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Abstract. In this paper, we propose a simple yet effective relaxation-
free method to learn more effective binary codes via policy gradient for
scalable image search. While a variety of deep hashing methods have been
proposed in recent years, most of them are confronted by the dilemma
to obtain optimal binary codes in a truly end-to-end manner with non-
smooth sign activations. Unlike existing methods which usually employ a
general relaxation framework to adapt to the gradient-based algorithms,
our approach formulates the non-smooth part of the hashing network
as sampling with a stochastic policy, so that the retrieval performance
degradation caused by the relaxation can be avoided. Specifically, our
method directly generates the binary codes and maximizes the expec-
tation of rewards for similarity preservation, where the network can be
trained directly via policy gradient. Hence, the differentiation challenge
for discrete optimization can be naturally addressed, which leads to effec-
tive gradients and binary codes. Extensive experimental results on three
benchmark datasets validate the effectiveness of the proposed method.
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1 Introduction

With the rapid development of information technology, large-scale and high-
dimensional image data have been widespread on the Internet. A variety of efforts
have been made to deal with the large scale similarity search, which is shown
to be useful for many practical applications (e.g. computer vision [37, 3, 25], ma-
chine learning [39, 27, 9], and data mining [44]). The hashing technique [38, 5,
1, 6, 16, 32, 34, 35] is a popular approach of encoding high-dimensional data as
low-dimensional binary codes, which benefits from its computation and stor-
age efficiencies. Learning based hashing [11, 29, 20, 23, 10, 45] which mines the
data properties and the semantic affinities shows better performance than data-
independent hashing methods [8].

Most previous learning-based hashing methods encode data samples with
shallow architectures [11, 29, 20], which map similar samples to close in the
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Fig. 1. Illustration of our approach. Unlike most existing learning-based hashing meth-
ods (on the top) which solve the differential difficulty by continuous relaxations, our
method (on the bottom) modifies the non-smooth part as a stochastic policy, where
samples for binary codes are encouraged to earn maximum rewards for similarity p-
reservation. The network is trained via policy gradient directly

learned hamming space by learning a single projection matrix. While encour-
aging performance can be obtained, most of them suffer from the non-linear
feature representation, scalability and non-linearity issues. Recently, deep learn-
ing based hashing methods [42, 17] have been proposed to learn discriminative
feature representations and nonlinear hash mappings, which have shown state-
of-the-art performance on various scalable image retrieval datasets. However,
the binary constraint of the non-smooth discrete optimization is a challenging
problem in these methods, which prevents deep hashing to be learned in a truly
end-to-end manner. By continuous relaxation, the non-smooth optimization can
be transformed to a continuous one which can be solved by standard gradient
methods, leading to the deviation from the optimal binary codes. While many
methods have been proposed to control the quantization errors, they still cannot
learn exactly binary hash codes in an optimization procedure. Hence this may
lead to substantial performance loss due to the sub-optimal of the learned binary
codes.

In this paper, we present a relaxation-free deep hashing method via policy
gradient (PGDH) for scalable image search. Fig. 1 shows the key idea of our
proposed method. Specifically, we formulate the non-smooth part of the hashing
network as sampling with a stochastic policy, so that the relaxation procedure
used in most previous hashing methods can be removed. We directly generate bi-
nary codes and maximize the expectation of rewards for similarity preservation,
which leads to more effective gradient and binary hash codes and the differ-
entiation issue for discrete optimization can be naturally addressed. Extensive
evaluations on three benchmark datasets show that our method significantly
improves the state-of-the-arts.
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2 Related Work

A variety of learning-based hashing methods have been proposed in recent years,
which can be mainly classified into unsupervised hashing and supervised hashing.

Unsupervised hashing methods learn binary codes by exploiting data proper-
ties such as distributions and manifold structures. For example, spectral hashing
(SH) [40] formulated hashing learning as a graph partitioning problem and ap-
proximately solved the problem with the assumption of the uniform data distri-
bution. Anchor graph hashing (AGH) [26] approximated neighborhoods by using
a tractable graph based method. Deep hashing (DH) [21] employed a multi-layer
neural network to learn hash functions to preserve the nonlinear relationship of
samples. Iterative quantization (ITQ) [9] minimized quantization loss by seeking
a rotation matrix in an iterative manner. Manifold hashing (MH) [31] learned
binary embeddings from cluster centers and mapped data into a low-dimension
manifold. Discrete graph hashing (DGH) [24] presented a tractable alternating
optimization method for similarity preservation in the discrete code space.

