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Abstract. Deep metric learning has been extensively explored recently,
which trains a deep neural network to produce discriminative embedding
features. Most existing methods usually enforce the model to be indis-
criminating to intra-class variance, which makes the model over-itting
to the training set to minimize loss functions on these speciic changes
and leads to low generalization power on unseen classes. However, these
methods ignore a fact that in the central latent space, the distribution of
variance within classes is actually independent on classes. In this paper,
we propose a deep variational metric learning (DVML) framework to
explicitly model the intra-class variance and disentangle the intra-class
invariance, namely, the class centers. With the learned distribution of
intra-class variance, we can simultaneously generate discriminative sam-
ples to improve robustness. Our method is applicable to most of existing
metric learning algorithms, and extensive experiments on three bench-
mark datasets including CUB-200-2011, Cars196 and Stanford Online
Products show that our DVML signiicantly boosts the performance of
currently popular deep metric learning methods.

Keywords: Metric learning · Variational auto-encoder · Discrimina-
tive samples generating.

1 Introduction

Metric learning aims to learn a mapping with covariant relationship of distance.
A good metric produces embeddings where samples from the same class have
small distances and samples from diferent classes have large distances. Recent
supervised metric learning methods uncover the potential of deep convolutional
neural networks as the nonlinear mapping function through designing sampling
algorithms [10,34,18,21,24,8,40,37] or modifying loss functions [36,18,7,23,33,37,3].
These methods usually share the same motivation of better maximizing inter-
class distance and minimize intra-class distance. Behind this motivation, there
is actually a basic assumption that every sample from the same class shares the
same embedding feature. However, is this assumption really accurate?

In this paper, we provide a negative answer. Indeed, there are intra-class
variances, such as pose, view point, illumination, etc, and a robust model should
⋆ Corresponding author
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Fig. 1. Our insight: in the central latent space, the distribution of intra-class variance
is independent on classes. This is the visualization of central latent space of features
learned with the N-pair loss [23] using Barnes-Hut t-SNE [30] on the Cars196 test
set. The color of the bounding box for each image represents the class label. Here we
construct central latent space through subtracting samples’ class centers from their
features. We assumed and veriied that similar change of original images, like the same
pose change or the same view-point change, afects their features in a similar way. (Best
viewed when zoomed in.)

be able to handle these variances. However given a limited training set, deep
models will easily be over-itting if we force it to be indiscriminating to these
intra-class variances. For example, in image classiication, if the illumination of
the object region varies too much among diferent samples, the model would
probably be trained to ignore these important parts but to classify the train-
ing samples from their backgrounds. This leads to poor generalization ability.
Therefore this assumption is ideal but not practical.

Our insight is that the distribution of intra-class variance is actually inde-
pendent on classes. It is obvious that for each class, the possible intra-class
variances are from exactly the same set. As presented in Fig. 1, a similar pose
change in samples from diferent classes leads to a cluster in the central latent
space. Furthermore, if we know the distribution of intra-class variance, then we
can generate potential hard samples from easy samples by adding intra-class
variance to it. Therefore we can conidently propose our modiied assumptions:
Embedding features of samples from the same class consist of two parts; One
represents the intra-class invariance, and the other represents the intra-class
variance which obeys the identical distribution among diferent classes.

In this paper, we propose a deep variational metric learning (DVML) frame-
work following this assumption. Utilizing variational inference, we can force the
conditional distribution of intra-class variance, given a certain image sample, to
be isotropic multivariate Gaussian. Moreover, we can utilize most of the current
metric learning algorithms to train the intra-class invariance. To be speciic, the
training procedure of DVML is simultaneously constrained by the following four
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loss functions: 1) the KL divergence between learned distribution and isotropic
multivariate Gaussian; 2) the reconstruction loss of original images and images
generated by the decoder; 3) the metric learning loss of learned intra-class in-
variance; 4) the metric learning loss of the combination of sampled intra-class
variance and learned intra-class invariance. The irst two losses ensure that the
intra-class variance shares the same distribution and does contain sample-speciic
information of each image sample. The third ensures that the intra-class invari-
ance represents a good class center for each class, and the fourth ensures a robust
boundary among classes.

