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Abstract. Object tracking is still a critical and challenging problem
with many applications in computer vision. For this challenge, more and
more researchers pay attention to applying deep learning to get pow-
erful feature for better tracking accuracy. In this paper, a novel triplet
loss is proposed to extract expressive deep feature for object tracking
by adding it into Siamese network framework instead of pairwise loss for
training. Without adding any inputs, our approach is able to utilize more
elements for training to achieve more powerful feature via the combina-
tion of original samples. Furthermore, we propose a theoretical analysis
by combining comparison of gradients and back-propagation, to prove
the effectiveness of our method. In experiments, we apply the proposed
triplet loss for three real-time trackers based on Siamese network. And
the results on several popular tracking benchmarks show our variants op-
erate at almost the same frame-rate with baseline trackers and achieve
superior tracking performance than them, as well as the comparable ac-
curacy with recent state-of-the-art real-time trackers.
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1 Introduction

Object tracking containing single object tracking [8, 9] and multi-object tracking
[24, 25] remains an important problem with many applications, such as auto-
mated surveillance, and vehicle navigation [34]. In single object tracking, pow-
erful feature selecting is one of the key step to improve tracking accuracy. In
the recent years, this strategy has been widely used for many correlation filter
(CF) based trackers. For example, Henriques et al. [12] applied the Histogram of
Oriented Gradients (HOG) feature instead of gray feature in [11] to achieve more
robust tracking performance. Danelljan et al. [5] tried to use the color name to
process color sequence. More recently, the pre-trained deep networks are applied
to extract feature from raw image for improving accuracy, such as DeepSRDCF
[6], CCOT [7], MCPF [36], and ECO [4]. Besides CF trackers, some deep learning
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based trackers focus on designing an end-to-end network to achieve more power-
ful and suitable feature for its tracking system. MDNet [20] used a multi-domain
convolutional neural network to extract common feature inside various samples
during the off-line training phase. Then, the trained network is refined frame
by frame in different sequences through online training. This tracker achieved
excellent performance on OTB-2013 [32] and won the main challenge in VOT-
2015 [18]. However, its running speed is less than 1 frame-per-second (fps), which
is far below the real-time requirement for processing videos (30 fps). The slow
speed is caused by the online training. Thus, in order to satisfy the real-time
requirement in practical application, recent work like SiamFC [2] still uses the
deep network for off-line training to achieve powerful feature while try to avoid
online training for acceleration.

Although SiamFC utilizes deep network to extract powerful feature, it does
not take full advantage of the relationship among the input samples. SiamFC ad-
dresses the tracking task as similarity learning in an embedding space. The sim-
ilarity function is constructed with a Siamese network trained in off-line phase.
The inputs include an exemplar image enclosing the object and a larger search
image where the sliding-windows with the same size of exemplar can be viewed
as instances, i.e. candidate object bounding boxes. According to the distance
between the location of object and an instance, it is labeled as positive when its
distance is less than a threshold, otherwise, it is labeled as negative. The logis-
tic loss is applied to maximize the similarity scores on exemplar-positive pairs
and minimize them on exemplar-negative pairs. This training method only uti-
lizes the pairwise relationship on samples and ignores the underlying connections
inside the triplet: exemplar, positive instance and negative instance.