Supervised hashing methods learn binary codes by exploiting the label infor-
mation of samples, which have shown superior performance than unsupervised
approaches. For example, kernelized supervised hashing (KSH) [25] utilized the
equivalence between code inner products and Hamming distances, which aims to
keep the inner product of hash codes consistent with the pairwise supervision.
Fast supervised hashing [19] employed boosted decision trees to iteratively per-
form alternative optimization on a subset of binary codes. Supervised discrete
hashing (SDH) [30] formulated the discrete optimization objective by introduc-
ing an auxiliary variable and used a kernel based hashing function to learn
binary codes. The supervised extension of deep hashing [21] learned multi-layer
functions by considering the label information of samples. Recent advances in
deep learning [15, 33, 12] show that deep convolutional networks learn robust
and powerful feature representations for complex data, which has gained great
successes in many computer vision applications. Hence, it is natural to leverage
deep learning to obtain compact binary codes. For example, CNNH [42] adopted
a two-stage strategy in which the first stage learned hash codes and the second
stage learned a deep network based hash function to obtain the codes. DNNH [17]
improved the two-stage CNNH with a simultaneous feature learning and hash
coding pipeline so that representations and hash codes can be optimized in a
joint learning procedure. DSH [22] improved DNNH by adding a max-margin loss
and a quantization loss which jointly preserved pairwise similarity and controlled
the quantization error. HashNet [2] gradually approximated the non-smooth sign
activation with a smoothed activation by a continuation method.

3 Approach

3.1 Overview of General Relaxation Framework

Given a training set of N points (images)X = {xi}
N
i=1, each sample is represent-

ed by either a D-dimensional feature vector or raw pixels. A set of pairwise labels
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S = {sij} is provided, where sij = 1 if xi and xj are similar while sij = −1 if xi

and xj are dissimilar. For supervised hashing, S can be constructed from seman-
tic labels of data points or the relevance feedback from click-through data. We
aim to learn a mapping function f : x 7→ b ∈ {−1, 1}K from the input space to
the Hamming space {−1, 1}K , where each data point x is encoded as a compact
K-bit binary hash code. The binary codes B = {bi}

N
i=1 should preserve some

notion of similarity in S. Hence, the hashing learning problem can be generally
formulated as follows:

min
f,B
L(B), s.t. B ∈ {−1, 1}n×K (1)

where L is the predefined loss function with similarity preservation.
To directly optimize the problem in Eq. (1) with the discrete constrain on

B, we need to adopt the sign function b = sgn(h) as the activation function to
convert the continuous representation h to the binary hash code b. However, the
sign function is non-differentiable at zero and with zero gradient for all nonze-
ro inputs, which makes standard back-propagation infeasible. As a result, it is
inappropriate to directly solve the discrete optimization problem by standard
gradient-based methods. Most existing hashing methods relax the intractable
optimization problem mainly in two ways: 1) continuous relaxation by intro-
ducing a quantization function, and 2) approximating the sign function with
sigmoid or tanh relaxation [17, 2]. For the first strategy, these methods derive
an optimization problem L(H) from the hashing objective L(B) by continuous
relaxation and control the quantization loss between B and H, which is denoted
as Q(B,H). The objective of these methods can be usually reformulated as:

min
f,H,B

L(·) +Q(B,H), s.t. B ∈ {−1, 1}n×K (2)

where L(·) indicates L(H) for continuous optimization [18] or L(B) for discrete
optimization [22]. However, since Q(B,H) is NP-complete and cannot be mini-
mized to zero, there still exists a gap between B and H. Thus a local minimum
is usually obtained by such relaxation optimization problems.

For the second strategy, the non-smooth sign function is approximated by
continuation method, which leads to a convergence to the original hash learning
objective. However, to obtain feasible gradients, such relaxation inevitably be-
comes more non-smooth and slows down or suppresses the convergence, which
makes it difficult to optimize the learning model.

3.2 Relaxation-Free Deep Hashing via Policy Gradient

In this section, we propose a new architecture for deep learning to hash with
policy gradient inspired by the REINFORCE algorithm [41]. The architecture of
our proposed framework contains: 1) a convolutional network (CNN) for learning
deep representations of images, and 2) a fully-connected policy layer with a
sigmoid activation function for transforming each feature representation into a
K-dimensional vector, where each dimension represents the probability of taking
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the binary action. The proposed end-to-end learning framework can be viewed
as an agent that interacts with an external environment (images in our case).
The aim of the agent is to get maximum possible similarity preservation with
difference minimization, which can be considered as the reward to the agent.

