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Abstract. Person Re-identification (re-id) faces two major challenges:
the lack of cross-view paired training data and learning discriminative
identity-sensitive and view-invariant features in the presence of large
pose variations. In this work, we address both problems by proposing a
novel deep person image generation model for synthesizing realistic per-
son images conditional on the pose. The model is based on a generative
adversarial network (GAN) designed specifically for pose normalization
in re-id, thus termed pose-normalization GAN (PN-GAN). With the syn-
thesized images, we can learn a new type of deep re-id features free of
the influence of pose variations. We show that these features are com-
plementary to features learned with the original images. Importantly, a
more realistic unsupervised learning setting is considered in this work,
and our model is shown to have the potential to be generalizable to a
new re-id dataset without any fine-tuning. The codes will be released at
https://github.com/naiq/PN_GAN.
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1 Introduction

Person Re-identification (re-id) aims to match a person across multiple non-
overlapping camera views [14]. It is a very challenging problem because a per-
son’s appearance can change drastically across views, due to the changes in var-
ious covariate factors independent of the person’s identity. These factors include
viewpoint, body configuration, lighting, and occlusion (see Fig. 1). Among these
factors, pose plays an important role in causing a person’s appearance changes.
Here pose is defined as a combination of viewpoint and body configuration. It
is thus also a cause of self-occlusion. For instance, in the bottom row examples
in Fig. 1, the big backpacks carried by the three persons are in full display from
the back, but reduced to mostly the straps from the front.

⋆ indicates equal contributions.
† indicates corresponding author.
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Fig. 1. The same person’s appearance can be very different across camera views, due
to the presence of large pose variations.

Most existing re-id approaches [25, 2, 9, 51, 34, 40, 63, 47] are based on learn-
ing identity-sensitive and view-insensitive features using deep neural networks
(DNNs). To learn the features, a large number of persons’ images need to be col-
lected in each camera view with variable poses. With the collected images, the
model can have a chance to learn what features are discriminative and invariant
to the camera view and pose changes. These approaches thus have a number of
limitations. The first limitation is lack of scalability to large camera networks.
Existing models require sufficient identities and sufficient images per identity
to be collected from each camera view. However, manually annotating persons
across views in the camera networks is tedious and difficult even for humans.
Importantly, in a real-world application, a camera network can easily consist
of hundreds of cameras (i.e. those in an airport or shopping mall); annotating
enough training identities from all camera views are infeasible. The second lim-
itation is lack of generalizability to new camera networks. Specifically, when
an existing deep re-id model is deployed to a new camera network, view points
and body poses are often different across the networks; additional data thus need
to be collected for model fine-tuning, which severely limits its generalization abil-
ity. As a result of both limitations, although deep re-id models are far superior
for large re-id benchmarks such as Market-1501 [61] and CUHK03 [25], they still
struggle to beat hand-crafted feature based models on smaller datasets such as
CUHK01 [24], even when they are pre-trained on the larger re-id datasets.

Even with sufficient labeled training data, existing deep re-id models face
the challenge of learning identity-sensitive and view-insensitive features in the
presence of large pose variations. This is because a person’s appearance is de-
termined by a combination of identity-sensitive but view-insensitive factors and
identity-insensitive but view-sensitive ones, which are inter-connected. The for-
mer correspond to semantic related identity properties, such as gender, carry-
ing, color, and texture. The latter are the covariates mentioned earlier including
poses. Existing models aim to keep the former and remove the latter in the
learned feature representations. However, these two aspects of the appearance
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are not independent, e.g., the appearance of the carrying depends on the pose.
Making the learned features pose-insensitive means that the features supposed
to represent the backpacks in the bottom row examples in Fig. 1 are reduced to
those representing only the straps – a much harder type of features to learn.