In this paper, we try to make the best of the triplet inputs to achieve more
powerful features by adding a novel triplet loss into the Siamese framework. For
each triplet, we define a matching probability to measure the possibility assigning
positive instance to exemplar compared with the negative instance. Then, our
goal is to maximize the joint probability among all triplets during training.
The proposed triplet loss not only can further mine the potential relationship
among exemplar, positive instance and negative instance, but also contains more
elements for training at most situation. Here, we give an intuitive example. In
object tracking, the number of exemplar is 1 since only one object bounding
box is given in the first frame. While the numbers of positive and negative
instance usually are more than 1. We can set them in a batch as M and N ,
respectively. In SiamFC, at most M+N pairwise elements (M exemplar-positive
pairs + N exemplar-negative pairs) can be applied for training. However, our
method can produceMN triplet-wise elements (the combination ofM exemplar-
positive pairs and N exemplar-negative pairs). If M > 2 and N > 2, then
MN > M + N . It indicates our method will get more elements for training to
enhance the performance. In the other situation, we can also get approximate
number of elements. This example illustrates our loss is able to make better use
of the combination of samples to achieve more powerful features. For clearer
explanation, the training framework of triplet loss is shown in Fig. 1.
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Fig. 1: Training framework of the triplet loss in Siamese network. We also give
the original logistic loss for comparison. Given the same feature extraction in
baselines [2], [28], we can apply the triplet loss to the score map. In contrast
to use the vectorization of score map in logistic loss, we utilize the combination
between positive scores (red) and negative scores (blue). The red rectangle means
a positive score matrix produced by repeating M positive scores N times and
the blue rectangle is a negative score matrix by repeating N negative scores M
times. In fact, our loss is suitable for the network with same branches (φ′ = φ
in SiamFC [2]) or different branches (φ′ 6= φ in CFnet [28]).

Furthermore, we give the theoretical analysis between the original logistic loss
and the proposed triplet loss to prove the effectiveness of our method. Firstly,
the logistic loss is reformulated to be comparable with our triplet loss. Then
we analyze their difference by comparing their gradients on various inputs. We
find the triplet loss can offer larger absolute gradient when the similarity score of
exemplar-positive pair vp is not more than the one of exemplar-negative pair vn.
It means that the triplet loss will give stronger feedback for back-propagation
when the network gives wrong similarities (vp ≤ vn). This advantage will im-
prove the tracking accuracy since if vp ≤ vn, the tracking system will produce
tracking error by labeling the negative instance as the object.

In fact, our triplet loss is suitable for the Siamese network with different struc-
tures. In our experiments, we applied the triplet loss to three existing trackers
based on Siamese networks: SiamFC [2], CFnet2 [28], and SiamImp [28]. The
experimental results on the famous tracking benchmark OTB-2013 have shown
that all variants with our loss outperform original trackers and achieve similar
high speed (55 - 86 fps) beyond real-time requirement. In three tracking bench-
marks: OTB-2013 [32], OTB-100 [33] and VOT-2017 [15], our trackers achieve
comparable results compared with recent state-of-the-art real-time trackers.

2 Related works

Trackers with Siamese network: With the development of deep learning in
recent years, many classical networks are introduced into object tracking, such
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as Siamese network [27], [2], [28]. Tao et al. [27] trained a Siamese network to
learn a matching function in the off-line phase. In the online tracking phase,
the learned matching function is applied to find the most similar patch in new
frame compared with the initial patch of object in the first frame. This Siamese
Instance search Tracker (SINT) performs well in OTB-2013 [32] while its speed
is only 2 fps. In order to improve running speed, Bertinetto et al. [2] omitted the
fully connected layers to reduce computation and only apply 5 fully convolutional
layers to train an end-to-end Siamese network (SiamFC) for similarity function.
Then, the similarity function is directly applied to online track without complex
fine-tuning strategies. Therefore, SiamFC achieves high frame-rates beyond real-
time, nearly at 86 fps with GPU. Another related tracker CFnet [28] regards the
correlation filter as a network layer to compute the similarity between the gen-
erating convolutional features of Siamese network. It enables the learning deep
features to be tightly coupled to the correlation filter. The experimental results
show that 2 convolutional layers with CF layer in Siamese network (CFnet2) will
achieve comparable performance and speed (75 fps) compared with SiamFC con-
taining 5 convolutional layers. Otherwise, CFnet proposes an improved Siamese
network (SiamImp) by modifying the structure in some convolutional layers of
SiamFC [2]. SiamImp outperforms SiamFC in tracking accuracy on OTB-2013
and OTB-100 while it operates at lower speed, nearly 52 fps.

