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Abstract. A novel algorithm to segment out objects in a video sequence is pro-

posed in this work. First, we extract object instances in each frame. Then, we

select a visually important object instance in each frame to construct the salient

object track through the sequence. This can be formulated as finding the maximal

weight clique in a complete k-partite graph, which is NP hard. Therefore, we de-

velop the sequential clique optimization (SCO) technique to efficiently determine

the cliques corresponding to salient object tracks. We convert these tracks into

video object segmentation results. Experimental results show that the proposed

algorithm significantly outperforms the state-of-the-art video object segmenta-

tion and video salient object detection algorithms on recent benchmark datasets.

Keywords: Video object segmentation, primary object segmentation, salient ob-

ject detection, sequential clique optimization

1 Introduction

Video object segmentation (VOS) [1–4] is the task to segment out primary objects from

the background in a video sequence, where a ‘primary’ object refers to the most salient

one in the sequence [5, 6]. In this regard, VOS is closely related to video salient object

detection (SOD) [7–10], in which the objective is to detect salient objects in a video.

Note that the ‘salient’ objects mean that they appear frequently in the video and have

dominant color and motion features. VOS can be used in many vision applications,

including object recognition, action recognition, and video summarization. However, it

is challenging to delineate salient objects in videos without any user annotations. Also,

various factors, such as background clutter, fast motion, and object occlusion, make

VOS even more difficult.

Recent object instance segmentation techniques for still images achieve remarkable

performances, by employing convolutional neural networks (CNNs) [11–14]. On the

other hand, many VOS techniques [15,16] and video SOD techniques [9,10,17] focus

on the combination of spatial and temporal results. However, the fusion processes often

cause temporal inconsistency and may fail to segment out primary objects properly

when either spatial or temporal results are inaccurate. Also, although these techniques

can effectively extract objects with dominant color and motion features, they do not

consider the appearance frequency of an object in a video sequence. In other words,
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they may fail to detect primary objects, which have less dominant features in each

frame but appear frequently in the sequence.

In this work, we propose a novel approach to segment out foreground objects in a

video sequence. First, we generate object instances in each frame. Then, we perform

instance matching, by selecting one object instance from each frame, in order to con-

struct the most salient object track. This is formulated as finding a clique in a complete

k-partite graph [18] of object instances. Note that the clique should contain the instances

over frames, corresponding to an identical object. Thus, the instances should be similar

to one another. However, finding the optimal clique with the maximal similarity weights

is NP hard. We hence develop the sequential clique optimization (SCO) process, which

considers both the node energy and the edge energy. By repeating the SCO process, we

can extract multiple salient object tracks. Finally, we convert these salient object tracks

into VOS results in unsupervised and semi-supervised settings. Experimental results

demonstrate that the proposed algorithm significantly outperforms the state-of-the-art

VOS and video SOD algorithms on the DAVIS [19] and FBMS [20] datasets.

This work has the following major contributions:

– We develop the SCO process that determines a suboptimal clique efficiently with

time complexity O(NT 2), where T is the number of frames in a video and N is

the number of instances in each frame.

– The proposed algorithm can extract multiple primary objects effectively, whereas

most conventional algorithms assume a single primary object.

– The proposed algorithm provides remarkable performances on the DAVIS 2016,

DAVIS 2017, and FBMS benchmark datasets.

2 Related Work

Video Object Segmentation: VOS attempts to separate foreground objects from the

background in a video. Many VOS algorithms extract a single primary object. Papa-

zoglou and Ferrari [1] generate motion boundaries using optical flows, construct a fore-

ground model for the regions within the motion boundaries, and then use it to extract

moving objects. Lee et al. [21] extract object proposals with the objectness scores from

all frames. The proposals are clustered, and each cluster is ranked according to the ob-

jectness score. In [3, 22], object proposals are used to construct a locally connected

graph, and the optimal path in the graph is determined to describe a primary object.

Koh et al. [23] consider the recurrence property of a primary object to choose propos-

als. Also, saliency detection techniques are widely employed to estimate initial regions

of a primary object [2, 4, 24, 25]. Wang et al. [24] adopt geodesic distances for saliency

estimation and design an energy function to enforce the temporal smoothness of a pri-

mary object. Jang et al. [4] obtain foreground and background distributions by adopting

the boundary prior, and dichotomize each region into the primary object or background

class by minimizing a hybrid energy function. Yang et al. [25] use saliency maps to

build an appearance model. Faktor and Irani [2] employ saliency maps as the initial

distribution of random walk simulation.

Another approach to VOS is motion segmentation [20,26–30], which clusters point

trajectories. Shi and Malik [26] divide a video into motion segments using the nor-
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malized cuts. Brox and Malik [27] construct sparse long-term trajectories and cluster

them. Ochs and Brox [28] convert sparse motion clusters into dense segmentation via

the sparse-to-dense interpolation scheme. They also adopt the spectral clustering based

on a higher-order motion model [29]. Fragkiadaki et al. [30] analyze trajectory discon-

tinuities at object boundaries to improve the segmentation accuracy.