To the best of our knowledge, this is the irst work that utilizes variational
inference to disentangle intra-class variance and leverages the distribution to
generate discriminative samples to improve robustness. It is noticeable that
our framework is also applicable to hard negative mining methods. Addition-
ally, experimental results on three benchmark datasets including CUB-200-2011,
Cars196 and Stanford Online Products, show that DVML1 signiicantly boosts
the performance of existing deep metric learning algorithms.

2 Related Work

Great progress has been made about metric learning [6,10,35,9,41,39,15] recently.
In the conventional metric learning algorithms, our goal is to learn a linear Ma-
halanobis distance to measure the similarities of samples [19,20,5,36,1]. Some of
the previous works [38,32] also tried to formulate metric learning as a variational
inference problem, while focusing on the distribution of pairwise distance. There
are also attempts on combining latent variables and metric learning [26], while
in this work latent variables are the features of patches cropped from images.

Recently, metric learning with deep neural networks has been densely ex-
plored. There are mainly two subjects: sampling methods and loss functions.
By sampling methods [10,34,18,21,24,8,40,37], we aim to mine samples which
improve robustness. For example, Wu et al. [37] proposed a distance weighted
sampling method. By loss functions [36,18,7,23,33,37,3], we aim to fully use the
data in a mini-batch to learn a discriminative boundary among classes. For ex-
ample, Song et al. [23] presented a N-pair loss which takes advantage of the
whole training batch. There are also works about synthesized negative sam-
ples. In [16], they generated a proxy for each class which represents the tight
upper bound of the class. However, this is diferent from our generating hard
samples simultaneously in the training procedure, which better uncover the po-
tential of easy negative samples. Inspired by the central limit theorem and recent
works [12,14,29,2], we begin to think about the invariance among classes.

In [4], they also model intra-class variance with an isotropic Gaussian, while
it is based on the assumption that each class shares the same prior probability
and covariance, which is aimed to tackle the imbalance among samples in long-
tailed datasets. The core distinction is that we disentangle intra-class variance
1 Code is coming soon on https://github.com/XudongLinthu



4 X. Lin, Y. Duan, Q. Dong, J. Lu, and J. Zhou

Feature 

Extractor

CNN

Training 
Samples

μ 

log σ 2
Sampling 

From 
Gaussian

Fully Connected 
Layers 

Output

Testing

Decoder

Loss

Reconstruction 

Loss

KL-Divergence

Discriminate

Intra-class 

Invariant 

features

Add

Generator

Synthesized 

Features

Discriminate

Synthesized

Features

z
I

Intra-class 

Invariance

Intra-class 

Variance
z
V

z
I

z
V

Training Objective

Fig. 2. Our proposed DVML framework. Taking the output of a backbone feature
extractor as input, the following layers consist of two parts. The upper part is to
model intra-class variance, and it only works in the training procedure. The third fully
connected layers following the feature extractor is used to learn intra-class invariant
features zI , namely, the class centers, which is also the output of our model. The gen-
erator takes as inputs the class centers zI and the features sampled from the learned
distribution N (zV ;µ(i)

,σ
2(i)

I), and then outputs element-wise sum of them as syn-
thesized discriminative samples. In order to reduce computation cost, we reconstruct
the 1024-dimension features, which are the output of the backbone feature extractor,
instead of the whole images, . (Best viewed when zoomed in.)

and class centers. In [4], they only learn the conditional probability of belonging
to a certain class given the input image. Instead, DVML is the combination
of a discriminative model and a generative model, where the former outputs
class centers and the latter its intra-class variance. Our DVML is able to boost
current metric learning methods by disentangling intra-class variance and class
centers, and generating potentially hard and positive samples.

3 Proposed Approach

In the conventional metric learning methods, intra-class variance and class cen-
ters are entangled, which brings two limitations to further improvement of metric
learning algorithms:

• Given a limited dataset with a large range of variance within classes, current
metric learning methods are easily over-itting and lose discriminative power
on unseen classes;

• Without disentangling intra-class variance and class centers, current meth-
ods learn a metric by exploring the boundary among classes, which means
numerous easy negative samples contribute little to the training procedure.