To prove the generality of the proposed triplet loss for network structure, we
apply it to three real-time trackers SiamFC, CFnet2 and SiamImp, which own
similar Siamese frameworks but different network structures.

Triplet loss in computer vision: Triplet loss has been widely applied for
numerous applications in computer vision, such as face recognition [23], image
retrieval [14], [37], [26], and person re-identification [3], [30], [13]. Here we illus-
trate some works for reference. Schroff et al. [23] proposed a FaceNet for face
recognition and clustering by combining the triplet loss [31] and the deep con-
volutional network. To ensure fast convergence, an online triplet mining method
is proposed by selecting hardest sample pairs (face patch pairs) on each batch.
In order to further mine the underlying connection among triplets, Song et al.

[26] applied a structured loss for training by lifting the vector of pairwise dis-
tances within the batch to the matrix of pairwise distances. Hermans et al. [13]
systematically evaluated several variants of classic triplet loss and proposed a
novel batch hard loss with the soft margin for person re-identification. Their
method randomly sampled some instances to construct small set as a batch and
selected some hardest instances to compute the loss. In contrast to most existing
approaches with margin-based triplet loss above, our method uses a probability-
based triplet loss to avoid manually selecting the suitable margin.

3 Revisiting the Siamese network for tracking

Bertinetto et al. [2] proposed a Siamese network with fully convolutional layers
for object tracking (SiamFC) by transferring tracking task to exemplar matching
in an embedding space. The tacking object patch is usually given in the first



Triplet Loss in Siamese Network for Object Tracking 5

frame of a sequence and it can be viewed as an exemplar. The goal is to find
a most similar patch (instance) from each frame in the semantic embedding
space. How to learn a powerful embedding function is the key step for this
matching problem. The authors of SiamFC apply a fully convolution Siamese
deep network to represent this embedding function. Two network branches are
designed to process the special inputs in the tracking task. One input is the
object bounding box in the first frame, which is called as exemplar input. The
other instance input is the searching region in each subsequent frame including
the candidate patches to be matched. These two network branches can be seen
as an identical transformation φ for different inputs, since they share the same
parameters. Denote the exemplar as z and the instance as x, then the similar
function is defined as

f(z, x) = g(φ(z), φ(x)), (1)

where g is a simple similarity metric such as vectorial angle and cross correlation.
In SiamFC, the cross correlation function is applied for g, and the formulation

of function f is transferred as follows:

f(z, x) = φ(z) ∗ φ(x) + b. (2)

Then, a logistic loss is applied to define the pairwise loss function for training,
which is formulated as follows:

Ll(Y,V) =
∑

xi∈X

wi log(1 + e−yi·vi). (3)

where Y, V, X are respectively the sets of ground-truth label, similarity score,
instance input. yi ∈ {+1,−1} is the ground-truth label of a single exemplar-
instance pair (z, xi). vi is the similarity score of (z, xi) i.e. vi = f(z, xi). wi is
the weight for an instance xi, and

∑

xi∈X
wi = 1, wi > 0, xi ∈ X . In SiamFC,

the balance weights are used for loss according to the number of positive and
negative instances. The formulation of balance weights is defined as follows:

wi =

{

1

2M
, yi = 1

1

2N
, yi = −1

(4)

where M , N are the number of positive instance set Xp and negative instance
set Xn i.e. M = |Xp|, N = |Xn|. (In SiamFC, M = 13, N = 212.)