Recently, deep learning techniques have been developed for VOS [15, 16, 31–35].

Jain et al. [15] propose an end-to-end learning framework, which combines appearance

and motion information to provide pixel-wise segmentation results for salient objects.

Tokmakov et al. [16, 31] learn motion patterns with a fully convolutional network by

employing synthetic video sequences. Deep learning models are also used in semi-

supervised VOS, which requires manually annotated masks at the first frame to seg-

ment out target objects in subsequent frames [33–35]. Caelles et al. [33] fine-tune a

CNN using user annotations to extract a target object. In [34, 35], propagation errors of

segmentation masks are recovered by deep learning models.

Salient Object Detection: Early SOD algorithms [36–42] for still images are based

on bottom-up models, which use global or local contrast of image features. Some al-

gorithms [40–42] adopt a priori knowledge, such as the boundary prior that boundary

regions tend to belong to the background and thus be less salient than center regions.

Recently, deep learning techniques have been adopted prevalently for SOD. Many deep

fully convolutional networks are trained in an end-to-end manner to yield pixel-wise

saliency maps [43–45]. Also, an instance-level segmentation algorithm for salient ob-

jects was proposed in [14], which uses both saliency maps and object proposals.

Image SOD has been extended to video SOD [7,9,17,46,47]. Kim et al. [7] produce

a spatiotemporal saliency map via the pixel-wise multiplication of spatial and temporal

saliency maps. In the multiplication, adaptive weights can be used to yield more robust

results. For instance, Fang et al. [46] fuse spatial and temporal maps using entropy-

based uncertainty weights. Also, Yang et al. [17] generate six kinds of saliency maps

and superpose them adaptively. Chen et al. [9] combine color and motion saliency maps

based on the salient foreground model and the non-salient background model.

Some algorithms [8, 10, 48] exploit spatial and temporal features jointly to detect

spatiotemporally salient regions. Wang et al. [48] propose the gradient flow field to

merge intra-frame boundaries and inter-frame features. Kim et al. [8] exploit spatial

and temporal features in the random walk with restart framework. Wang et al. [10]

design two networks for static saliency and dynamic saliency, respectively. They feed

the output of the static network into the dynamic network to obtain a saliency map.

3 Proposed Algorithm

We segment primary objects in a sequence of video frames I = {I1, . . . , IT }. The out-

put is the corresponding sequence of pixel-wise maps, which locate the primary objects

in the frames. Fig. 1 shows an overview of the proposed algorithm. First, we generate

object instances in each frame. Second, we construct a complete k-partite graph using

the set of object instances. Third, we extract salient object tracks by finding cliques in

the graph and convert the tracks into VOS results.
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Input frames
Instance

generation Complete -partite graph Finding salient object tracks Segmentation results

Fig. 1. An overview of the proposed algorithm.

3.1 Generating Object Instances

To detect object instances without manual annotations, we employ the instance-aware

semantic segmentation method FCIS [11]. FCIS measures the category-wise detection

scores of region proposals, generated by the network in [49], and segments out fore-

ground regions from the proposals. We choose only the proposals whose detection

scores are higher than 0.5 and declare the corresponding foreground regions as ob-

ject instances. For each proposal, we use the maximum of the category-wise scores,

since the purpose of the proposed algorithm is to segment out salient objects in videos

regardless of their categories. Fig. 2(b) shows object instances in a frame. The set of

detected object instances in frame It is denoted by Ot = {ot,θ | θ ∈ NNt
}, where

Nm = {1, 2, . . . ,m} is the finite index set and Nt is the number of object instances in

frame It. The θth object instance ot,θ in frame It has two attributes: saliency score st,θ
and feature vector f t,θ.

To determine the saliency score st,θ, we simply estimate a foreground distribution

based on the boundary prior. We over-segment a frame into superpixels using [50],

and construct a 4-ring graph of superpixels. We compute edge weights by summing

up the average LAB color difference and the average optical flow difference between

two superpixels. We then obtain the background distribution using the random walk

with restart (RWR) simulation [51], where only superpixels at the frame boundary are

assigned nonzero restart probabilities. Finally, we invert the background distribution to

yield the foreground distribution, as illustrated in Fig. 2(c). We then compute st,θ by

averaging the foreground probabilities within the instance ot,θ.

Also, we construct the feature vector ft,θ using the bag-of-visual-words (BoW) ap-

proach [52]. We quantize the LAB colors, extracted from the 40 training sequences in

the VSB100 dataset [53], into 300 codewords using the K-means algorithm. We then

construct the histogram of the codewords for the pixels within ot,θ, and normalize it

into the feature vector ft,θ.