We define a policy as π(xi, θ) = {π
(k)
xi,θ
}k=1:K , which is parametrized by

network parameter θ with i-th input xi. The policy generates a sequence of
actions ai = {ai,k}k=1:K ∼ Pθ(xi), where ai,k = {0, 1} represents a binary

action value. π
(k)
xi,θ

only outputs the probability of the hash code +1, which
is different from most existing reinforcement learning methods which predict
the probability distribution for each possible action (e.g. softmax probability).
Hence, the probability distribution in our method can be formulated as follows:

p(ai,k) =

{

π
(k)
xi,θ

, if ai,k = 1

1− π
(k)
xi,θ

, if ai,k = 0
(3)

Having generated action ai, the agent observes a reward r(ai) that is related
to the similarity preservation. The reward is computed by an evaluation metric
by comparing the similarity relationship in the Hamming space with ground-
truth similarity function S.

We adopt a minibatch-based strategy for learning and sample a minibatch
of points from the whole training set in each iteration. For each mini-batch with
m training samples, we aim to utilize the global information by maximizing the
preserved information between each binary code bi = 2 ∗ (ai − 0.5) and the
codebook C = {b̂j}

n
j=1 of all the training points in the Hamming space. For a

pair of binary codes bi and b̂j , we represent the Hamming distance distH(·, ·)

by inner product 〈·, ·〉 as: distH(bi, b̂j) =
1
2 (K − 〈bi, b̂j〉). The weighted reward

of learning to effective hash codes can be written as follows:

r(ai) = −
1

2

n
∑

j=1

ŝij(K − b
T
i b̂j)

s.t. bi, b̂j ∈ {−1,+1}K (4)

where

ŝij =

{

β, if sij = 1

β − 1, otherwise
(5)

is the weighted similarity measurement to compensate the imbalance of positive
and negative pairs. The parameter β allows different weights on the positive and
negative pairs. Note that the codebook C is updated slower than the learning
model θ during the training process, which will be discussed later.

The goal of training is to minimize the negative expected reward of the
minibatch:

L(θ) = −
∑

i

Eai∼Pθ(xi)[r(ai)] (6)
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Note that in our framework the description of the environment consists of
images, which is not determined by the previous states or actions. Strictly s-
peaking, this formulation is not a full reinforcement learning framework where
a state transition is clearly defined. Here we only focus on the optimization un-
der the guidance of the rewards related to similarity preservation and improving
performance of hash learning.

Policy Gradient with REINFORCE In our proposed hash learning method,
the expected reward r is non-differentiable. In order to compute ∇L(θ) directly,
we use the REINFORCE algorithm, which computes the expected gradient of
the non-differentiable reward function as follows:

∇θL(θ) = −
∑

i

Eai∈Ai
[r(ai)∇θ log(Pθ(ai|xi))] (7)

whereAi is the set of all possible actions for i-th input data in the minibatch. The
expected gradient can be approximated using Monte Carlo sample. We represent
a T -samples Monte Carlo on ai as:

Ai = {a
1
i ,a

2
i , ...,a

T
i } = MCPθ(ai|xi)(T ) (8)

For training examples in a minibatch, the expected policy gradient can be
computed as:

∇θL(θ) ≈ −
1

T

∑

i

∑

t

[r(at
i)∇θ log(Pθ(a

t
i|xi))] (9)

where the log probability in Eq. (9) can be calculated by the binary cross entropy
over the Bernoulli distribution in Eq. (3).

REINFORCE with a Baseline The above gradient estimator is simple but
suffers from high variance because of the difficulty of credit assignment. To reduce
the variance of the gradient estimation, we again approximate the expected
gradient with widely used Baseline method in policy gradient. For each training
minibatch:

∇θL(θ) ≈ −
1

T

∑

i

∑

t

[(r(at
i)− r′)∇θ log(Pθ(a

t
i|xi))] (10)

where the baseline r′ should be the value which is independent on the action.
Adding such a baseline term will not change the expectation of the gradient 1 but
can reduce the variance of the gradient estimation. Here we choose average of all
rewards in each mini-batch as the baseline. The binary codes that preserve more
similarity information with the codebook C than the baseline will get positive