4 Siamese network with triplet loss

As mentioned before, we can split the instances set X in SiamFC [2] to positive
instances set Xp and negative instances set Xn. Considering the other exemplar
input, we can construct triplet tuples using the inputs of SiamFC i.e. a tuple
contains exemplar, positive instance and negative instance. However, SiamFC
only utilizes the pairwise loss and ignores the underlying relation between the
positive instance and the negative instance. Based on this consideration, we
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design a new triplet loss to mine the potential relation among the inputs as
much as possible. As splitting the instances set X , the similarity score set V
of exemplar-instance pairs can also be split as a positive score set Vp and a
negative score set Vn. Then, we can directly define the triplet loss on these
score-pairs. To measure each score-pair, we apply a matching probability i.e. the
probability assigning positive instance to exemplar by using a soft-max function.
The formulation of this matching probability is defined as follows.

prob(vpi, vnj) =
evpi

evpi + evnj
. (5)

In the explanation of probability theory, our goal is to maximize the joint
probability among all score-pairs i.e. the product of all probabilities. By using
its negative logarithm, we can get the loss formulation as follows.

Lt(Vp,Vn) = −
1

MN

M
∑

i

N
∑

j

log prob(vpi, vnj), (6)

where the balance weight 1

MN
is used to keep the loss with the same scale for

different number of instance sets.

Compared with the original pairwise logistic loss Ll in Eq. 3, our triplet loss
Lt will capture more underlying information to achieve more powerful repre-
sentation with little extra computation during training. Firstly, our triplet loss
contains more elements (i.e. single losses), which can mine more underlying re-
lationship among exemplar, positive instance, and negative instance. In more
detail, Ll only includes M+N varied losses while our Lt is the weighted average
of MN variates. The more variates in the loss function means the more powerful
representation, since it can capture more information by these variates. More
detailed analysis is shown in next section. Secondly, our loss is defined on the
original scores by using their combination between positive scores and negative
scores. Thus, we use the same inputs to feed the network. It means we do not
need extra computation for feature extraction with deep network during train-
ing. The only adding time cost is taken for computing the new loss, which is
occupied small part of time cost during training.

5 Relationship between logistic loss and triplet loss

As mentioned before, our triplet loss in Eq. 6 contains MN elements while the
number in the logistic loss in Eq. 3 is M +N . If we want to compare these two
losses, we have to keep the number consistent. Therefore, we manage to transform
Eq. 3 for comparison. To keep the same input of instances, no additional instance
is imported for increasing element number during the transformation. The only
change is the increased frequency of usage of exemplar-instance pairs. We also
add constant weight to make it become equivalent transformation. For a set of
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instances X , the logistic loss can be reformulated as follows.

Ll =

M
∑

i

1

2M
log(1 + e−vpi) +

N
∑

j

1

2N
log(1 + evnj )

=
1

N

N
∑

j

M
∑

i

1

2M
log(1 + e−vpi) +

1

M

M
∑

i

N
∑

j

1

2N
log(1 + evnj )

=
1

MN

M
∑

i

N
∑

j

1

2

(

log(1 + e−vpi) + log(1 + evnj )
)

.

(7)

This equation is similar with Eq. 6. We need to simplify Eq. 6 for further
analysis. By submitting Eq. 5 to Eq. 6, we can get the following formulation.

Lt = −
1

MN

M
∑

i

N
∑

j

log
evpi

evpi + evnj
=

1

MN

M
∑

i

N
∑

j

log(1 + evnj−vpi). (8)

From Eq. 7 and Eq. 8, we can find the main difference is their terms inside
summation. Thus, we only need to further analyze these two terms to achieve
the difference between two losses. Their formulation can be denoted as follows.

Tl =
1

2

(

log(1 + e−vp) + log(1 + evn)
)

, Tt = log(1 + evn−vp). (9)

For simplification, we omit the subscripts i and j to focus on the difference
on these terms.