3.2 Finding Salient Object Tracks

Problem: The set of all object instances, V = O1∪O2∪· · ·∪OT , includes non-salient

objects, as well as salient ones. From V , we extract as many salient objects as possible,
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(a) (b) (c)

Fig. 2. Object instance generation in the “Boxing-fisheye” sequence: (a) input frame, (b) object

instances, and (c) foreground distribution.

(a) (b) (c)

Fig. 3. Illustration of finding salient object tracks over four frames in “Boxing-fisheye”: (a) com-

plete 4-partite graph, (b) 1st salient object track Θ1, and (c) 2nd salient object track Θ2.

while excluding non-salient ones, assuming that a salient object should have dominant

features in each frame and appear frequently through the sequence. To this end, we

construct the most salient object track, by selecting an object instance in each frame,

which corresponds to one identical salient object. Then, after removing all instances in

the track from V , we repeat the process to extract the next salient track, and so on.

Sequential Clique Optimization: Using the set of object instances V = O1 ∪ O2 ∪
· · · ∪ OT , we construct a complete k-partite graph G = (V, E). Thus, V becomes the

node set, and each object instance becomes a node in the graph G. Since Ot ∩Oτ = Ø
for t 6= τ , O1,O2, · · · ,OT form a partition of V . Also, we define the edge set as

E = {(ot,i, oτ,j) | t 6= τ}. In other words, every pair of object instances in different

frames are connected by an edge in E , whereas two instances in the same frame are not

adjacent in the graph G. As a result, G is complete k-partite [18], where k = T . For

example, Fig. 3(a) illustrates the complete k-partite graph for four frames, i.e. k = 4.

We assign a weight to edge (ot,i, oτ,j) by

w(ot,i, oτ,j) = exp

(

−
dχ2(ft,i, fτ,j)

σ2

)

(1)

where σ2 = 0.01 is a scaling parameter and dχ2 denotes the chi-square distance.

To extract the most salient object, we perform the instance matching by selecting

one object instance (one node) from each frame (each node subset) Ot. This process

of finding an object track is equivalent to finding a clique in the graph G. Notice that

selecting one node from each frame satisfies the condition of a clique [18]: every pair

of nodes within the clique are adjacent. In the clique, which represents the track of

an identical object in the video sequence, the features of the member nodes should be
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similar to one another. Therefore, we determine the clique to maximize the sum of the

edge weights. Let Θ = {θt}
T
t=1 denote a clique, which is represented by the sequence

of the node indices in the clique. Here, θt ∈ NNt
is the index of the selected node from

the tth frame Ot. Then, we define the similarity Esimilarity(Θ) of clique Θ as

Esimilarity(Θ) =

T
∑

t=1

T
∑

τ=1,τ 6=t

w(ot,θt , oτ,θτ ), (2)

which is the sum of all edge weights in Θ. We attempt to maximize the similarity,

assuming that the features of an identical object do not change drastically over frames.

Also, object instances in a clique, representing a salient object track, should have

high saliency scores. We hence define the saliency Esaliency(Θ) of clique Θ as

Esaliency(Θ) =
T
∑

t=1

st,θt . (3)

We attempt to find the maximal weight clique Θ∗ that maximizes the similarity

energy:

Θ∗ = argmax
Θ

Esimilarity(Θ) (4)

subject to the constraint that the saliency Esaliency(Θ) is also high. However, even the

unconstrained problem in (4) is NP hard [54,55]. There are N1×N2×· · ·×NT possible

cliques, which make the exhaustive search infeasible. Some approximation methods,

e.g. multi-greedy heuristics [56], local search [55], and binary integer program [57],

have been developed to obtain suboptimal cliques in complete k-partite graphs. But,

these methods are still computationally expensive and do not consider the node energy

(i.e. the saliency Esaliency in this work). Instead, we develop an efficient optimization

technique, called SCO, to find the clique that considers both the node energy Esaliency

and the edge energy Esimilarity.

In SCO, we first initialize the clique Θ(0) to maximize the saliency Esaliency in (3).

Specifically, the tth element in Θ(0) is determined by

θ
(0)
t = arg max

θ∈NNt

st,θ. (5)

Then, at iteration κ, we update θ
(κ)
t , by selecting the node that is the most similar to the

nodes in the other frames,

θ
(κ)
t = arg max

θ∈NNt

T
∑

τ=1,τ 6=t

w(ot,θ, oτ,θτ ), (6)

and then set θt to be θ
(κ)
t for each t sequentially from 1 to T . We repeat this se-

quential update of the nodes in all frames, until Θ(κ) = {θ
(κ)
t }Tt=1 is unaltered from

Θ(κ−1) = {θ
(κ−1)
t }Tt=1. This process is theoretically guaranteed to converge, since