1
∑

i
Eai∈Ai

[r′∇θ log(Pθ(a
t
i|xi))] =

∑
i
r′∇θ

∑
ai

Pθ(a
t
i|xi) =

∑
i
r′∇θ1 = 0
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Algorithm 1 : PGDH

Input: Training set: X = {xi}
n
i=1, pairwise labels: S = {sij} and codebook update

interval R > 1.
Output: Learning model θ and codebook C

1: Initialize pθ and C;
2: for iter = 1, 2, . . . ,M do
3: Sample random minibatch from X;
4: Compute the action probability by feeding minibatch to the model;
5: Compute the rewards for MC samples of the minibatch according to Eq. (4)
6: Compute policy gradient according to Eq. (10);
7: Update the model θ according to Eq. (11);
8: if iter % R = 0 then
9: Update codebook C;
10: end if
11: end for
12: return model θ and codebook C;

rewards, while those that with less similarity information will be penalized by
negative rewards. We then update the network’s parameters as:

θ ← θ − λ∇θL(θ) (11)

where λ denotes the learning rate.
During the learning process, the codebook C is updated slower than the

model for the training stability and performance improvement. We can formulate
the codebook update as:

b̂j = 2 ∗ (âj − 0.5), âi ∼ P (xj |θ
−) (12)

This strategy is motived by [28] which introduces a target network θ− with slower
updating rate than the online network θ to gain more stable performance.

In summary, Algorithm 1 shows full details of the proposed method.

3.3 Out-of-Sample Extensions

Having completed the learning procedure, we only generate the optimized hash
codes for the training points by maximizing the expectation of rewards. How to
perform out-of-sample extensions to generate hash codes for the points which
are not in the training dataset remains unclear. To address this, we perform the
out-of-sample extensions in two ways: Deterministic and Stochastic.

Deterministic Generation Denote a data point which is not in the training
dataset as xq, we feed it to our proposed architecture and get a vector with
K values πxq,θ, each represents the probability of the binary action 1 (sigmoid
activation ranges from 0 to 1). We can directly obtain the binary codes in the
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deterministic way:

bkq =

{

+1, if π
(k)
xq,θ

> 0.5

−1, otherwise
(13)

Stochastic Generation Having obtained the probability vector, we can write
the stochastic code generation function as:

bkq =

{

+1, with probability π
(k)
xq,θ

−1, with probability 1− π
(k)
xq,θ

(14)

The stochastic way seems more appealing than the deterministic one but in prac-
tice the performance differs slightly after the learning model converges. In our
experiments, we report the performance directly using deterministic generation
and we also conduct investigation on the two ways to generate hash codes.

4 Experiments

4.1 Datasets and Experimental Settings

We conduct extensive empirical evaluation on three public widely used bench-
mark datasets: CIFAR-10 [14], NUS-WIDE [43] and ImageNet [4]. CIFAR10

contains 60,000 manually single-labeled color images belonging to 10 classes
(6000 images per class). Following the same setting in [36], we construct the
query set by randomly sampling 1,000 images with 100 images per category and
use the remaining 59,000 images to form the the database. Then we uniformly
select 500 images per class to form the training set from the database. NUS-

WIDE2 is a public Web image dataset of 269,648 images collected from Flickr.
This is a multi-label dataset, namely, each image is associated with one or multi-
ple labels from a given 81 concepts. We follow the settings in [42, 46] and use the
subset of 195,834 images that are associated with the 21 most frequent concepts,
where each concept consists of at least 5,000 images. We randomly sample 2,100
images with 100 images per category to form the test set and use the remain-
ing images as the database. We uniformly sample 500 images per category out
of the database to form a training set. ImageNet is a large dataset for visual
recognition which contains over 1.2M images in the training set and 50K im-
ages in the validation set covering 1,000 categories. Following the same setting
in [2], we randomly select 100 categories, use all the images of these categories
in the training set as the database and all the images in the validation set as the
queries. To train hashing methods, we randomly select 100 images per category
from the database as the training points.

Following the same evaluation protocol as previous work [22], the similarity
information, which is constructed from image labels, is used for ground truth

2 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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evaluation and constructing the pairwise similarity matrix for training. For both
single and multiple labeled dataset, we define the ground truth semantic neigh-
bors as images sharing at least one label. Note that by constructing the training
data in this way, all three datasets exhibit the data imbalance problem because
of the imbalance of positive and negative pairs, which can be used to evaluate
the effects of our weighted rewards controlled by β.

