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Abstract. Classical computation of optical flow involves generic pri-
ors (regularizers) that capture rudimentary statistics of images, but not
long-range correlations or semantics. On the other hand, fully supervised
methods learn the regularity in the annotated data, without explicit reg-
ularization and with the risk of overfitting. We seek to learn richer priors
on the set of possible flows that are statistically compatible with an

image. Once the prior is learned in a supervised fashion, one can eas-
ily learn the full map to infer optical flow directly from two or more

images, without any need for (additional) supervision. We introduce a
novel architecture, called Conditional Prior Network (CPN), and show
how to train it to yield a conditional prior. When used in conjunction
with a simple optical flow architecture, the CPN beats all variational
methods and all unsupervised learning-based ones using the same data
term. It performs comparably to fully supervised ones, that however are
fine-tuned to a particular dataset. Our method, on the other hand, per-
forms well even when transferred between datasets. Code is available at:
https://github.com/YanchaoYang/Conditional-Prior-Networks

1 Introduction

Consider Fig. 1: A given image (left) could give rise to many different optical
flows (OF) [18] depending on what another image of the same scene looks like:
It could show a car moving to the right (top), or the same apparently moving to
the left due to camera motion to the right (middle), or it could be an artificial
motion because the scene was a picture portraying the car, rather than the actual
physical scene. A single image biases, but does not constrain, the set of possible
flows the underlying scene can generate. We wish to leverage the information an
image contains about possible compatible flows to learn better priors than those
implied by generic regularizers. Note that all three flows in Fig. 1 are equally
valid under a generic prior (piecewise smoothness), but not under a natural prior
(cars moving in the scene).

A regularizer is a criterion that, when added to a data fitting term, constrains
the solution of an inverse problem. These two criteria (data term and regularizer)

https://github.com/YanchaoYang/Conditional-Prior-Networks
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Fig. 1. A single image biases, but does not constrain, the set of optical flows that can
be generated from it, depending on whether the camera was static but objects were
moving (top), or the camera was moving (center), or the scene was flat (bottom) and
moving on a plane in an un-natural scenario. Flow fields here are generated by our
CPNFlow.

are usually formalized as an energy function, which is minimized to, ideally, find
a unique global optimum.1

1.1 Our approach in context

In classical (variational) OF, the regularizer captures very rudimentary low-order
statistics [4,9,29,5,37], for instance the high kurtosis of the gradient distribution.
This does not help with the scenario in Fig. 1. There has been a recent surge
of (supervised) learning-based approaches to OF [15,19,32], that do not have
explicit regularization nor do they use geometric reprojection error as a criterion
for data fit. Instead, a map is learned from pairs of images to flows, where
regularization is implicit in the function class [13],2 in the training procedure
[11] (e.g. noise of stochastic gradient descent – SGD), and in the datasets used
for training (e.g. Sintel [10], Flying Chair [15]).

Our method does not attempt to learn geometric optics anew, even though
black-box approaches are the top performers in several benchmarks. Instead,
we seek to learn richer priors on the set of possible flows that are statistically
compatible with an image (Fig. 1).

1 We use the terms regularizer, prior, model, or assumption, interchangeably and
broadly to include any restriction on the solution space, or bias on the solution,
imposed without full knowledge of the data. In OF, the full data is (at least) two
images.

2 In theory, deep neural networks are universal approximants, but there is a consider-
able amount of engineering in the architectures to capture suitable inductive biases.
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Unsupervised learning-based approaches use the same or similar loss func-
tions as variational methods [20,33,27,2], including priors, but restrict the func-
tion class to a parametric model, for instance convolutional neural networks
(CNNs) trained with SGD, thus adding implicit regularization [11]. Again, the
priors only encode first-order statistics, which fail to capture the phenomena in
Fig. 1.

We advocate learning a conditional prior, or regularizer, from data, but do
so once and forall, and then use it in conjunction with any data fitting term,
with any model and optimization one wishes.