5.1 Comparison on the gradients

The gradients play important role during deep learning training since they are
directly involved in the back-propagation stage. Thus, they are used to point
out the characteristics of different terms. Firstly, we give their gradients. For the
logistic term, the gradients are derived as:

∂Tl

∂vp
= −

1

2(1 + evp)
,

∂Tl

∂vn
=

1

2(1 + e−vn)
. (10)

For our triplet loss, the gradients of its term are given as:

∂Tt

∂vp
= −

1

1 + evp−vn
,

∂Tt

∂vn
=

1

1 + evp−vn
. (11)

From Eq. 10, we can find ∂Tl/∂vp and ∂Tl/∂vn in logistic term only depend
on vp and vn respectively, while our ∂Tt/∂vp considers both vp and vn. It means
the logistic term can not take full advantage of information offered by vp and
vn. In the other words, ∂Tl/∂vp can not utilize the information from vn and
∂Tl/∂vn fails to make use of the information of vp. For further analysis, visual
comparison is shown in Fig. 2 by using the color maps of different gradients. Fig.



8 X. Dong and J. Shen

2 (a) and (d) also show that ∂Tl/∂vp and ∂Tl/∂vn are independent for vn and
vp, respectively.

In the tracking task, we should keep the important constraint condition vp >
vn to reduce the tracking error. vp ≤ vn means the similarity score of positive
instance is less than or equal to the negative instance, and the negative instance
will be regarded as the object leading to tracking failure. Thus, we should pay
more attention for vp ≤ vn during training. Now we will analyze the gradients
of positive instance of two losses.

(a) ∂Tl/∂vp (b) ∂Tt/∂vp (c) |∂Tl/∂vp| − |∂Tt/∂vp|

(d) ∂Tl/∂vn (e) ∂Tt/∂vn (f) |∂Tl/∂vn| − |∂Tt/∂vn|

(g) ∂Tl/∂y (h) ∂Tt/∂y (i) |∂Tl/∂y| − |∂Tt/∂y|

Fig. 2: Comparison of gradients for logistic loss and triplet loss. (a) and (b) are
the gradients on positive instance of logistic loss and triplet loss, respectively.
(c) is the differences between their absolute values. Similarly, (d), (e), and (f)
are corresponding to the negative instance. (g), (h), and (i) are corresponding
to their difference y = vp− vn.

As shown in Fig. 2 (a) and (b), when vp ≤ vn (i.e. up-left-triangle region),
our gradient ∂Tt/∂vp has relatively large absolute value (|∂Tt/∂vp| ≥ 0.5) in
this situation. While the absolute gradient |∂Tl/∂vp| will be close to 0 even on
vp < vn when vp is approaching a big value like 5. It means the gradient ∂Tl/∂vp
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only offers little feedback for back-propagation even vn violates the constraint
vp > vn, when vp is large. However, our gradient ∂Tt/∂vp can give more feedback
for this situation by offering larger absolute gradient. For further comparison, the
color map of difference between absolute gradients |∂Tl/∂vp|−|∂Tt/∂vp| is shown
in Fig. 2 (c). It indicates that inside the region vp ≤ vn and vp > 0, our absolute
gradient is larger than logistic absolute gradient, which means our loss can offer
better feedback for back-propagation in this region. In most of the resident region
of vp ≤ vn, our gradient is approximately equal to the logistic gradient. Secondly,
the comparison of negative instance gradients is shown in Fig. 2 (d), (e), and
(f). Similarly, our gradient also gives sufficient feedback on the region vp ≤ vn,
while the logistic gradient offers fewer feedback on the region vp ≤ vn and
vn < 0. For more direct comparison on two variables vp and vn, we observe
the derivatives on y = vp − vn. It is easy to get ∂Tl/∂y = ∂Tl/∂vp − ∂Tl/∂vn
and ∂Tt/∂y = ∂Tt/∂vp. As shown in Fig. 2 (g), the gradients of logistic loss are
depended on both vp and vn, which is similar with triplet loss. This comparison is
more intuitive. Fig. 2 (i) shows that on the region vp ≤ vn, our absolute gradients
are larger than logistic loss. It means on this region we can offer better feedback.
In summary, our loss will give suitable gradient feedback for back-propagation
when the similarity scores violate the constraint vp > vn, however the gradient
of logistic loss will vanish on extreme condition, such as ∂Tl/∂vp → 0 at vp → 5.