We evaluate the retrieval performance of generated binary codes with the
following metrics: mean average precision (MAP), precision-recall (P-R) curve,
precision at top retrieved samples (P@N), and Hamming lookup precision within
a Hamming radius r = 2 (HLP@2). We choose to evaluate the performance over
binary codes with lengths of 16, 32, 48, and 64 bits. Note that for the ImageNet
dataset we calculate the MAP@1000 as each category has only 1,300 images,
and for NUS-WIDE we adopt MAP@5000.

In our implementation of PGDH, we utilize the AlexNet network structure
and implement it in the Pytorch framework. We initialize first seven layers of
PGDH by copying the parameters of convolutional layers conv1 − conv5 and
fully-connected layers fc6− fc7 in the pre-trained model on ImageNet and fine-
tuned these layers. We also initialize the final policy layer with the Guassian
distribution and train this layer from scratch. In the training phase, we use
Adam [13] with the initial learning rate as 0.005 and set the batch size as 128. For
parameter tuning, we evenly split the training set into ten parts to cross validate
the parameters. We fix the Monte Carlo samples T as 10 in each iteration and
codebook update interval R as 5.

4.2 Results and Analysis

Comparison with the State-of-the-arts: We compare the proposed PGDH
with twelve state-of-the-art hashing methods, including unsupervised method-
s: LSH [8], SH [40], ITQ [9], supervised methods: KSH [25], CCA-ITQ [9],
FastH [19], SDH [30], and supervised deep methods: CNNH [42], DNNH [17],
DPSH [18], DSH [22], HashNet [2]. We report their results by running the source
codes provided by their respective authors to train the models by ourselves, ex-
cept for DNNH due to the inaccessibility of the source code. For conventional
hashing methods, we use DeCAF7 [7] features as input. For deep hashing meth-
ods, we directly use raw images as input and resize images to fit the adopted
network. Note that we adopt the AlexNet architecture for all deep hashing for
fair comparison.

Table 1 shows the overall retrieval performance of different hashing methods
in terms of MAP at different code lengths. We can observe that our proposed
PGDH outperforms all compared methods. Compared with the best competi-
tor in deep learning based hashing methods, PGDH consistently outperforms
by around 3%. The significant performance improvement attributes to the effec-
tive binary codes obtained via policy gradient instead of the general relaxation
framework. Note that our PGDH also utilizes the weighted rewards function to
attack the data imbalance problem which is ignored by many existing methods.
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Table 1. The comparison of the retrieval performance among all compared hashing
methods in terms of mean average precision (MAP %) on the three image datasets for
different number of bits of 16, 32, 48, and 64

Methods
CIFAR-10 (%) NUS-WIDE (%) ImageNet (%)

16 32 48 64 16 32 48 64 16 32 48 64

LSH [8] 12.9 15.2 16.9 17.8 40.3 49.2 49.3 55.1 10.1 23.5 30.1 34.9
SH [40] 12.2 13.5 12.1 12.6 47.9 49.1 49.8 51.5 20.8 32.7 39.5 42.0
ITQ [9] 21.3 23.4 23.8 25.3 56.7 60.3 62.2 62.6 32.5 46.2 51.3 55.6
CCA-ITQ [9] 31.4 36.1 36.6 37.9 50.9 54.4 56.8 67.6 26.6 43.6 54.8 58.0
KSH [25] 35.6 40.8 53.1 44.1 40.6 40.8 38.7 39.8 16.0 28.8 34.2 39.4
FastH [19] 45.3 46.1 48.7 50.3 51.9 61.0 64.7 65.2 22.8 44.7 51.7 55.6
SDH [30] 40.2 42.0 44.9 45.6 53.4 61.8 63.1 64.5 29.9 45.1 54.9 59.3
CNNH [42] 48.8 51.2 53.4 53.6 61.2 62.3 62.1 63.7 28.8 44.7 52.8 55.6
DNNH [17] 55.5 55.8 58.1 62.3 68.1 71.3 71.8 72.0 29.7 46.3 54.0 56.6
DPSH [18] 64.6 66.1 67.7 68.6 71.5 72.6 73.8 75.3 32.6 54.6 61.7 65.4
DSH [22] 68.9 69.1 70.3 71.6 71.8 72.3 74.2 75.6 34.8 55.0 62.9 66.5
HashNet [2] 70.3 71.1 71.6 73.9 73.3 75.2 76.2 77.6 50.6 62.9 66.3 68.4
PGDH 73.6 74.1 74.7 76.2 76.1 78.0 78.6 79.2 51.8 65.3 70.7 71.6
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Fig. 2. The experimental results of PGDH and comparison methods on the CIFAR-10
dataset under three evaluation metrics