What we learn is a prior in the sense that it imposes a bias on the possible
solutions, but it does not alone constraint them, which happens only in conjunc-
tion with a data term. Once the prior is learned, in a supervised fashion, one can
also learn the full map to infer optical flow directly from data, without any need
for (additional) supervision. In this sense, our method is “semi-unsupervised”:
Once we learn the prior, anyone can train an optical flow architecture entirely
unsupervised. The key idea here is to learn a prior for the set of optical flows that
are statistically compatible with a single image. Once done, we train a relatively
simple network in an unsupervised fashion to map pairs of images to optical
flows, where the loss function used for training includes explicit regularization
in the form of the conditional prior, added to the reprojection error.

Despite a relatively simple architecture and low computational complexity,
our method beats all variational ones and all unsupervised learning-based ones. It
is on par or slightly below a few fully supervised ones, that however are fine-tuned
to a particular dataset, and are extremely onerous to train. More importantly,
available fully supervised methods perform best on the dataset on which they

are trained. Our method, on the other hand, performs well even when the prior
is trained on one dataset and used on a different one. For instance, a fully-
supervised method trained on Flying Chair beats our method on Flying Chair,
but underperforms it on KITTI and vice-versa (Tab. 1). Ours is consistently
among the top in all datasets. More importantly, our method is complementary,
and can be used in conjunction with more sophisticated networks and data terms.

1.2 Formalization

Let I1, I2 ∈ R
H×W×3
+ be two consecutive images and f : R2 → R

2 the flow,
implicitly defined in the co-visible region by I1 = I2 ◦ f + n where n ∼ Pn is
some distribution. The posterior P (f |I1, I2) ∝ Pn(I1−I2◦f) can be decomposed
as

logP (f |I1, I2) = logP (I2|I1, f) + logP (f |I1)− logP (I2|I1)

≈ logP (I2|I1, f) + logP (f |I1) (1)

We call the first term (data) prediction error, and the second conditional
prior. It is a prior in the sense that, given I1 alone, many flows can have high
likelihood for a suitable I2. However, it is informed by I1 in the sense of capturing
image-dependent regularities such as flow discontinuities often occurring at object
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boundaries, which may or may not correspond to generic image discontinuities.
A special case of this model assumes a Gaussian likelihood (ℓ2 prediction error)
and an ad-hoc prior of the form

E(f, I1, I2) =

∫

(I1(x) − I2(x + f(x)))2dx +

∫

α(x, I1)‖∇f(x)‖
2dx (2)

where α is a scalar function that incorporates our belief in an irradiance bound-
ary of I1 corresponding to an object boundary.3 This type of conditional prior
has several limitations: First, in the absence of semantic context, it is not possible
to differentiate occluding boundaries (where f can be discontinuous) from ma-
terial boundaries (irradiance discontinuities), or illumination boundaries (cast
shadows) where f is smooth. Second, the image I1 only informs the flow locally,
through its gradient, and does not capture global regularities. Fig. 2 shows that
flow fails to propagate into homogeneous region. This can be mitigated by using
a fully connected CRF [36] but at a heavy computational cost.

Fig. 2. First row: two images I1, I2 from the Flying Chair dataset; Second row: warped
image I2 ◦ f̂ (left) using the flow (right) estimated by minimizing Eq. (2); Third row:
residual n = ‖I1 − I2 ◦ f‖ (left) compared to the edge strength of I1 (right). Note the
flow estimated at the right side of the chair fails to propagate into the homogeneous
region where the image gradient is close to zero.

Our goal can be formalized as learning the conditional prior P (f |I1) in a
manner that exploits the semantic context of the scene4 and captures the global

3 When α is constant, we get an even more special case, the original Horn & Schunk
model where the prior is also Gaussian and unconditional (independent of I1).

4 The word “semantic” is often used to refer to identities and relations among discrete
entities (objects). What matters in our case is the geometric and topological relations
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statistics of I1. We will do so by leveraging the power of deep convolutional neural
networks trained end-to-end, to enable which we need to design differentiable
models, which we do next.

2 Method

To learn a conditional prior we need to specify the inference criterion (loss func-
tion), which we do in Sect. 2.2 and the class of functions (architecture), with
respect to which the loss is minimized end-to-end. We introduce our choice of
architecture next, and the optimization in Sect. 2.3.

2.1 Conditional Prior Network (CPN)

We construct the conditional prior from a modified autoencoder trained to re-
construct a flow f that is compatible with the given (single) image I. We call
this a Conditional Prior Network (CPN) shown in Fig. 3.