6 Experimental results

In this section, we show the experimental results on several popular tracking
benchmarks including OTB-2013 [32], OTB-100 [33], and VOT-2017 [15]. Firstly,
we give the details of implementation and the introduction of benchmarks and
evaluation metrics. Then, various comparisons on these benchmarks are shown
to evaluate the proposed triplet loss, including experiments on baselines and
comparisons between our trackers and other state-of-the-art trackers.

6.1 Implementation details

Baseline trackers. Firstly, we introduce three aforementioned baseline trackers:
SiamFC, CFnet2, and SiamImp. We selected the version with 3 scales in [2] as
baseline tracker denoted as SiamFC, since this version runs faster than the one
with 5 scales and only performs slightly lower. In [28], a lot of variants of CFnet
are proposed for experimental comparison. The one with 2 convolutional layers
(CFnet2) obtains high speed and slightly lower performance than the best. Thus,
it is selected as the representative of CFnet structure. This work also proposes an
improved Siamese network (SiamImp) as baseline, by reducing the total stride
and the number of final CNN output channels in SiamFC. The training method
and training dataset are similar with the ones in [2, 28] except the training loss.

Training. The deep learning toolbox MatConvNet [29] is applied to train
the parameters of the shared network by minimizing the loss with SGD. The
initial weights of the shared networks are set with the pre-trained models in
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SiamFC [2] and CFnet [28]. We randomly sample 53,200 pairs from the dataset
ILSVRC15 [22] as a training epoch and perform training over 10 epochs. 10%
pairs are chosen as the validation set at each epoch. And we decide the final
network used for testing from the trained models at the end of each epoch, by
the minimal mean error of distance (presented in [2]) on the validation set. The
gradients for each iteration are estimated using mini-batches of size 8, and the
learning rate is decayed geometrically after epoch from 10−4 to 10−5. To handle
the gray videos in benchmarks like [2, 28], 25% of the pairs are converted to
grayscale during training for SiamFC. For CFnet2 and SiamImp, a gray network
is trained with all grayscale pairs to process gray videos. Similarly, all color pairs
are applied to train a color network.

Tracking. In the tracking phase, we only replace the pre-trained networks
with the models trained by triplet loss. The others inside online tracking, such
as tracking approaches, and hyper-parameters setting, are the same with the
original papers. Thus, the improved trackers can run at very similar high speed
with baseline trackers. In more details, our variants: SiamFC-tri, CFnet2-tri,
and SiamImp-tri achieve speeds at 86.3 fps, 55.3 fps and 55.8 fps on OTB-2013,
respectively. The corresponding baseline trackers run respectively at 86.5 fps,
55.1 fps, and 55.4 fps. Our machine is equipped with a single NVIDIA GeForce
1080 and an Intel Core i7-6700 at 3.4 GHz, and our software platform is Matlab
2017a + CUDA 8.0 + cudnn v7.0.5.

6.2 Tracking Benchmarks

Our improved trackers are evaluated with recent state-of-the-art trackers in pop-
ular benchmarks: OTB-2013 [32], OTB-50, OTB-100 [33], and VOT-2017 [15].