Also, we see that the recently proposed HashNet boosts the performance of oth-
er deep learning methods (e.g. DSH and DPSH) because HashNet tackles the
optimization difficulty by continuation method and the data imbalance problem
by weighted maximum likelihood. Compared with the best conventional hashing
methods, PGDH also boosts the performance by a large improvement. Note that
the deep hashing methods sustainably outperform the conventional hash learn-
ing methods on both datasets by a large margin even though the conventional
ones utilize the CNN features, which suggests the end-to-end learning scheme is
advantageous.

The performance on CIFAR-10, NUS-WIDE and ImageNet datasets in terms
of Precision-Recall (PR) curves for 64-bit binary codes are shown in Fig. 2(a), 3(a)
and 4(a). Here we only show the results in terms of PR curves on the deep learn-
ing based hashing methods to evaluate the effectiveness of the hashing learning.
The results show that PGDH outperforms all the compared methods by large
margins. PGDH achieves much higher precision at the same recall level than
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Fig. 3. The experimental results of PGDH and comparison methods on the NUSWIDE
dataset under three evaluation metrics
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Fig. 4. The experimental results of PGDH and comparison methods on the ImageNet
dataset under three evaluation metrics

compared methods which suggests that effective hash codes are learnt via policy
gradient. This attribute is appreciated in practical precision-first image retrieval
system where high probability of finding true neighbors is more important.

The performance on the three datasets in terms of the average precision
with respect to different numbers of top retrieved results(P@N) of deep learning
methods for 64-bit binary codes are shown in Fig. 2(b), 3(b) and 4(b). Note
that the maximum of N is set to 1,000 here for the consistency on all the three
datasets. From the result figures, we can see that PGDH consistently provides
superior precision than the compared hashing methods for the same amount of
retrieved samples. This stands for that more semantic neighbors are retrieved,
which is desirable in practical use.

The performance in terms of Hamming lookup precision within Hamming ra-
dius 2 (HLP@2) for deep learning based hashing methods at different bit lengths
on three datasets are shown in Fig. 2(c), 3(c) and 4(c). This evaluation metric
measures the precision of the retrieved results falling into the buckets within the
Hamming radius 2. The results validate the compactness of the binary codes
learnt by PGDH. We also observe that the best performance is achieved at a
moderate length of binary codes. This is because that longer binary code makes
the data distribution in Hamming space sparse and fewer samples fall within the
set Hamming ball.

Investigation on Samples: We study the effects of the number of Monte
Carlo samples in the optimization procedure by changing the parameter T in
PGDH. Note that it costs more time to train a minibatch of data as T in-
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Table 2. MAP (%) for different code generation schemes related to different training
epochs on the CIFAR-10 dataset with 64-bit binary codes

Training Epochs 1 5 10 40 50 60 70 80 90 100

Deterministic 24.51 47.18 66.56 72.13 74.73 74.78 74.77 75.17 75.50 75.54
Stochastic 10.10 18.18 58.32 73.54 74.18 74.93 75.12 75.18 74.90 75.21

creases. We report the performance results of different T values selected from
{2, 5, 8, 10, 12, 15, 20} in Fig. 5 in terms of MAP on the CIFAR-10 dataset. The
results show that when T is small, the search quality degrades because efficient
gradients cannot be obtained without enough MC samples. We also observe that
the performance exhibits saturation when we keep enlarging T . For a tradeoff
of the search quality and the training efficiency, we choose to fix T as 10 during
training.

Investigation on Codebook Update: We study the effects of the frequency
of codebook update during training by changing the interval parameter R in
PGDH. Fig. 6 shows MAP performance evolution of the first 60 epochs during
training with respect to R on the CIFAR-10 dataset with length of binary codes
set as 64 bits. The network is hard to optimize and MAP exhibits a very low
value during training (red curve) when we update the codebookC every iteration
(R = 1). When we update the codebook C once a epoch (R = 40), the network
can be trained steadily but MAP raises up very slowly (green curve). We also
observe that the best performance (blue curve) is achieved at a moderate value
of R = 5.

