), and another 20K unlabelled images collected from the Web as additional
training data. These images contain one or multiple object(s) and cluttered
backgrounds, and are not overlapped with any test image. We randomly di-
vide the training set into two subsets, M and N , to train contour branch and
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saliency branch of our C2S-Net, respectively. In addition, we augment each sub-
set through horizontal flipping.

For the performance evaluation, we utilize five most challenging benchmarks
including ECSSD [32], PASCAL-S [22], DUT-OMRON [33], HKU-IS [14] and
DUTS-TE [29].

Implementation. Our C2S-Net is implemented based on the public code of
CEDN [35], which was based on Caffe toolbox [10]. The network parameters
of encoder and contour decoder are initialized by the CEDN model. The param-
eters of saliency decoder are initialized randomly. We set α = 0.5 and κ = 0.25
in Eq. 4.

During training, we adopt the “poly” learning rate policy, where the learning
rate is automatically scaled by (1 − iter

maxiter
)p. We set the initial learning rate

to 10−6, and p to 0.9. The maximum number of iterations is set based on the
number of training data (maxiter = N × 3, where N denotes the number of
training data). The mini-batch size is set to 5. At each training round, we update
network parameters by fine-tuning the model trained from the previous round.
In addition, as discussed in Sec. 3.4, at each training round, we first solve for
parameters of one branch while fixing the parameters of the other, and then
perform the opposite procedure.

During testing, the input RGB image is forwarded through our C2S-Net to
generate a saliency map with the same size as the output. Unlike other meth-
ods, we do not need to adopt any pre-processing or post-processing steps, e.g.,
DenseCRF, for further improving the detected results.
Evaluation Metrics. We use four evaluation metrics to evaluate the perfor-
mance of our method: Precision-Recall curves (PR), F -measure (Fβ), weighted
F -measure (Fw

β ), and Mean Absolute Error (MAE). The F -measure is computed

by Fβ = (1 + β2) Precision×Recall
β2Precision+Recall

, where β2 is set to 0.3 to emphasize preci-

sion. We also adopt the weighted F -measure [26] to assess the performance of
our method, which is defined as Fw

β = (1 + β2) Precisionw×Recallw

β2Precisionw+Recallw
. MAE is

defined as the average pixel-wise absolute difference between the ground-truth
mask and estimated saliency map. All these universally-agreed evaluation met-
rics have been widely adopted by previous works.

4.2 Ablation Analysis

In this section, we conduct ablation studies on ECSSD dataset by comparing
the weighted F -measure (Fw

β ) and MAE to verify impact of each component in
the framework. Details of the results are summarized in Tab.1.
Impact of Cross-Domain Connections. We evaluate the performance differ-
ences of the proposed C2S-Net with and without cross-domain connections (CDC).
For a fair comparison, we train both models using the same training images (i.e.,
5K images randomly selected from MSRA10K with pixel-wise ground truths),
and the same training parameters which are described in Sec. 4.1. The exper-
iments show that our C2S-Net with CDC can improve the Fw

β by 2.4%, and
significantly lower the MAE score by 21.3%. Compared with only sharing the
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Table 1. Analysis of the proposed method. Our results are obtained on ECSSD. “CDC”
denotes the cross domain connections that used in our C2S-Net. “AVG-P” means the
two-stage strategy, “WTA” denotes the “winner-take-all” strategy, and “CTS” refers to
the contour-to-saliency transferring method used in this paper. “SCJ” denotes that we
optimize the parameters of two branches jointly, and “AT(i)” means that i-th alternat-
ing training iterations are used to update network parameters. “† ” denotes the model
used in this paper for comparing with fully supervised models. Weighted F-measure
(Fw

β ): the higher the better; MAE: the lower the better.

Method data/annotations F
w
β MAE

C2S-Net 5K w/ masks 0.793 0.103
C2S-Net + CDC 5K w/ masks 0.812 0.081

C2S-Net + CDC + AVG-P 5K w/o masks 0.665 0.121
C2S-Net + CDC + WTA 5K w/o masks 0.732 0.112
C2S-Net + CDC + CTS 5K w/o masks 0.743 0.093

C2S-Net + CDC + CTS + SCJ 10K w/o masks 0.759 0.088
C2S-Net + CDC + CTS + AT(1) 10K w/o masks 0.778 0.080
C2S-Net + CDC + CTS + AT(3) 10K w/o masks 0.837 0.059
C2S-Net + CDC + CTS + AT(5) 10K w/o masks 0.838 0.059