In this paper, we argue that the key to learning an effective, scalable and
generalizable re-id model is to remove the influence of pose on the person’s
appearance. Without the pose variation, we can learn a model with much less
data thus making the model scalable to large camera networks. Furthermore,
without the need to worry about the pose variation, the model can concentrate
on learning identity-sensitive features and coping with other covariates such as
different lighting conditions and backgrounds. The model is thus far more likely
to generalize to a new dataset from a new camera network. Moreover, with the
different focus, the features learned without the presence of pose variation would
be different and complementary to those learned with pose variation.

To this end, a novel deep re-id framework is proposed. Key to the framework
is a deep person image generation model. The model is based on a generative
adversarial network (GAN) designed specifically for pose normalization in re-id.
It is thus termed pose-normalization GAN (PN-GAN). Given any person’s image
and a desirable pose as input, the model will output a synthesized image of the
same identity with the original pose replaced with the new one. In practice,
we define a set of eight canonical poses, and synthesize eight new images for
any given image, resulting in a 8-fold increase in the training data size. The
pose-normalized images are used to train a pose-normalized re-id model which
produces a set of features that are complementary to the feature learned with
the original images. The two sets of feature are thus fused as the final feature.
Contributions. Our contributions are as follows. (1) We identify pose as the
chief culprit for preventing a deep re-id model from learning effective identity-
sensitive and view-insensitive features, and propose a novel solution based on
generating pose-normalized images. This also addresses the scalability and gen-
eralizability issues of existing models. (2) A novel person image generation model
PN-GAN is proposed to generate pose-normalized images, which are realis-
tic, identity-preserving and pose controllable. With the synthesized images of
canonical poses, strong and complementary features are learned to be combined
with features learned with the original images. Extensive experiments on several
benchmarks show the efficacy of our proposed model. (3) A more realistic un-
supervised transfer learning is considered in this paper. Under this setting, no
data from the target dataset is used for model updating: the model trained from
labeled source domain is applied to the target domain without any modification.

2 Related Work

Deep re-id models Most recently proposed re-id models employ a DNN to
learn discriminative view-invariant features [25, 2, 9, 51, 34, 40, 63, 47]. They dif-
fer in the DNN architectures – some adopt a standard DNN developed for other
tasks, whilst others have architectures tailor-made. They differ also in the train-
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ing objectives. Different models use different training losses including identity
classification, pairwise verification, and triplet ranking losses. A comprehensive
study on the effectiveness of different losses and their combinations on re-id can
be found in [12]. The focus of this paper is not on designing new re-id deep
model architecture or loss – we use an off-the-shelf ResNet architecture [16] and
the standard identity classification loss. We show that once the pose variation
problem is solved, it could help to improve the performance of re-id.
Pose-guided deep re-id The negative effects of pose variation on deep re-id
models have been recognised recently. A number of models [39, 62, 58, 57, 23, 50,
45] are proposed to address this problem. Most of them are pose-guided based
on body part detection. For example, [39, 57] first detect normalized part regions
from a person image, and then fuse the features extracted from the original im-
ages and the part region images. These body part regions are predefined and the
region detectors are trained beforehand. Differently, [58] combine region selection
and detection with deep re-id in one model. Our model differs significantly from
these models in that we synthesize realistic whole-body images using the pro-
posed PN-GAN, rather than only focusing on body parts for pose normalization.
Note that body parts are related to semantic attributes which are often specific
to different body parts. A number of attributes based re-id models [44, 37, 52,
11] have been proposed. They use attributes to provide additional supervision
for learning identity-sensitive features. In contrast, without using the additional
attribute information, our PN-GAN is learned as a conditional image generation
model for the re-id problem.
Deep image generation Generating realistic images of objects using DNNs
has received much interest recently, thanks largely to the development of GAN [15].
GAN is designed to find the optimal discriminator network D between training
data and generated samples using a min-max game and simultaneously enhance
the performance of an image generator network G. It is formulated to optimize
the following objective functions:

min
G

max
D

LGAN = Ex∼pdata(x) [logD (x)] + (1)