Deterministic vs. Stochastic: We investigate the deterministic and stochastic
generation during the testing phase. Table 2 shows the MAP performance of the
64-bit codes generated by these two ways at different epochs on the CIFAR-
10 dataset. We can observe that the performance differs a lot during the first
decades of epochs. This is because that the stochastic way generates binary
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Table 3. MAP (%) for different β on the three datasets with 64-bits binary codes

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CIFAR-10 10.12 18.38 20.08 49.43 73.65 70.32 75.23 75.12 34.12
NUS-WIDE 31.32 43.65 54.13 66.12 77.95 76.12 77.32 79.18 78.80
ImageNet 1.14 1.14 33.12 43.64 69.65 68.69 70.32 70.11 70.03

codes by sampling in an uncertain manner, which will influence results if the
model doesn’t converge. We also observe that the MAP differs slightly when
the learning model converges as the epochs increase. Although the stochastic
way seems more appealing in PGDH, it will take more time for code generation
during testing because of the sampling operation in practice.

Investigation on Weighted Rewards: We investigate the effect of weighted
rewards on dealing with the imbalance problem. The weight is controlled by the
parameter β in Eq. (5). The algorithm merely utilizes the positive pairs to learn
hash codes when we set β to a large value. Setting β close to 0, the algorithm
merely utilizes the negative pairs to learn hash codes. With the definition of
semantic similarity and the datasets, the imbalance problem substantially de-
teriorates the performance of hashing methods. Table 3 shows the variation of
performance in terms of MAP with respect to β on three datasets with the length
of binary codes set as 64 bits. The retrieval performance ascends when setting
β > 0.5, which shows the effect of introducing weighted rewards in our method.

Comparison of Search Quality Degradation: A crucial superiority of PGDH
over the comparison methods lies in that PGDH directly learns effective compact
binary codes via policy gradient, while comparison methods relax the discrete
objective to adopt to the gradient-based algorithm. Intuitively, searching with
binary codes using Hamming distance is evidently inferior to searching with con-
tinuous features using Euclidean distance, due to substantial information loss by
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relaxation. The search quality loss in terms of MAP due to binarization is shown
in Fig. 7. Note that since PGDH directly outputs the binary codes, we only show
the absolute MAP value for PGDH. From the result figure, we see that DNNH
(9 % degradation), DPSH(3.85 % degradation), DSH (1.56 % degradation) and
HashNet (0.9 % degradation) suffer from MAP loss while our PGDH can even
break the bottleneck of the search quality with continuous features obtained by
the compared methods. In other words, PGDH can learn more effective binary
codes which are more accurate than all other methods.

Comparison of Encoding Time: The time to generate the binary code for a
new-coming sample is an important factor to evaluate retrieval system in prac-
tical use. In this part, we compare the encoding time of our PGDH with 1)
five deep learning based hashing methods, CNNH, DNNH, DPSH, DSH and
HashNet, and 2) three conventional hashing methods, ITQ, ITQ-CCA, SDH,
including the unsupervised and supervised hashing with linear and nonlinear
hashing functions. For deep hashing methods, which directly take the raw im-
ages as input, we report the encoding time on GPUs. For conventional hashing
methods, we take into consideration both the time cost for deep feature extrac-
tion on GPUs and the time cost for hashing encoding on CPUs. Fig. 8 shows
the comparison of the encoding time of involved hashing methods in logarithmic
scale on the CIFAR-10 dataset with 64-bit binary codes. Our computing plat-
form is equipped with a 4.0 GHz Intel CPU, 32 GB RAM, and NVIDIA GTX
1080Ti. Although HashNet and DSH are faster than our PGDH because of the
higher computational efficiency in Caffe implementation, we can easily convert
the trained Pytorch model into a Caffe version during the test phase to realize
the encoding acceleration while keeping the retrieval performance.

5 Conclusion

In this paper, we have proposed a new relaxation-free framework for deep hashing
via policy gradient. We modified the non-smooth part of the hashing network
for sampling as a stochastic policy to address the back-propagation difficulty.
We directly generated binary codes through the network and maximized the
expectation of the rewards related to the similarity preservation. We trained the
proposed network via policy gradient, which naturally avoids the differentiation
difficulty for discrete optimization, leading to more effective binary codes. We
have conducted extensive experiments to validate the superiority of the proposed
PGDH through comparison with the state-of-the-art hashing methods.
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