We explored a way beyond these two limitations, with the proposed deep
variational metric learning (DVML) framework. In this section, we irst review
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current deep metric learning methods, and introduce the variational inference
for intra-class variance distribution. After explaining discriminative sample gen-
eration, we give the whole picture of deep variational metric learning. In the end,
we introduce the implementation details.

3.1 Preliminaries

Most of recently popular deep metric learning algorithms optimize an appropri-
ate objective function L to get the parameters of a deep neural network F .

φF = argmin
ϕF

Lm(φF ;X, F ), (1)

Here X represents the whole training set. In the training procedure, we usu-
ally construct mini-batches of training data, Xb. Based on diferent ways of con-
structing mini-batches, various types of objective functions are designed. There
are mainly three types of methods to construct mini-batches: pair-based, triplet-
based, and batch-based.

In pair-based mini-batch construction, a mini-batch consists of pairs of posi-
tive and negative samples, xp and xn. In triplet-based mini-batch construction, a
mini-batch consists of triplets. In a triplet, there are three samples, the negative
xn, the positive xp, and the anchor xa. The positive and the anchor have the
same class label, and the negative is from other classes. In batch-based mini-
batch construction, we know each sample’s class information. Many hard neg-
ative mining algorithms are also batch-based, for they usually have to leverage
class information to mine hard pairs or triplets within a mini-batch.

With these mini-batch construction methods, most of current objective func-
tions aim to enforce the negative samples to be away from positive ones. We
utilized the following loss as our baseline methods.

Triplet-based, Triplet [36,18]:

Lm =

N∑

i=1

max (α+D(z
(i)
(a), z

(i)
(p))

2 −D(z
(i)
(a), z

(i)
(n))

2, 0), (2)

where z
(i)
(p) = F (x

(i)
(p)), z

(i)
(a) = F (x

(i)
(a)), and z

(i)
(n) = F (x

(i)
(n)). Here x

(i)
(p), x

(i)
(n), x

(i)
(a)

denote the positive, the negative, and the anchor samples. N is the number
of triplets. D(z

(i)
(p), z

(i)
(n)) is the distance between features embedded from image

samples.
Batch-based, N-pair [23]:

Lm =
1

N

N∑

i=1

log (1 +
∑

j ̸=i

exp (z(i)T z
(j)
+ − z(i)T z

(i)
+ )), (3)

where zi = F (x(i)), and the batch consists of x and x+. Here x(i) and x
(j)
+ are

from the same class, only when i = j.
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Batch-based, Triplet2 with Distance Weighted Sampling [37]:

Lm =
N∑

i=1

max (α+D(z
(i)
(a), z

(i)
(p))−D(z

(i)
(a), z

(i)
(n)), 0), (4)

where z
(i)
(a)’s, z

(i)
(p)’s and z

(i)
(n)’s original image samples are determined by distance

weighted sampling over a mini-batch. According to [37], this loss performed
better than aforementioned triplet loss.

3.2 Variational Inference for Intra-Class Variance

With our insight that the distribution of intra-class variance is inter-class invari-
ant, we can disentangle intra-class variance and intra-class invariance. Therefore
our model can more explicitly learn appropriate class centers, and has the nature
of robustness toward a large range of intra-class variance.

As it is hard to directly represent intra-class variance without extra annota-
tions about pose, view point, illumination, etc, we refer to the setting of gen-
erative models. It is natural to believe that from the sum of good intra-class
variance and class centers, we can reconstruct the original image.