Ez∼pprior(z) [log (1−D (G (z)))]

where pdata (x) and pprior (z) are the distributions of real data x and Gaussian
prior z ∼ N (0,1). The training process iteratively updates the parameters of G
and D with the loss functions LD = −LGAN and LG = LGAN for the generator
and discriminator respectively. The generator can draw a sample z ∼ pprior (z) =
N (0,1) and utilize the generator network G, i.e., G(z) to generate an image.
Among all the variants of GAN, our pose normalization GAN is built upon deep
convolutional generative adversarial networks (DCGANs) [35]. Based on a stan-
dard convolutional decoder, DCGAN scales up GAN using Convolutional Neural
Networks (CNNs) and it results in stable training across various datasets. Many
other variants of GAN, such as VAEGAN [21], Conditional GAN [18], stackGAN
[53] also exist. However, most of them are designed for training with high-quality
images of objects such as celebrity faces, instead of low-quality surveillance video
frames of pedestrians. This problem is tackled in a very recent work [22, 30]. Their
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objective is to synthesize person images in different poses, whilst our work aims
to solve the re-id problem with the synthesized images. Besides, both of them
utilized two generators/parts from coarse to fine to generate images. As a result,
their models are more complicated and not easy to train.

Overall, our model differs from the existing variants of GAN. In particular,
built upon the residual blocks, our PN-GAN is learned to change the poses and
yet keeps the identity of input person. Note that the only work so far that uses
deep image generator for re-id is [65]. However, their model is not a conditional
GAN and thus cannot control either identity or pose in the generated person
images. As a result, the generated images can only be used as unlabeled or
weakly labeled data. In contrast, our model generate strongly labeled data with
its ability to preserve the identity and remove the influence of pose variation.

Fig. 2. Overview of our framework. Given an person image, we utilize PN-GAN to
synthesize auxiliary images with different poses. Base Networks A and B are then
deployed to extract features of original image and synthesized images, respectively.
Finally, two types of features are merged for final re-identification task.

3 Methodology

3.1 Problem Definition and Overview

Problem definition. Assume we have a training dataset of N persons DTr =
{Ik, yk}

N

k=1, where Ik and yk are the person image and person id of the k-th
person. In the training stage we learn a feature extraction function φ so that a
given image I can be represented by a feature vector fI = φ(I). In the testing
stage, given a pair of person images {Ii, Ij} in the testing dataset DTe, we need
to judge whether yi = yj or yi 6= yj . This is done by simply computing the
Euclidean distance between fIi and fIj as the identity-similarity measure.
Framework Overview. As shown in Fig. 2, our framework has two key compo-
nents, i.e., a GAN based person image generation model (Sec. 3.2) and a person
re-id feature learning model (Sec. 3.3).
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3.2 Deep Image Generator

Our image generator aims at producing the same person’s images under different
poses. Particularly, given an input person image Ii and a desired pose image IPj

,

our image generator aims to synthesize a new person image Îj , which contains the
same person but with a different pose defined by IPj

. As in any GAN model, the
image generator has two components, a Generator GP and a Discriminator DP .
The generator is learned to edit the person image conditional on a given pose;
the discriminator discriminates real data samples from the generated samples
and help to improve the quality of generated images.

Fig. 3. Schematic of our PN-GAN model

Pose estimation. The image generation process is conditional on the input im-
age and one factor: the desired pose represented by a skeleton pose image. Pose
estimation is obtained by a pretrained off-the-shelf model. More concretely, the
off-the-shelf pose detection toolkit – OpenPose [4] is deployed, which is trained
without using any re-id benchmark data. Given an input person image Ii, the
pose estimator can produce a pose image IPi

, which localizes and detects 18
anatomical key-points as well as their connections. In the pose images, the ori-
entation of limbs is encoded by color (see Fig. 2, target pose). In theory, any
pose from any person image can be used as a condition to control the pose of
another person’s generated image. In this work, we focus on pose normalization
so we stick to eight canonical poses as shown in Fig. 4(a), to be detailed later.
Generator. As shown in Fig. 3, given an input person image Ii, and a target
person image Ij which contains the same person as Ii but a different pose IPj

,
our generator will learn to replace pose information in Ii with the target pose IPj

and generate the new pose Îj . The input to the generator is the concatenation of
the input person image Ii and target pose image IPj

. Specifically, we treat the
target body pose image IPj

as a three-channel image and directly concatenate
it with the three-channel source person image as the input of the generator. The
generator GP is designed based on the “ResNet” architecture and is an encoder-
decoder network [17]. The encoder-decoder network progressively down-samples
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Ii to a bottleneck layer, and then reverse the process to generate Îj . The encoder
contains 9 ResNet basic blocks1.