The OTB-2013 benchmark proposes several metrics to evaluate trackers on
51 challenging sequences. OTB-100 including 100 sequences is the extension of
OTB-2013 where 50 more challenging sequences are selected as a small bench-
mark denoted as OTB-50. In this paper, the overlap success rate and distance
precision metrics [32] are used to evaluate trackers on OTB-2013, OTB-50, and
OTB-100. Overlap success rate measures the intersection over union (IoU) of
ground truth and predicted bounding boxes. The success plot shows the rate of
bounding boxes whose IoU score is larger than a given threshold. We apply the
overlap success rate in terms of Area Under Curve (AUC) to rank the trackers.
The precision metric means the percentage of frame locations within a certain
threshold distance from those of the ground truth. The threshold distance is set
as 20 for all the trackers. VOT-2017 is the 2017 edition of Visual Object Tracking
challenge [17] evaluating the short-term tracking performance. In this challenge,
a tracker is restarted in the case of a failure, where there is no overlap between
the predicted bounding box and ground truth. VOT-2017 updated the sequences
in VOT-2016 [16] by replacing 10 easily tracking sequences with 10 more chal-
lenging videos. A new real-time challenge was proposed to evaluate trackers with
the limit of real-time speed i.e. the tracker should update the tracking result for
each frame at frequency higher than or equal to the video frame rate. If a new
frame is available before the tracker responds, the last updated bounding box is
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assumed as the reported tracker output at the available frame. For this dataset,
we evaluated the tracking performance under the real-time challenge in terms of
Expected Average Overlap (EAO). EAO is a principled combination of accuracy
(overlap with the ground-truth) and robustness (failure rate) [15].

Fig. 3: Self-comparisons with variants of baseline trackers. The plots show pre-
cision and overlap success rate with AUC on OTB-2013 [32] in terms of OPE.

6.3 Experiments on baseline trackers

To validate the effectiveness of our triplet loss, we compare the baseline track-
ers (SiamFC [2], CFnet2, and SiamImp [28]) against their different variants:
SiamFC-init, CFnet2-init, SiamImp-init, SiamFC-tri, CFnet2-tri, and SiamImp-
tri. The postfix ’-init’ means the variant is initialized with the original pre-trained
model and trained again with original logistic loss over 10 epochs with the afore-
mentioned hyper-parameters. Similarly, the ’-tri’ represents it is trained with our
triplet loss over 10 epochs with the same initialization and hyper-parameters.

These trackers are evaluated with one-pass evaluation (OPE) on OTB-2013,
via running them throughout a test sequence with initialization from the ground
truth position in the first frame. As shown in Fig. 3, directly training more
epochs using logistic loss will reduce the precision and AUC of most baseline
trackers excepting CFnet2. It indicates that the logistic loss can not enhance the
representation power of original networks by training more iterations. However,
the proposed triplet loss can further mine the potential of original networks to
achieve more powerful representation. The corresponding results in Fig. 3 show
it improves the performance in terms of both precision and overlap success rate
in all the baseline trackers. It is worth mentioning all of the variants with triplet
loss operate at almost the same high speed with baselines.
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(a) OTB-2013 (b) OTB-50 (c) OTB-100

Fig. 4: Precision and success plots with AUC for OPE on OTB-2013 [32], OTB-50
and OTB-100 [33] benchmark. Only 10 best ranked trackers are shown.

6.4 Comparisons on OTB benchmarks

On OTB-2013 [32], OTB-50, and OTB-100 [33] benchmarks, we compare im-
proved trackers: SiamFC-tri, CFnet2-tri and SiamImp-tri against several state-
of-the-art real-time trackers: SiamFC [2], CFnet2, SiamImp [28], Staple [1], CN
[5], and KCF [12]. For reference, we also compare with recent trackers: DSST
[5], MEEM [35], SAMF [19], and DLSSVM [21].

Overall comparison. Both precision and success metrics are reported for
OPE. Fig. 4 shows that all of our improved trackers SiamFC-tri, SiamImp-tri,
and CFnet2 achieve improvement compared with their baselines in these three
benchmarks in terms of both precision and success metrics. Especially on OTB-
50 with success metric, SiamImp-tri achieves 3.9% improvement compared with
its baseline SiamImp. In success metric, our trackers perform better than all
other trackers on these three benchmarks, where our variants (SiamImp-tri and
CFnet2-tri) occupy top two ranks. In precision metric, SiamImp-tri achieves the
best performance on OTB-2013 as well as CFnet2-tri ranks first on OTB-50.
On OTB-100, our tracker SiamFC-tri ranks third (0.781) slightly lower than the
second MEEM (0.781) and the first Staple (0.784) in precision while increases
the success rate from 0.530 (MEEM) and 0.582 (Staple) to 0.590, respectively.