To be speciic, given X = (x(1), · · · ,x(n)) as the dataset, consisting of N i.i.d
images from M classes, we assume the data are generated by a random process,
involving an unobserved continuous random variable z = zV + zIk , which is
actually the embedding features of given samples. The process consists of three
steps: (1) a value z

(i)
V is generated from some conditional distribution p∗

θ(z),
which is intra-class variance of sample i from class k; (2) z

(i)
Ik

is the intra-class
invariance of sample i from class k, and z(i) equals the sum of z(i)V and z

(i)
Ik

; (3)
an image x(i) is generated from some conditional distribution p∗

θ(x|z).
Here, we assume that the prior p∗

θ(z) and the the likelihood p∗
θ(x|z) is gen-

erated from some parametric families of distributions pθ(z) and pθ(x|z). As we
simultaneously learn the intra-class variance and intra-class invariance, so here
for sample i from class k, its z

(i)
Ik

is deterministic. Therefore all the distributions
related z could be taken as the distribution related to zV . Using Monte Carlo
estimator similar to VAE [12], we can get the approximated loss for the modeling
of intra-class variance,

L(θ, φ;x(i))≈−DKL(qϕ(zV |x
(i))||pθ(zV )) +

1

L

L∑

l=1

log pθ(x
(i)|z

(i,l)
V ). (5)

Here we let the prior distribution of zV is the centered isotropic multivariate
Gaussian pθ(zV ) = N (zV ;0, I). For the approximation posterior, we let it be a
multivariate Gaussian with a diagonal covariance.

log qϕ(zV |x
(i)) = N (zV ;µ

(i),σ2(1)I). (6)
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We use the outputs of fully-connected layers, to approximate the mean and
s.d. of the posterior, µ(i) and σ

(i). With the reparameterization trick, we can
inally get the irst two terms of our objective.

L(θ, φ;Xb) ≈
1

2B

B∑

i=1

J∑

j=1

(1 + log((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2)

+
1

TB

B∑

i=1

L∑

t=1

log pθ(x
(i)|z(i,t))

≜ L1 + L2, (7)

where T is the number of generating iterations and B is the batch-size of the
mini-batch. L1 enforces the distribution of intra-class variance to be isotropic
centered Gaussian, and L2 ensures the intra-class variance preserve sample-
speciic information. Derivation details are in the supplementary materials.

Furthermore, for simplicity, in the training procedure, we utilize L-2 distance
instead of original maximum likelihood estimation to handle the decoding term
pθ(x

(i)|z(i,t)), which gives us a simpliied term:

L1 =
1

2B

B∑

i=1

J∑

j=1

(1 + log((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2), (8)

L2 =
1

TB

B∑

i=1

T∑

t=1

||x(i) − x̂(i,t)||2. (9)

x(i) represents original image samples, and x̂(i,t) is the fake sample synthe-
sized from the sum of intra-class invariance features and intra-class variance
features sampled from the distribution N (zV ;µ

(i),σ2(i)I).

3.3 Discriminative Sample Generation

As we addressed previously, most of current metric learning algorithms cannot
uncover the full potential of easy samples. However, with the learned distribution
of intra-class variance, we can generate potential hard samples from easy negative
samples by adding the embedding features of easy samples with an biased term
sampled from the distribution of intra-class variance.

Since we have learned an approximated conditional distribution of the intra-
class variance, N (zV ;µ

(i),σ2(1)I), an idea is naturally raised: we can also draw
samples from this distribution to construct synthesized embedding features, and
take them as the inputs of metric learning loss functions.

L3 = Lm(ẑ), (10)

where ẑ = zIk + ẑV , and ẑV is sampled intra-class variance features. By zIk , we
want to stress that diferent classes have diferent intra-class variance, yet we do
not compute class centers over classes.
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Table 1. Comparisons of clustering and retrieval performance (%) on the Cars196
dataset

Mehtod NMI F1 R@1 R@2 R@4 R@8

Triplet [36,18] 56.2 21.3 58.5 68.8 77.1 84.2
DVML+Triplet 61.1 28.2 64.3 73.7 79.2 85.1

N-pair [23] 62.9 31.9 72.3 79.9 86.8 90.9
DVML+N-pair 66.0 34.6 80.4 85.8 91.8 95.1

Contrastive [7] 44.8 11.2 35.8 47.5 59.7 71.5
Lifted [25] 60.0 27.9 70.0 79.5 86.8 92.0
Angular [33] 61.2 30.8 70.1 80.2 86.7 91.6

Triplet2+DWS [37] 65.4 34.3 78.9 85.6 91.0 94.7
DVML+Triplet2+DWS 67.6 36.8 82.0 88.4 93.3 96.3