The motivation of designing such a generator is to take advantage of learning
residual information in generating new images. The general shape of “ResNet” is
learning y = f(x)+x which can be used to pass invariable information from the
bottom layers of the encoder to the decoder, and change the variable information
of pose. To this end, the other features (e.g., clothing, and the background)

will also be reserved and passed to the decoder in order to generate Îj . With
this architecture (see Fig. 3), we have the best of both worlds: the encoder-
decoder network can help learn to extract the semantic information, stored in
the bottleneck layer, while the ResNet blocks can pass rich invariable information
of person identity to help synthesize more realistic images, and change variable
information of poses to realize pose normalization at the same time.

Formally, let GP (·) be the generator network which is composed of an en-
coder subnet GEnc (·) and a decoder subnet GDec (·), the objective of the gen-
erator network can be expressed as

L
GP

=LGAN + λ1 · LL1
, (2)

where LGAN is the loss of the generator in Eq (1) with the generator GP (·) and
discriminator DP (·) respectively,

LGAN = EIj∼pdata(Ij) {logDP (Ij) (3)

+ log
(

1−DP

(

GP

(

Ii, IPj

)))}

and LL1
= EIj∼pdata(Ij)

[∥

∥

∥
Ij − Îj

∥

∥

∥

1

]

, and Îj = GDec

(

GEnc

(

Ii, IPj

))

is the re-

constructed image for Ij from the input image Ii with the body pose IPj
. Here

the L1−norm is used to yield sharper and cleaner images. λ1 is the weighting
coefficient to balance the importance of each term.
Discriminator. The discriminator DP (·) aims at learning to differentiate the
input images as real or fake (i.e., a binary classification task). Given the input
image Ii and target output image Ij , the objective of the discriminator network
can be formulated as

LDP
= −LGAN , (4)

Since our final goal is to obtain the best generator GP , the optimization step
would be to iteratively minimize the loss function LGP

and LDP
until conver-

gence. Please refer to the Supplementary Material for the detailed structures
and parameters of the generator and discriminator.

3.3 Person re-id with Pose Normalization

As shown in Fig. 2, we train two re-id models. One model is trained using the
original images in a training set to extract identity-invariant features in the

1 Details of structure are in the Supplementary.



8 X. Qian, Y. Fu, T. Xiang, W. Wang, J. Qiu, Y. Wu, Y. Jiang, X. Xue

(a) Eight canonical poses on Market-1501 (b) t-SNE visualization of different poses.

Fig. 4. Visualization of canonical poses. Note that red crosses in (b) indicates the
canonical pose obtained as the cluster means.

presence of pose variation. The other is trained using the synthesized images
with normalized poses using our PN-GAN to compute re-id features free of pose
variation. They are then fused as the final feature representation.

Pose Normalization. We need to obtain a set of canonical poses, which are
representative of the typical viewpoint and body-configurations exhibited by
people in public captured by surveillance cameras. To this end, we predict the
poses of all training images in a dataset and then group the poses into eight
clusters {IPC

}8c=1. We use VGG-19 [5] pre-trained on the ImageNet ILSVRC-
2012 dataset to extract the features of each pose images, and K-means algorithm
is used to cluster the training pose images into canonical poses. The mean pose
images of these clusters are then used as the canonical poses. The eight poses
obtained on Market-1501 [61] is shown in Fig. 4(a). With these poses, given each

image Ii, our generator will synthesize eight images
{

Îi,PC

}8

C=1
by replacing the

original pose with these poses.