C2S-Net + CDC + CTS + AT(3) 20K w/o masks 0.849 0.056
† C2S-Net + CDC + CTS + AT(3) 30K w/o masks 0.852 0.054

same encoder, our CDC enables the proposed model to better explore the intrin-
sic correlations between saliency detection and contour detection, and results in
a better performance.
Effectiveness of Contour-to-Saliency Transferring. Automatically generating
a reliable salient object mask for each image, based on generated proposal can-
didate masks C (about 500 proposals), is a challenging task. Here, we take three
different approaches to generate saliency masks for training our model. One ap-
proach is the two-stage strategy, the second is the “winner-take-all” strategy,
and the third is our contour-to-saliency transferring strategy. These approaches
are respectively referred to as AVG-P, WTA, and CTS. Specifically, for AVG-P,
we first simply take an average of all proposals (generated from detected con-
tours) to form a saliency map for each image, and then use SalCut [3] to produce
its salient object mask. As for WTA, all generated proposals are re-scored ac-
cording to Eq. 6 and only the proposal with the highest score is picked out to
serve as salient object mask for each image. As for our CTS, we use the method
described in Sec. 3.3 to produce salient object masks for all images. We also use
the same 5K images from MSRA10K as the training set, but we ignore all of the
manual masks. The third, fourth and fifth lines of Tab.1 show the corresponding
results of using AVG-P, WTA and CTS to generate saliency masks for training
our C2S-Net, respectively. Clearly, the proposed CTS enables our C2S-Net to
achieve much better performance than other strategies.
Impact of Alternating Training. To verify the effectiveness of our alternating
training (AT) approach, we use another 5K unlabeled images, the remaining
images of MSRA10K, to serve as the training set of contour branch. The exper-
iments show that our alternating training approach (AT) can largely boost the
performance of our C2S-Net. After the first iteration, our model achieves com-
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(a) ECSSD
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(b) PASCAL-S
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(c) DUT
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(d) HKU-IS
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(e) DUTS-TE

Fig. 5. From top to bottom, Precision-recall (PR) curves and weighted F -measure of
our method and other state-of-the-art approaches are shown, respectively.

petitive performance as fully-supervised approaches (Fw
β = 0.778, and MAE =

0.080). Our C2S-Net with three AT iterations achieves much better performance
according to Fw

β (0.837) and MAE score (0.059). We observe that the perfor-
mance of our model with five AT iterations (Fw

β = 0.838, and MAE = 0.059) is
just slightly better than that of model with three AT iterations. This is because
the estimated saliency masks and contour maps have already become reliable
enough after three AT iterations. Considering the training time and model’s
performance, we believe that three AT iterations should be a good choice.

In addition, to show the superiority of our alternating training scheme, we use
the same 10K images with estimated labels (including both saliency and contour
labels) to train our C2S-Net. One loss is for contour branch and another loss
is for saliency branch. We optimize the parameters of two branches jointly, and
denote this training strategy as SCJ in Tab. 1. According to our experiments,
when given the same amount of training data, our alternating training strategy
can achieve much better performance.

Impact of Data Size. According to our reported results (Tab.1), the models per-
formance on ECSSD improves as the training data expands. This indicates that
data size is a big influencing factor for saliency model’s performance. Feeding
more training samples to the deep CNN models can lead to better performance.

4.3 Comparison to Other Methods

We compare the proposed method with nine top-ranked fully deep supervised
saliency detection models including MC [39], MDF [13], DS [19], ELD [12],
DHS [23], DCL [15], DSS [8], UCF [38], and Amulet [37], one weakly super-
vised deep saliency model WSS [29], and one unsupervised deep saliency model
SBF [37]. In all experiments, we use the models provided by original authors.

Quantitative Comparison. In order to obtain a fair comparison with existing
weakly supervised and unsupervised deep models, we first use the same training
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Table 2. Quantitative comparisons with 10 leading CNN-Based methods on five
widely-used benchmarks. The top three results are shown in Red, Blue, and Green,
respectively. Fβ : the higher the better; MAE: the lower the better.