Fig. 3. Conditional Prior Network (CPN) architecture for learning P (f |I): ψ is an
encoder of the flow f , and ϕ is a decoder that has full access to the image I.

In a CPN, ψ encodes only the flow f , then ϕ takes the image I and the
output of ψ to generate a reconstruction of f , f̂ = ϕ(I, ψ(f)). Both ψ and ϕ
are realized by pure convolutional layers with subsampling (striding) by two to
create a bottleneck. Note that ϕ is a U-shape net [15] with skip connections, at
whose center a concatenation with ψ(f) is applied. In the appendix, we articulate
the reasons for our choice of architecture, and argue that it is better than an
ordinary autoencoder that encodes both f and I in one branch. This is connected
to the choice of loss function and how it is trained, which we discuss next.

2.2 Loss function

We are given a datasetD sampled from the joint distributionD = {(fj , Ij)}
n
j=1 ∼

P (f, I), with n samples. We propose approximating P (f |I) with a CPN as fol-
lows

Qwϕ,wψ (f |I) = exp
(

−‖ϕ(I, ψ(f))− f‖2
)

∝ P (f |I) (3)

that may result in occluding boundaries on the image plane. The name of an object
does not matter to that end, so we ignore identities and do not require object labels.
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where wϕ, wψ are the parameters of ϕ and ψ respectively. Given I, for every flow
f , the above returns a positive value whose log, after training, is equal to the
negative squared autoencoding loss. To determine the parameters that yield an
approximation of P (f |I), we should solve the following optimization problem

w∗
ϕ, w

∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ (f |I)) (4)

where the expectation is with respect to all possible images I, and KL is the
Kullback-Leibler divergence between P (f |I) and the CPN Qwϕ,wψ (f |I). In the
appendix we show that the above is equivalent to:

w∗
ϕ, w

∗
ψ = arg max

wϕ,wψ

∫

I

∫

f

P (f, I) log[Qwϕ,wψ (f |I)]dfdI

= arg min
wϕ,wψ

∫

I

∫

f

P (f, I)‖ϕwϕ(I, ψwψ (f))− f‖2dfdI (5)

which is equivalent to minimizing the empirical autoencoding loss since the
ground truth flow is quantized,

∑n
j=1 ‖f̂j−fj‖

2. If the encoder had no bottleneck

(sufficient information capacity), it could overfit by returning f̂ = ϕwϕ(I, ψwψ (f)) =
f , rendering the conditional prior Qwϕ,wψ (f |I) uninformative (constant). Con-
sistent with recent developments in the theory of Deep Learning [1], sketched
in the appendix, we introduce an information regularizer (bottleneck) on the
encoder ψ leading to the CPN training loss

w∗
ϕ, w

∗
ψ = arg min

wϕ,wψ
EI∼P (I)KL(P (f |I)‖Qwϕ,wψ (f |I)) + βI(f, ψwψ (f)) (6)

where β > 0 modulates complexity (information capacity) and fidelity (data fit),
and I(f, ψwψ (f)) is the mutual information between the flow f and its repre-
sentation (code) ψwψ (f). When β is large, the encoder is lossy, thus preventing
Qwϕ,wψ (f |I) from being uninformative.5

2.3 Training a CPN

While the first term in Eq. (6) can simply be the empirical autoencoding loss,
the second term can be realized in many ways, e.g., an ℓ2 or ℓ1 penalty on the
parameters wψ. Here we directly increase the bottleneck β by decreasing the
coding length ℓψ of ψ. Hence the training procedure of the proposed CPN can
be summarized as follows:

1. Initialize the coding length of the encoder ℓψ with a large number (β = 0).

2. Train the encoder-decoder ψ, ϕ jointly by minimizing e =
1

n

∑n
j=1 ‖f̂j−fj‖

2

until convergence. The error at convergence is denoted as e∗.

5 the decoder ϕ imposes no architectural bottleneck due to skip connections.
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3. If e∗ > λ, training done.6

Otherwise, decrease ℓψ, (increase β), and goto step 2.

It would be time consuming to train for every single coding length ℓψ. We only
iteratively train for the integer powers, 2k, k ≤ 10.