Re-id Feature with pose variation. We train one re-id model with the orig-
inal training images to extract re-id features with pose variation. The ResNet-50
model [16] is used as the base network. It is pre-trained on the ILSVRC-2012
dataset, and fine-tuned on the training set of a given re-id dataset to classify
the training identities. We name this network ResNet-50-A (Base Network A),
as shown in Fig. (2). Given an input image Ii, ResNet-50-A produces a feature
set {fIi,layer}, where layer indicates from which layer of the network, the re-id
features are extracted. Note that, in most existing deep re-id models, features are
computed from the final convolutional layer. Inspired by [29] which shows that
layers before the final layer in a DNN often contain useful mid-level identity-
sensitive information. We thus merge the 5a, 5b and 5c convolutional layers of
ResNet-50 structures into a 1024–d feature vector after an FC layer.

Re-id Feature without pose variation. The second model called ResNet-
50-B has the same architecture as ResNet-50-A, but performs feature learning
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using the pose-normalized synthetic images. We thus obtain eight sets of features

for the eight poses f
Îi,PC

=
{

f
Îi,PC

}8

C=1
.

Testing stage. Once ResNet-50-A and ResNet-50-B are trained, during test-
ing, for each gallery image, we feed it into ResNet-50-A to obtain one feature
vector; as for synthesize eight images of the canonical poses, in consideration of
confidence, we feed them into ResNet-50-B to obtain 8 pose-free features and
one extra FC layer for the fusion of original feature and each pose feature. This
can be done offline. Then given a query image Iq, we do the same to obtain nine

feature vectors
{

fIq , fÎq,PC

}

. Since Maxout and Max-pooling have been widely

used in multi-query video re-id, we thus obtain one final feature vector by fusing
the nine feature vectors by element-wise maximum operation. We then calculate
the Euclidean distance between the final feature vectors of the query and gallery
images and use the distance to rank the gallery images.

4 Experiments

4.1 Datasets and Settings

Experiments are carried out on four benchmark datasets:
Market-1501 [61] is collected from 6 different camera views. It has 32,668
bounding boxes of 1,501 identities obtained using a Deformable Part Model
(DPM) person detector. Following the standard split [61], we use 751 identities
with 12,936 images as training and the rest 750 identities with 19,732 images for
testing. The training set is used to train our PN-GAN model.
CUHK03 [25] contains 14,096 images of 1,467 identities, captured by six camera
views with 4.8 images for each identity in each camera on average. We utilize
the more realistic yet harder detected person images setting. The training and
testing sets consist of 1,367 identities and 100 identities respectively. The testing
process is repeated with 20 random splits following [25].
DukeMTMC-reID [36] is constructed from the multi-camera tracking dataset
– DukeMTMC. It contains 1,812 identities. Following the evaluation protocol
[65], 702 identities are used as the training set and the remaining 1,110 identities
as the testing set. During testing, one query image for each identity in each
camera is used for query and the remaining as the gallery set.
CUHK01 [24] has 971 identities with 2 images per person captured in two
disjoint camera views respectively. As in [24], we use as probe the images of
camera A and utilize those from camera B as gallery. 486 identities are randomly
selected for testing and the remaining are used for training. The experiments are
repeated for 10 times with the average results reported.
Evaluation metrics. Two evaluation metrics are used to quantitatively mea-
sure the re-id performance. The first one is Rank-1, Rank-5 and Rank-10 accu-
racy. For Market-1501 and DukeMTMC-reID datasets, the mean Average Pre-
cision (mAP) is also used.
Implementation details. Our model is implemented on Tensorflow [1] (PN-
GAN part) and Caffe [19] (re-id feature learning part) framework. The λ1 in
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Methods
Single-Query Multi-Query
R-1 mAP R-1 mAP