Attribute-based Performance Analysis. In OTB-100 benchmark, the
sequences are annotated with 11 attributes for different challenging factors in-
cluding Illumination Variation (IV), Scale Variation (SV), Occlusion (OCC),



Triplet Loss in Siamese Network for Object Tracking 13

Deformation (DEF), Motion Blur (MB), Fast Motion (FM), In-Plane Rotation
(IPR), Out-of-Plane Rotation (OPR), Out-of-View (OV), Background Clutters
(BC), and Low Resolution (LR). To evaluate the proposed method in terms of
each challenging factor, we compare our method to other trackers with different
dominate attributes. Fig. 5 shows the results of 9 main challenging attributes
evaluated by the overlap success rate of OPE in terms of AUC. Our improved
trackers outperform other trackers in 7 subsets, where SiamFC-tri rank first in
3 subsets: FM, OPR, and OV, SiamImp-tri performs best in OCC and IPR,
CFnet2-tri achieves the best performance in SV and BC. In other subset LR,
our SiamFC-tri ranks second with 0.615 in AUC slightly lower than the first
SiamFC with 0.619. Similarly, in subset MB, DLSSVM performs best with 0.571
AUC slightly higher than our CFnet2-tri (0.568). Compared with baseline track-
ers, our trackers outperform than them in almost all subsets except for one case.
In LR, SiamFC ranks higher than SiamFC-tri.

Fig. 5: Overlap success plots of OPE with AUC for 9 tracking challenges on
OTB-100.
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Table 1: EAO scores of VOT-2017 real-time challenge for our improved trackers:
SiamFCT, CFnet2T, SiamImT, their baselines: SiamFC [2], CFnet2, SiamImp
[28], recent tracker PTAV [10], and the other top 9 trackers in VOT-2017 [15].

SiamFCT SiamImT CFnet2T PTAV DACF ECOhc Staple KFebT ASMS

EAO 0.2125 0.1833 0.1080 0.0654 0.2120 0.1767 0.1696 0.1693 0.1678

SiamFC SiamImp CFnet2 sskcf csrf UCT mosse ca SiamDCF KCF

EAO 0.1966 0.1728 0.0963 0.1638 0.1585 0.1447 0.1395 0.1347 0.1336

6.5 Results on VOT-2017

Real-time challenge: We compare our improved trackers: SiamFC-tri, CFnet2-
tri, SiamImp-tri, their baselines: SiamFC [2], CFnet2, SiamImp [28], recent
tracker PTAV [10], and the top 9 trackers in VOT-2017 by using real-time
evaluation. For simplicity, we shortened the names of our improved trackers
as SiamFCT, CFnet2T and SiamImT. As shown in Table 1, all of our trackers
also outperform their baseline trackers on VOT-2017 in terms of Expected Av-
erage Overlap (EAO). Especially, our SiamFCT achieves the best EAO among
all these compared trackers. Another variant with our triplet loss SiamImT also
occupies top position at the 4th ranking among all the trackers.

7 Conclusions

In this paper, we have proposed a novel triplet loss to achieve more powerful fea-
ture for object tracking by applying it into Siamese network. In contrast to orig-
inal logistic loss, our triplet loss can further mine potential relationships among
samples and utilize more elements for better training performance. We have
shown the effectiveness of the proposed triplet loss in theory and experiments.
In theoretical analysis, we found that when the network outputs wrong similar-
ity scores, it gives more absolute gradients for feedback in back-propagation. We
added this triplet loss into three baseline trackers based on Siamese network for
experiments. The results on popular tracking benchmarks show that our triplet
loss can improve the performance without reducing speed for these baselines.
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