HDC [40] - - 73.7 83.2 89.5 93.8
Proxy-NCA [16] 64.9 - 73.2 82.4 86.4 88.7

Remembering that the distribution of intra-class variance is independent on
classes, we conidently conclude that these synthesized embedding features con-
tain a larger range of intra-class variance than original samples, and training
with them will bring us a more robust model. Here is a simple example. In class
A, the original samples only contain view point changes, and in class B, the orig-
inal samples only contain illumination changes. Diferent from current models
trained with only their original samples, our model is also robust to an unseen
class which contains both view point changes and illumination changes.

3.4 Deep Variational Metric Learning

Finally we have the whole picture of our proposed DVML framework. Besides
aforementioned three terms of loss functions, our inal objective also contains a
constraint term of intra-class invariance:

L4 = Lm(zI), (11)

where zI is the intra-class invariance features and also the output of our model in
testing. This term enforces the intra-class invariance, namely the class centers, to
be discriminative. It is noticeable that here we do not calculate class centers. We
call them class centers for we have disentangled this part from the intra-class
variance. Therefore our method is applicable to most of current deep metric
learning algorithms.

The inal objective function is:

L = λ1L1 + λ2L2 + λ3L3 + λ4L4. (12)



Deep Variational Metric Learning 9

Table 2. Comparisons of clustering and retrieval performance (%) on the Stanford
Online Products dataset

Mehtod NMI F1 R@1 R@10 R@100

Triplet [36,18] 86.5 20.2 54.9 71.5 85.2
DVML+Triplet 89.0 31.1 66.5 82.3 91.8

N-pair [23] 87.9 27.1 66.4 82.9 92.1
DVML+N-pair 90.2 37.1 70.0 85.1 93.7

Contrastive [7] 83.5 10.4 37.4 52.7 69.4
Lifted [25] 88.4 30.6 65.2 81.3 91.7
Angular [33] 87.7 26.4 66.8 82.8 92.0

Triplet2+DWS [37] 89.0 31.1 66.8 82.0 91.0
DVML+Triplet2+DWS 90.8 37.2 70.2 85.2 93.8

HDC [40] - - 69.5 84.4 92.8
Proxy-NCA [16] - - 73.7 - -

By simply applying sampling methods to both original features and synthesized
features, or replace Lm with custom loss functions, we can combine our method
with most of current metric learning approaches.

Here we want to highlight our contributions. First, to the best of our knowl-
edge, this is the irst work to disentangle intra-class variance and intra-class
invariance, which makes it possible to explicitly learn appropriate class centers
by simultaneously minimizing L4. Second, diferent from previous hard nega-
tive mining methods which ignore numerous easy negative samples, with the
learned distribution of intra-class variance, we generate discriminative samples
which contains the possible intra-class variance over the whole training set. It
is obvious that our discriminative sample generation is entirely diferent from
conventional data augmentation methods. We simultaneously generate latent
variables, namely, the embedding features, in the training procedure. More im-
portantly, our synthesized samples have the variance of the whole training set.

3.5 Implementation Details

We implement all the compared baseline methods and our methods on Chainer [28],
with the GoogLeNet [27] pre-trained on ILSVRC2012 [17] as the backbone for
a fair comparison. Following standard pre-processing of data, we irst normalize
the images into 256×256, and then we perform random crop and horizontal mir-
roring for data augmentation. We add three parallel fully-connected layers after
the average pooling layer of GoogLeNet, with same output dimension which
is the required embedding size. Two of them are used to approximate µ and
logσ2. The other’s output is the intra-class variance. For the reconstruction
part, due to the high cost of image reconstruction, we use the output features of
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Table 3. Comparisons of clustering and retrieval performance (%) on the CUB-200-
2011 dataset

Mehtod NMI F1 R@1 R@2 R@4 R@8

Triplet [36,18] 52.7 19.8 39.8 51.9 63.7 74.5
DVML+Triplet 55.5 25.0 43.7 56.0 67.8 76.9

N-pair [23] 60.1 27.1 50.6 63.1 73.8 82.2
DVML+N-pair 61.1 28.5 52.5 64.9 75.3 84.1