TMA [31] 47.90 22.3 – –
SCSP [6] 51.90 26.40 – –
DNS [54] 61.02 35.68 71.56 46.03

LSTM Siamese [41] – – 61.60 35.31
Gated Sia [42] 65.88 39.55 76.50 48.50
HP-net [29] 76.90 – – –
Spindle [57] 76.90 – – –

Basel.+LSRO [65]* 78.06 56.23 85.12 68.52
PIE [62] 79.33 55.95 – –

Verif.-Identif. [64] 79.51 59.87 85.84 70.33
DLPAR[58] 81.00 63.40 – –

DeepTransfer [12] 83.70 65.50 89.60 73.80
Verif-Identif.+LSRO[65]* 83.97 66.07 88.42 76.10

PDC [39] 84.14 63.41 – –
DML [56] 87.7 68.8 – –
SSM [3] 82.2 68.8 88.2 76.2

JLML [26] 85.10 65.50 89.70 74.50

ResNet-50-A 87.26 69.32 91.81 77.85

Ours (SL) 89.43 72.58 92.93 80.19

Table 1. Results on Market-1501. ‘-’ indicates not reported. Note that *: on [65], we
report the results of using both Basel.+LSRO and Verif-Identif.+LSRO. Our model
only uses the identification loss, so should be compared with Basel. + LSRO which
uses the same ResNet-50 base network and the same loss.

Eq (2) is empirically set as 10 in all experiments. We utilize the two-stepped
fine-tuning strategy in [13] to fine-tune re-id networks. The input images are
resized into 256× 128. Adam [20] is used to train both the PN-GAN model and
re-id networks with a learning rate of 0.0002, β1 = 0.5, a batch size of 32, and a
learning rate of 0.00035, β1 = 0.9, a batch size of 16, respectively. The dropout
ratio is set as 0.5. PN-GAN models and re-id networks are converged in 19 hours
and 8 hours individually on Market-1501 with one NVIDIA 1080Ti GPU card.

Experimental Settings. Experiments are conducted under two settings. The
first is the standard Supervised Learning (SL) setting on all datasets: the
models are trained on the training set of the dataset, and evaluated on the
testing set. The other one is the Transfer Learning (TL) setting only for
the datasets, CUHK03, CUHK01, and DukeMTMC-reID. Specifically, the re-id
model is trained on Market-1501 dataset. We then directly utilize the trained
single model to do the testing (i.e., to synthesize images with canonical poses and
to extract the nine feature vectors) on the test set of CUHK03, CUHK01, and
DukeMTMC-reID. That is, no model updating is done using any data from these
three datasets. The TL setting is especially useful in real-world scenarios, where
a pre-trained model needs to be deployed to a new camera network without any
model fine-tuning. This setting thus tests how generalizable a re-id model is.
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Method R-1 R-5 R-10

DeepReid [25] 19.89 50.00 64.00
Imp-Deep [2] 44.96 76.01 83.47
EMD [38] 52.09 82.87 91.78
SI-CI [43] 52.17 84.30 92.30

LSTM Siamese [41] 57.30 80.10 88.30
PIE [62] 67.10 92.20 96.60

Gated Sia [42] 68.10 88.10 94.60
Basel. + LSRO [65] 73.10 92.70 96.70

DGD [46] 75.30 – –
OIM [48] 77.50 – –
PDC [39] 78.92 94.83 97.15
DLPAR[58] 81.60 97.30 98.40

ResNet-50-A (SL) 76.83 93.79 97.27
Ours (SL) 79.76 96.24 98.56

ResNet-50-A (TL) 16.50 38.60 52.84
Ours (TL) 16.85 39.05 53.32

Method R-1 R-5 R-10

eSDC [59] 19.76 32.72 40.29
kLFDA [49] 32.76 59.01 69.63
mFilter [60] 34.30 55.00 65.30
Imp-Deep [2] 47.53 71.50 80.00

DeepRanking [7] 50.41 75.93 84.07
Ensembles [33] 53.40 76.30 84.40
ImpTrpLoss [10] 53.70 84.30 91.00