Inference: suppose the optimal parameters obtained from the training pro-
cedure are w∗

ψ, w
∗
ϕ, then for any given pair (f, I), we can use Qw∗

ϕ,w
∗

ψ
(f |I) as the

conditional prior up to a constant. In the next section we add a data discrep-
ancy term to the (log) prior to obtain an energy functional for learning direct
mapping from images to optical flows.

2.4 Semi-unsupervised learning optical flow

Unlike a generative model such as a variational autoencoder [22], where sampling
is required in order to evaluate the probability of a given observation, here (f, I)
is directly mapped to a scalar using Eq. (3), thus differentiable w.r.t f , and
suitable for training a new network to predict optical flow given images I1, I2,
by minimizing the following compound loss:

E(f |I1, I2) =

∫

Ω\O

ρ(I1(x)− I2(x+ f(x)))dx− α log[Qw∗

ϕ,w
∗

ψ
(f |I1)]

=

∫

Ω\O

ρ(I1(x)− I2(x+ f(x)))dx+ α‖ϕ∗(I1, ψ
∗(f))− f‖2 (7)

with α > 0, Qw∗

ϕ,w
∗

ψ
our learned conditional prior, and ρ(x) = (x2+0.0012)η the

generalized Charbonnier penalty function [8]. Note that the integration in the
data term is on the co-visible area, i.e. the image domain Ω minus the occluded
area O, which can be set to empty for simplicity or modeled using the forward-
backward consistency as done in [27] with a penalty on O to prevent trivial
solutions. In the following section, we describe our implementation and report
results and comparisons on several benchmarks.

3 Experiments

3.1 Network details

CPN: we adapt the FlowNetS network structure proposed in [15] to be the
decoder ϕ, and the contraction part of FlowNetS to be the encoder ψ in our
CPN respectively. Both parts are shrunk versions of the original FlowNetS with
a factor of 1/4; altogether our CPN has 2.8M parameters, which is an order
of magnitude less than the 38M parameters in FlowNetS. As we mentioned
before, the bottleneck in Eq. (6) is controlled by the coding length ℓψ of the
encoder ψ, here we make the definition of ℓψ explicit, which is the number of
the convolutional kernels in the last layer of the encoder. In our experiments,

6 in our experiments, λ = 0.5.
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ℓψ = 128 always satisfies the stopping criterion described in Sect. 2.3, which
ends up with a reduction rate 0.015 in the dimension of the flow f .
CPNFlow: we term our flow prediction network CPNFlow. The network used
on all benchmarks for comparison is the original FlowNetS with no modifica-
tions, letting us focus on the effects of different loss terms. The total number
of parameters is 38M. FlowNetS is the most basic network structure for learn-
ing optical flow [15], i.e., only convolutional layers with striding for dimension
reduction, however, when trained with loss Eq. (7) that contains the learned
conditional prior (CPN), it achieves better performance than the more complex
network structure FlowNetC [15], or even stack of FlowNetS and FlowNetC.
Please refer to Sect. 3.4 for details and quantitative comparisons.

3.2 Datasets for training

Flying Chairs is a synthesized dataset proposed in [15], by superimposing
images of chairs on background images from Flickr. Randomly sampled 2-D
affine transformations are applied to both chairs and background images. Thus
there are independently moving objects together with background motion. The
whole dataset contains about 22k 512×384 image pairs with ground truth flows.
MPI-Sintel [10] is collected from an animation that made to be realistic. It
contains scenes with natural illumination, objects moving fast, and articulated
motion. Final and clean versions of the dataset are provided. The final version
contains motion blur and fog effects. The training set contains only 1, 041 pairs
of images, much smaller compared to Flying Chairs.
KITTI 2012 [16] and 2015 [28] are the largest real-world datasets containing
ground truth optical flows collected in a driving scenario. The ground truth flows
are obtained from simultaneously recorded video and 3-D laser scans, together
with some manual corrections. Even though the multi-view extended version con-
tains roughly 15k image pairs, ground truth flows exist for only 394 pairs of im-
age, which makes fully supervised training of optical flow prediction from scratch
under this scenario infeasible. However, it provides a base for unsupervised learn-
ing of optical flow, and a stage to show the benefit of semi-unsupervised optical
flow learning, that utilizes both the conditional prior (CPN) learned from the
synthetic dataset, and the virtually unlimited amount of real world videos.