Contrastive [7] 43.8 11.0 32.8 44.1 55.2 69.4
Lifted [25] 56.8 22.9 47.8 60.1 71.4 81.9
Angular [33] 58.3 27.8 50.6 64.1 74.1 83.2

Triplet2+DWS [37] 58.0 24.8 49.8 61.6 73.2 83.6
DVML+Triplet2+DWS 61.4 28.8 52.7 65.1 75.5 84.3

HDC [40] - - 53.6 65.7 77.0 85.6
Proxy-NCA [16] 59.5 - 49.2 61.9 67.9 72.4

GoogLeNet’s last average pooling layer as the reconstruction target. We use two
fully-connected layers with output dimension 512 and 1024 respectively as the
decoder network, where tanh is used as the activation function. We randomly
initialize all the added fully-connected layers.

There are two phases in the training procedure. In the irst phase, we cut of
the back-propagation of the gradients from the decoder network for the stability
of the embedding part. We empirically set λ1 = 1, λ2 = 1, λ3 = 0.1, and λ4 = 1.
In the second phase, we release the constraint and empirically set λ1 = 0.8, λ2 =
1, λ3 = 0.2, and λ4 = 0.8. As the experimental study in [25] showed that the
embedding size does not largely afect the performance, we follow [33] and ix
the embedding size to 512 in all the experiments. We set the batch size as 128
for the pair-based and batch-based input and 120 for the triplet input. For the
iterations of discriminative sample generation, we set T = 20 throughout the
experiments. To optimize the objective, we take Adam [11] as the optimizer and
set the training rate to be 0.0001.

4 Experiments

To demonstrate the efectiveness of our DVML, we conduct experiments on three
widely-used datasets for both retrieval and clustering tasks.

4.1 Settings

We follow [25,24,33] to split the training and testing set in a zero-shot manner
for all the datasets.
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Table 4. Average p-value and relative deviation (%) on three datasets

Train Cars196 CUB-200-2011 Products

Triplet p-value 76.00± 1.25 76.87± 1.42 83.87± 8.24

Triplet 79.99 86.14 73.10
DVML+Triplet 40.75 44.50 44.48

Test Cars196 CUB-200-2011 Products

Triplet p-value 74.87± 2.29 77.01± 1.19 83.75± 8.12

Triplet 97.98 105.80 73.46
DVML+Triplet 57.08 57.56 46.94

• The CUB-200-2011 dataset [31] contains 11,788 images from 200 bird species.
We take the irst 100 classes with 5,864 images for training, and the rest 100
classes with 5,924 images for testing.

• The Cars196 dataset [13] contains 16,185 images of 196 car types. We take
the irst 98 classes with 8,054 images for training, and the rest 98 classes
with 8,131 images for testing.

• The Stanford Online Products dataset [25] contains 120,053 images of 22,634
products. We take the irst 11,318 classes with 59,551 images for training,
and the rest 11,316 classes with 60,502 images for testing.

In the retrieval task, we calculate the percentage of test samples that have at
least one sample from the same class in R nearest neighbors. In the clustering
task, we report the NMI [25] score and F1 [25] score. For NMI, the input is a set
of clusters Ω = {ω1, · · · , ωK} and the ground truth classes C = {c1, · · · , cK}. ωi

indicates the samples that are assigned to the ith cluster, and cj is the set of sam-
ples with the ground truth label j. NMI is the ratio of mutual information and
the mean entropy of clusters and the ground truth: NMI(Ω,C) = 2I(Ω;C)

(H(Ω)+H(C)) .
F1 score is deined as the harmonic mean of precision and recall: F1 = 2PR

P+R
.