GOG [32] 57.80 79.10 86.20
Quadruplet [8] 62.55 83.44 89.71
NullReid [55] 64.98 84.96 89.92

ResNet-50-A (SL) 64.56 83.66 89.74
Ours (SL) 67.65 86.64 91.82

ResNet-50-A (TL) 27.20 48.60 59.20
Ours (TL) 27.58 49.17 59.57

(a) Results on CUHK03 (b) Results on CUHK01
Table 2. Results on CUHK01 and CUHK03 datasets. Note that both Spindle [57]
and HP-net [29] reported higher results on CUHK03. But their results are obtained
using a very different setting: six auxiliary re-id datasets are used and both labeled
and detected bounding boxes are used for both training and testing. So their results
are not comparable to those in this table.

4.2 Supervised Learning Results

Methods R-1 R-10 mAP

LOMO+XQDA[27] 30.80 – 17.00
ResNet50 [16] 65.20 – 45.00

Basel. +LSRO [65] 67.70 – 47.10
AttIDNet [28] 70.69 – 51.88

ResNet-50-A (SL) 72.80 87.90 52.48
Ours (SL) 73.58 88.75 53.20

ResNet-50-A (TL) 27.87 51.12 13.94
Ours (TL) 29.94 51.62 15.77

Table 3. Results on DukeMTMC-reID.

Results on large-scale datasets. Tables 1, 3 and 2 (a) compare our model with
the best performing alternative models. We can make the following observations:
(1) On all three datasets, the results clearly show that, in the supervised learning
settings, our results are improved over those of ResNet-50-A baselines by a clear
margin. This validates that the synthetic person images generated by PN-GAN
can indeed help the person re-id tasks.
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(2) Compared with the existing pose-guided re-id models [57, 62, 39], our model
is clearly better, indicating that synthesizing multiple normalized poses is a more
effective way to deal with the large pose variation problem.
(3) Compared with the other re-id model that uses synthesized images for re-id
model training [65], our model yields better performance for all datasets, the gap
on Market-1501 and DukeMTCM-reID being particularly clear. This is because
our model can synthesize images with different poses, which can thus be used for
supervised training. In contrast, the synthesized images in [65] do not correspond
to any particular person identities or poses, so can only be used as unlabeled or
weakly-labeled data.
Results on small-scale dataset. On the smaller dataset – CUHK01, Table
2(b) shows that, again our ResNet-50-A is a pretty strong baseline which can beat
almost all the other methods. And by using the normalized pose images gener-
ated by PN-GAN, our framework further boosts the performance of ResNet-50-A
by more than 3% in the supervised setting. This demonstrates the efficacy of our
framework. Note that on the small dataset CUHK01, the handcrafted feature
+ metric learning based models (e.g., NullReid [55]) are still quite competitive,
often beating the more recent deep models. This reveals the limitations of the
existing deep models on scalability and generalizability. In particular, previous
deep re-id models are pre-trained on some large-scale training datasets, such
as CUHK03 and Market-1501. But the models still struggle to fine-tune on the
small datasets such as CUHK01 due to the covariate condition differences be-
tween them. With the pose normalization, our model is more adaptive to the
small datasets and the model pre-trained on only Market-1501 can be easily fine-
tuned on the small datasets, achieving much better result than existing models.

4.3 Transfer Learning Results

Dataset Market-1501 DukeMTMC-reID CUHK03 CUHK01

Methods R-1 mAP R-1 mAP R-1 R-5 R-1 R-5

ResNet-50-A 87.26 69.32 72.80 52.48 76.83 93.79 64.56 83.66
ResNet-50-B 63.75 41.29 26.62 14.30 32.54 55.12 36.18 51.17

Ours 89.43 72.58 73.58 53.20 79.76 96.24 67.65 86.64

Table 4. The Ablation Study of Rank-1 and Rank-5 on benchmarks.