3.3 Training details

We use Adam [21] as the optimizer with its default parameters in all our ex-
periments. We train our conditional prior network (CPN) using Flying Chairs
dataset due to its large amount of synthesized ground truth flows. The initial
learning rate is 1.0e-4, and is halved every 100k steps until the maximum 600k
training steps. The batch size is 8, and the autoencoding loss after training is
around 0.6.

There are two versions of our CPNFlow, i.e. CPNFlow-C and CPNFlow-K.
Both employ the FlowNetS structure, and they differ in the training set on which
Eq. (7) is minimized. CPNFlow-C is trained on Flying Chairs dataset, similarly
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CPNFlow-K is trained on KITTI dataset with the multi-view extension. The con-
sideration here is: when trained on Flying Chairs dataset, the conditional prior
network (CPN) is supposed to only capture the statistics of the affine trans-
formations (a) CPNFlow-C is to test whether our learned prior works properly
or not. If it works, (b) CPNFlow-K tests how the learned prior generalizes to
real world scenarios. Both CPNFlow-C and CPNFlow-K have the same training
schedule with the initial learning rate 1.0e-4, which is halved every 100k steps
until the maximum 400k steps.7 Note that in [33], layer-wise loss adjustment
is used during training to simulate coarse-to-fine estimation, however, we will
not adopt this training technique to avoid repeatedly interrupting the training
process. In a similar spirit, we will not do network stacking as in [27,19], which
increases both the training complexity and the network size.

In terms of data augmentation, we apply the same augmentation method as
in [15] whenever our network is trained on Flying Chairs dataset with a cropping
of 384x448. When trained on KITTI, resized to 384x512, only vertical flipping,
horizontal flipping and image order switching are applied. The batch size used
for training on Flying Chairs is 8 and on KITTI is 4.

3.4 Benchmark results

Tab. 1 summarizes our evaluation on all benchmarks mentioned above, together
with quantitative comparisons to the state-of-the-art methods from different cat-
egories: Fully supervised, variational, and unsupervised learning methods. Since
CPNFlow has the same network structure as FlowNetS, and both CPNFlow-C
and FlowNetS are trained on Flying Chairs dataset, the comparison between
CPNFlow-C and FlowNetS shows that even if CPNFlow-C is trained without
knowing the correspondences between pairs of image and the ground truth flows,
it can still achieve similar performance compared to the fully supervised ones on
the synthetic dataset MPI-Sintel. When both are applied to KITTI, CPNFlow-C
achieves 11.2% and 21.6% improvement over FlowNetS and FlowNetC respec-
tively on KITTI 2012 Train, hence CPNFlow generalizes better to out of domain
data.

One might notice that FlowNet2 [19] consistently achieves the highest score
on MPI-Sintel and KITTI Train, however, it has a totally different network struc-
ture where several FlownetS [15] and FlowNetC [15] are stacked together, and
it is trained in a sequential manner, and on additional datasets, e.g. FlyingTh-
ings3D [26] and a new dataset designed for small displacement [19], thus not
directly comparable to CPNFlow. However, when we simply apply the learned
conditional prior to train our CPNFlow on KITTI using Eq. (7), the final net-
work CPNFlow-K surpasses FlowNet2 by 8% on KITTI 2012 Train, yet the
training procedure of CPNFlow is much simpler, and there is no need to switch
between datasets nor between different modules of the network.

Since the emergence of unsupervised training of optical flow [20], there has
not been a single method that beats the variational methods, as shown in Tab.

7 α = 0.1, η = 0.25 for CPNFlow-C, and α = 0.045, η = 0.38 for CPNFlow-K.
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Chairs Sintel Train Sintel Test KITTI Train KITTI Test
Methods test clean final clean final 2012 2015 2012 2015

S
u
p

FlowNetS [15] 2.71 4.50 5.45 7.42 8.43 8.26 —– 9.1 —–
FlowNetC [15] 2.19 4.31 5.87 7.28 8.81 9.35 —– —– —–
SPyNet [32] 2.63 4.12 5.57 6.69 8.43 9.12 —– 10.1 —–
FlowNet2 [19] —– 2.02 3.14 3.96 6.02 4.09 10.06 —– —–