Methods
ECSSD PASCAL-S DUT HKU-IS DUTS-TE
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

SBF [37] 0.852 0.880 0.765 0.130 0.685 0.108 0.842 0.075 0.698 0.107
WSS [29] 0.856 0.103 0.770 0.139 0.689 0.110 0.860 0.079 0.737 0.100
Ours(10K) 0.896 0.059 0.835 0.086 0.733 0.079 0.883 0.051 0.790 0.066

MC [39] 0.822 0.107 0.721 0.147 0.703 0.088 0.781 0.098 - -
MDF [14] 0.832 0.105 0.759 0.142 0.694 0.092 0.860 0.129 0.768 0.099
DS [19] 0.882 0.122 0.757 0.172 0.716 0.120 0.866 0.079 0.776 0.090
ELD [12] 0.869 0.098 0.777 0.121 0.720 0.091 0.767 0.071 0.758 0.097
DHS [23] 0.902 0.061 0.820 0.092 - - 0.892 0.052 0.812 0.065
DCL [15] 0.887 0.072 0.798 0.109 0.718 0.094 0.879 0.059 0.771 0.079
DSS [8] 0.903 0.062 0.821 0.101 0.761 0.074 0.899 0.051 0.813 0.064
UCF [38] 0.910 0.078 0.819 0.127 0.735 0.132 0.885 0.074 0.771 0.117
Amulet [37] 0.915 0.059 0.828 0.100 0.743 0.098 0.895 0.052 0.778 0.085
Ours(30K) 0.910 0.054 0.846 0.081 0.757 0.071 0.896 0.048 0.807 0.062

set as in SBF [37] (MSRA10K without masks), and test over all of the evalua-
tion datasets using the same model. As shown in Tab. 2, our model (with 10K
training images) consistently outperforms the exsiting weakly supervised and
unsupervised deep saliency models with a large margin, and compares favorably
with the top-ranked fully supervised deep models.

One of the advantages of our method is that it can use a large amount of
unlabeled data for training, while the existing fully supervised methods are con-
strained by the amount of labeled data. Here, we use additional 20K unlabelled
images collected from the Web (30K in total) to train our model, and compare
it with all top-ranked fully deep supervised models. As shown in Tab. 2 and
Fig. 5, our method can largely outperform other leading methods in nearly all
evaluation metrics across all the datasets. Specifically, on ECSSD, PASCAL-S,
DUT-OMRON, HKU-IS, and DUTS-TE, our method decreases the lowest MAE
score by 8.5%, 11.9%, 4.1%, 5.9% and 3.1%, respectively. This indicates that our
method can produce more confident results and generate more reliable saliency
maps that are close to the groud truth. In terms of F -measure and PR curves,
our method consistently ranks among the top three on all datasets (see Tab. 2
and Fig. 5). In addition, as shown in Fig. 5, we improve the current best weighted
F -measure (Fw

β ) by 1.2%, 4.4%, 2.7%, 0.1% and 0.2% on ECSSD, PASCAL-S,
DUT-OMRON, HKU-IS, and DUTS-TE, respectively. In general, the experi-
mental results convincingly demonstrate the effectiveness of our method. It also
should be noted that our method requires no manual salient object label for train-
ing the network while other top-ranked deep models are trained with pixel-wise
annotations. As our method can benefit from unlimited number of unlabeled
images, it has full potential for further performance improvement.
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DHS DCL DSS UCF Amulet WSS Ours GTInput SBF

Fig. 6. Qualitative comparisons of our method and the state-of-the-art approaches.
The ground truth (GT) is shown in the last column.

Table 3. Comparison of running times.

Method MC MDF DS ELD DHS DCL DSS UCF Amulet WSS SBF Ours

Times(s) 2.38 8.04 0.73 0.59 0.06 1.17 0.05 0.11 0.06 0.02 0.03 0.03

Qualitative Comparison. Fig. 6 provides a qualitative comparison between our
method and other approaches. It can be seen that our method can consistently
and accurately highlight the salient objects in different challenging cases. Be-
cause the contour knowledge has been encoded by our C2S-Net, our model can
always better preserve object contours than other comparison methods.
Speed Performance. Lastly, we show the speed performance of our method and
other approaches in Tab. 3. The evaluation is conducted with an NVIDIA GTX
1080ti GPU with 11G RAM. Our method takes only 0.03 second to produce a
saliency map for a 400× 300 input image.

5 Conclusions

In this paper, we propose a novel method to borrow contour knowledge for
salient object detection. We first build a C2S-Net by grafting a new branch
onto a well-trained object contour detection network. To bridge the gap between
contours and salient object regions, we propose a novel transferring method that
can automatically generate a saliency mask for each image from its contour
map. These generated masks are then used to train the saliency branch of C2S-
Net. Finally, we use a novel alternating training pipeline to further improve the
performance of our C2S-Net. Extensive experiments on five datasets show that
our method surpasses the current top saliency detection approaches.
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