We report our results obtained under the TL settings on the three datasets
– CUHK03, CUHK01, and DukeMTMC-reID in Table 2(b), and Table 3 respec-
tively. On CUHK01 dataset, we can achieve 27.58% Rank-1 accuracy in Table
2(b) which is comparable to some models trained under the supervised learn-
ing setting, such as eSDC [59]. These results thus show that our model has the
potential to be generalizable to a new re-id data from new camera networks –
when operating in a ‘plug-and-play’ mode. Our results are also compared against
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Feature(s) 1 pose 8 poses

Methods R-1 mAP R-1 mAP

ResNet-50-A 87.26 69.32 87.26 69.32
ResNet-50-B 58.70 36.69 63.75 41.29

Ours (SL) 87.65 69.60 89.43 72.58
Table 5. The Ablation Study of Market-1501 on 1 pose feature and 8 pose features.

Methods ResNet-50-A ResNet-50-A ResNet-50-B Fusion

Ensemble(A+A) 87.26/69.32 87.29/69.36 — 87.38/69.57

Ours(A+B) 87.26/69.32 — 63.75/41.29 89.43/72.58

Table 6. The Rank-1/mAP results of ensembling two networks and ours. ’A+B’ means
training one ResNet-50-A and one ResNet-50-B model.

those of ResNet-50-A (TL) baseline. On all three datasets, we can observe that
our model gets improved over those of ResNet-50-A (TL) baseline. Again, this
demonstrates that our pose normalized person images can also help the person
re-id in the transfer learning settings. Note that due to the intrinsic difficulty of
transfer setting, the results are still much lower than those in supervised setting.

Fig. 5. Visualization of different poses generated by PN-GAN model.

4.4 Further Evaluations

Ablation Studies. (1) We first evaluate the contributions from the two types
of features computed using ResNet-50-A and ResNet-50-B respectively towards
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the final performance. Table 4 shows that although ResNet-50-B alone performs
poorly compared to other methods, when the two types of features are combined,
there is an improvement in the final results on all four datasets. This clearly in-
dicates that the two types of features are complementary to each other. (2) In
a second study, we compare the result obtained when features are merged with
8 poses and that obtained with only one pose, in Table 5. The result drops
from 72.58 to 69.60 on Market-1501 on mAP. This suggests that having eight
canonical poses is beneficial – the quality of generated image under one partic-
ular pose may be poor; using all eight poses thus reduces the sensitivity to the
quality of the generated images for specific poses. (3) In order to prove that the
performance gain comes from synthesized images instead of ensembling 2 net-
works, we conducted experiments on ensembling two ResNet-50-A models. As
shown in Table 6, the gain from ensembling two ResNet-50-A is clearly less than
that of ensembling one ResNet-50-A and one ResNet-50-B, despite the fact that
the ResNet-50-B is much weaker than the second ResNet-50-A. These results
thus suggest that our approachs performance gain is not due to ensembling but
complementary features extracted from the ResNet-50-B model.

Examples of the synthesized images. Figure 5 gives some examples of the
synthesized image poses. Given one input image, our image generator can pro-
duce realistic images under different poses, while keeping the similar visual ap-
pearance as the input person image. We find that, (1) Even though we did not
explicitly use the attributes to guide the PN-GAN, the generated images of dif-
ferent poses have roughly the same visual attributes as the original images. (2)
Our model can help alleviate the problems caused by occlusion as shown in the
last row of Fig. 5: a man with yellow shirt and grey trousers is blocked by a
bicycle, while our image generator can generate synthesized images to keep his
key attributes whilst removing the occlusion.

5 Conclusion

We have proposed a novel deep person image generation model by synthesizing
pose-normalized person images for re-id. In contrast to previous re-id approaches
that try to extract discriminative features which are identity-sensitive but view-
insensitive, the proposed method learns complementary features from both orig-
inal images and pose-normalized synthetic images. Extensive experiments on
four benchmarks showed that our model achieves state-of-the-art performance.
More importantly, we demonstrated that our model has the potential to be gen-
eralized to new re-id datasets collected from new camera networks without any
additional data collection and model fine-tuning.
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