V
a
r

Classic-NL [34] —– 6.03 7.99 7.96 9.15 —– —– 16.4 —–
LDOF [7] 3.47 4.29 6.42 7.56 9.12 13.7 —– 12.4 —–

HornSchunck [35] —– 7.23 8.38 8.73 9.61 —– —– 11.7 41.8%
DIS-Fast [24] —– 5.61 6.31 9.35 10.13 11.01 21.2 14.4 —–

U
n
su
p

DSTFlow [33] 5.11 6.93 7.82 10.40 11.11 16.98 24.30 —– —–
DSTFlow-ft [33] 5.11 (6.16) (6.81) 10.41 11.27 10.43 16.79 12.4 39%
BackToBasic [20] 5.30 —– —– —– —– 11.30 —– 9.9 —–
UnFlowC [27] —– —– —– —– —– 7.11 14.17 —– —–

UnFlowC-oc [27] —– —– 8.64 —– —– 3.78 8.80 —– —–
UnFlowCSS-oc [27] —– —– 7.91 9.37 10.22 3.29 8.10 —– —–
DenseNetF [40] 4.73 —– —– —– 10.07 —– —– 11.6 —–

CPNFlow-C 3.81 4.87 5.95 7.66 8.58 7.33 14.61 —– —–
CPNFlow-K 4.37 6.46 7.12 —– —– 3.76 9.63 4.7 30.8%
CPNFlow-K-o —– 7.01 7.52 —– —– 3.11 7.82 3.6 30.4%

Table 1. Quantitative evaluation and comparison to the state-of-the-art optical flow
estimation methods coming from three different categories. Sup: Fully supervised, Var:
Variational methods, and Unsup: Unsupervised learning methods. The performance
measure is the end-point-error (EPE), except for the last column where percentage of
erroneous pixels is used. The best performer in each category is highlighted in bold,
and the number in parentheses is fine-tuned on the tested dataset. For more detailed
comparisons on KITTI test sets, please refer to the online benchmark website: http:
//www.cvlibs.net/datasets/kitti/eval flow.php.

1, even if both variational methods and unsupervised learning methods are min-
imizing the same type of loss function. One reason might be that when we
implement the variational methods, we could apply some “secret” operations
as mentioned in [34], e.g. median filtering, such that implicit regularization is
triggered. Extra data term can also be added to bias the optimization, as in
[7], sparse matches are used as a data term to deal with large displacements.
However, when combined with our learned conditional prior, even the simplest
data term would help unsupervisedly train a network that outperforms the state-
of-the-art variational optical flow methods. As shown in Tab. 1 our CPNFlow
consistently achieves similar or better performance than LDOF [7], especially on
KITTI 2012 Train, the improvement is at least 40%.

Compared to unsupervised optical flow learning, the advantage of our learned
conditional prior becomes obvious. Although DenseNetF [40] and UnFlowC [27]
employ more powerful network structures than FlowNetS, their EPEs on MPI-
Sintel Test are still 1.5 higher than our CPNFlow. Note that in [27], several ver-
sions of result are reported, e.g. UnFlowC: trained with brightness data term and
second order smoothness term, UnFlowC-oc: census transform based data term

http://www.cvlibs.net/datasets/kitti/eval_flow.php
http://www.cvlibs.net/datasets/kitti/eval_flow.php
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together with occlusion modeling and bidirectional flow consistency penalty,
and UnFlowCSS-oc: a stack of one FlowNetC and two FlowNetS’s sequentially
trained using the same loss as in UnFlowC-oc. Our CPNFlow-K outperforms
UnFlowC by 47% on KITTI 2012 Train and 32% on KITTI 2015 Train. When
occlusion reasoning is effective in Eq. (7) as done in [27], our CPNFlow-K-o out-
performs UnFlowC-oc by 17.7% on KITTI 2012 Train, 11.1% on KITTI 2015
Train, and 12.9% on Sintel Train Final, even without a more robust census trans-
form based data term and flow consistency penalty, which demonstrate the effec-
tiveness of our learned conditional prior across different data terms. Note that
our CPNFlow-K-o even outperforms UnFlowCSS-oc, which is far more complex
in training and network architecture.