4.2 Compared Methods

We apply our deep variational metric learning framework to three aforemen-
tioned baseline methods. They are Triplet loss [36], N-pair loss [23], and Triplet2
loss with Distance Weighted Sampling [37]. We compare the performance of
baseline methods before and after using our DVML framework to demonstrate
the efectiveness of our proposed framework. We also compare DVML with other
widely used or state-of-the-art methods, where there are two categories: design-
ing sampling algorithms and modifying loss functions. For loss functions, we com-
pare our methods with the widely-used Contrastive loss [7], the Lifted-Structure
loss [25], and the state-of-the-art Angular loss [33]. For sampling methods, we
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Fig. 3. Visualization of the proposed DVML+N-pair with Barnes-Hut t-SNE [30] on
the CUB-200-2011 test set. The color of the bounding box for each image represents
the label. (Best viewed when zoomed in.)

take the state-of-the-art methods including HDC [40] and an upper bound gener-
ating method Proxy-NCA [16]. We report the most relevant results according to
their original papers. Except them, we re-implement all the compared methods.
In the re-implementation, we observe some diferences from the reported results
in original papers, but this does not afect the fairness of comparison.

4.3 Quantitative Results

Table 1, Table 2, and Table 3 present the experimental results of our DVML and
all compared methods on the Cars196, Stanford Online Product, and CUB-200-
2011 datasets respectively.

From the comparison with baseline method, we notice that our proposed
DVML signiicantly improved the performance of baseline methods. It is sur-
prising that our proposed DVML signiicantly improves the performance of N-
pair loss which has already gained success on the Cars196 and Stanford Online
Products datasets, which further proves the limitation we stress before does ex-
ist. In the CUB-200-2011, our proposed DVML’s efectiveness is relatively less
signiicant than the other two datasets. We suppose that it is due to the diferent
nature of datasets. In Cars196 and Stanford Online Products, the diiculty lies
in a large range of intra-class variance, while in CUB-200-2011, the diiculty lies
in localizing discriminative ine-grained regions.

In the comparison with other methods, we observe that on the Cars196
dataset, our DVML+Triplet2+DWS achieves better performance than the
previous state-of-the-art. In the other two datasets, our DVML also achieves
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Fig. 4. Visualization of the proposed DVML+N-pair with Barnes-Hut t-SNE [30] on
the Cars196 test set. The color of the bounding box for each image represents the label.
(Best viewed when zoomed in.)

comparable performance. It is noticeable that we take both sampling algorithms
and modiied loss functions as baselines and compete with the state-of-the-art
in both of the categories, which further shows the efectiveness of our DVML.

To further verify our assumption, we irst apply Kolmogorov-Smirnov test [22]
to the central features learned with Triplet loss [36,18] and measure the p-value.
The results in Table 4 show that central features of classes in every dataset
probably obey the isotropic Gaussian and their distributions are probably sim-
ilar because the deviation of p-value over classes is small. We also measure the
average relative deviation of features with and without DVML, and the result
suggests that our DVML does remove intra-class variance from output features
and helps to explicitly learn class centers.

4.4 Qualitative Results

Using a well-known visualization method t-SNE [30], we irst visualize the central
latent space of features learned with the N-pair loss [23] to illustrate our insight
in Fig. 1.

Fig. 3, Fig. 4, and Fig. 5 show the visualization of DVML+N-pair on the
CUB-200-2011, Cars196 and Stanford Online Products datasets. The igures are
best viewed when zoomed in. The color of the bounding box on each samples’
images represent their class label. Following [25,33], we enlarge certain regions
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Fig. 5. Visualization of the proposed DVML+N-pair with Barnes-Hut t-SNE [30] on
the Stanford Online Products test set. The color of the bounding box for each image
represents the label. (Best viewed when zoomed in.)

to highlight the discriminability of learned features. The visualization explicitly
show that our proposed DVML learns a good metric which well preserves the
distance relationships among classes, given a large range of intra-class variance.

5 Conclusion

In this paper, we have presented a novel applicable framework: deep variational
metric learning (DVML). We assume and illustrate that the distribution of intra-
class variance is invariant among classes. To the best of our knowledge, this is
the irst work to disentangle intra-class variance via variational inference, and
the irst to leverage the intra-class variance’s distribution to generate discrimina-
tive samples. We stress that with our DVML, current metric learning algorithms
could be signiicantly improved. Furthermore, there are many future works, in-
cluding image generating given certain classes, and utilizing those generated
images to further improve robustness of metric learning models.
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