Fig. 4, Fig. 5, Fig. 6 show the visual comparisons on MPI-Sintel, KITTI
2012 and KITTI 2015 respectively. Note that our CPNFlow is generally much
smoother, and at the same time sharper at object boundaries, e.g. the girl in the
3rd, 4th rows and the dragon in the 5th row in Fig. 4. This demonstrates that
our conditional prior network (CPN) is capable of learning high level (semantic)
regularities imposed by object entities. In Fig. 5, we can also observe that dis-
continuities in the flow fields align well with object boundaries, for example the
cars in all pairs. This, again, demonstrates that our learned conditional prior is
able to generalize to different scenarios. The error of the estimated flows is also
displayed in Fig. 6.

4 Discussion and related work

Generic priors capturing rudimentary statistics to regularize optical flow have
been used for decades, starting with Horn & Schunk’s ℓ2 norm of the gradient,
to ℓ1, Total Variation, etc. We seek to design or learn image-dependent priors
that capture long-range correlation and semantics.

Image-dependent priors of the form Eq. (2) include [23,31,12,14,30,6,37],
whereas most recent methods learn optical flow end-to-end, without explicitly
isolating the likelihood and prior terms, for instance [15,19,32] are the top per-
forming on MPI-Sintel. Some methods even cast optical flow as dense or semi-
dense feature matching [3,25,38,39] in order to deal with large displacements,
while the regularity is merely imposed by forward-backward matching consis-
tency (see references therein for a detailed review of related literature).

It would be tempting to use a GAN [17] to learn the prior distribution of
interest. A GAN can be thought of as a method to learn a map g such that its
push-forward g∗ maps two distributions, one known µ, and one we can sample
from, p, so ĝ = argminKL(g∗µ||p). It does so via an adversarial process such
that a generative model G will capture the data distribution pdata. If we sample
from the generative model G, we will have samples that are equivalently sampled
from pdata, in order to evaluate pdata(x) of a sample x, we can not circumvent
the sampling step, thus making the method unsuitable for our purpose where
we want a differentiable scalar function.
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Fig. 4. Visual comparison on MPI-Sintel. Variational: CLassic-NL [34], Supervised:
SPyNet [32], Unsupervised: UnFlowC [27] and our CPNFlow-C.

Our work entails constructing an autoencoder of the flow, so it naturally re-
lates to [22]. Similarly, evaluating the probability of a test example is intractable,
even if we can approximately evaluate the lower bound of the probability of a
data point, which again can not be computed in closed form due to the expec-
tation over the noise.
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Fig. 5. Visual comparison on KITTI 2012. Variational: HornSchunck [35], Supervised:
FlowNetS [15], Unsupervised: BackToBasic [20] and our CPNFlow-K.

Optical flow learning algorithms typically rely on synthesized datasets, due
to the extreme difficulty in obtaining ground truth flows for realistic videos.
Recently, unsupervised optical flow learning methods have flourished, making use
of vast amount of unlabeled videos. Although unsupervised optical flow learning
methods are able to learn from unlimited amount of data, when compared to
variational methods, their performance usually falls behind, even when a similar
loss is employed. A phenomenon observed is that almost all unsupervised optical
flow learning methods use the Horn-Schunck type surrogate losses. And there
is debate on which feature to use for the data term, e.g., the raw photometric
value or the edge response, or on the prior/regularizer term, e.g. , penalizing
the first order gradient of the flow or the second order, or on how to weight the
prior term in a pixel-wise manner. Surrogate losses are getting more and more
complex. Instead of focusing on the data term, we ask what should be the best
form for the prior term. Our answer is that structural consistency between an
image and the flow, as well as high-order statistics, such as semantic consistency,
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Fig. 6. Visual comparison on KITTI 2015. Variational: HornSchunck [35], Supervised:
SPyNet [32] and our CPNFlow-K. The 2nd row in each pair shows the end-point-error
of the estimated flow, red is high and blue is low.

are important. We show that when combined with the raw photometric warping
error, this kind of prior serves as a better regularizer than all the other hand-
designed ones. We show its effectiveness on several contemporary optical flow
benchmarks, also thanks to its ability to leverage existing limited supervised
(synthetic) datasets and unlimited real world videos.
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