Esimilarity(Θ
(κ)) is a monotonically increasing function of κ. To summarize, SCO ini-

tializes the clique to maximize the saliency Esaliency and then refines it iteratively to
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Algorithm 1 (SCO) Sequential Clique Optimization

Input: Sets of object instances V = O1 ∪ O2 ∪ · · · ∪ OT

1: Construct a complete k-partite graph G = (V, E)
2: for each frame It do

3: Initialize the node index in clique Θ via

4: θt ← argmaxθ∈NNt
st,θ

5: end for

6: repeat

7: for each frame It do

8: Update the node index via

9: θt ← argmaxθ∈NNt

∑T

τ=1,τ 6=t
w(ot,θ, oτ,θτ )

10: end for

11: until node indices are unaltered

Output: Optimized clique Θ = {θ1, θ2, . . . , θT }

achieve a local maximum of Esimilarity. Thus, at the initialization, the clique consists of

salient object instances over frames, which may not represent an identical object. How-

ever, as the iteration goes on, the clique converges to a salient object track, in which

the nodes represent an identical object and thus exhibit high similarity weights in gen-

eral. Algorithm 1 summarizes the proposed SCO technique. In most cases, less than 10

iterations are required for the convergence.

Let Θ1 denote the most salient object track, obtained by this SCO process. To extract

the next track Θ2, we exclude the nodes in Θ1 from G and perform SCO again. This is

repeated to yield the set of tracks, {Θ1, Θ2, . . . , ΘM}, until no node remains in G. In

general, if p < q, Θp is more salient than Θq . Thus, the subscript p in Θp is the saliency

rank of the track. Figs. 3(b) and (c) illustrate the first two tracks Θ1 and Θ2.

Postprocessing The track selection is greedy in the sense that, if an object instance

is mistakenly included in a track Θp, it cannot be included in a later track Θq even

though it indeed belongs to Θq . To alleviate this problem, we perform postprocessing

to maximize the sum of the similarities

M
∑

m=1

Esimilarity(Θm) (7)

as follows. At each frame It, we match object instances in Ot to the tracks in {Θp}
M
p=1.

The matching cost C(ot,i, Θp) between an instance ot,i and a track Θp is defined as

the sum of the feature distances from ot,i to all object instances in Θp, except for the

instance at the same frame t. After computing the matching costs, we find the optimal

matching pairs using the Hungarian algorithm [58], and update the tracks to include the

matched instances. This is performed for all frames. As a result, we obtain the set of the

refined salient object tracks {Θ̃1, Θ̃2, . . . , Θ̃M}.

Disappearance Detection Also, we detect disappearing events for each refined salient

object track. When an object disappears or is fully occluded at some frames, noisy
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objects are selected at those frames. Given a refined salient object track Θ̃ = {θ̃t}
T
t=1,

we determine whether to discard ot,θ̃t at frame t from Θ̃. To this end, for each τ 6=
t, we compare the weight w(oτ,θ̃τ , ot,θ̃t) against the average weight. Specifically, we

count the number of object instances oτ,θ̃τ for τ 6= t, which satisfy w(oτ,θ̃τ , ot,θ̃t) <

1
N−2

∑T

k=1,k 6=t w(oτ,θ̃τ , ok,θ̃k). If the number is larger than 0.7T , we declare ot,θ̃t to

be noisy and discard it.

3.3 Segmentation Results

Using the object tracks in {Θ̃1, Θ̃2, . . . , Θ̃M}, we generate a pixel-wise segmentation

map for each frame, which delineates primary objects in the frame. We propose four

schemes to yield final segmentation results: Proposed-F, Proposed-O, and Proposed-M

for unsupervised VOS and Proposed-S for semi-supervised VOS.

– Proposed-F: The first track Θ̃1 extracts the primary object in a video in general.

Thus, Proposed-F selects Θ̃1. However, it may fail to extract spatially connected

objects. For example, given a motorbike and its rider, it may detect only one of

them. Therefore, Proposed-F additionally picks another salient object track Θ̃p,

only when Θ̃1 and Θ̃p are spatially adjacent in most frames in a video.

– Proposed-O: The aforementioned Proposed-F is an offline approach, which con-

structs the global T -partite graph for an entire video. In contrast, Proposed-O is an

online approach, which uses the t-partite graph for frames 1, . . . , t to obtain the

segmentation result for the current frame t. In other words, Proposed-O uses the

information in the current and past frames only to yield the segmentation result.

– Proposed-M: To handle multiple primary objects, which are not spatially con-

nected, we choose multiple tracks from {Θ̃1, Θ̃2, . . . , Θ̃M}. We compute the mean

saliency score of object instances in each track, and discard the tracks whose mean

scores are lower than a pre-specified threshold δ. We fix δ = 0.1 in all experiments.

– Proposed-S: Proposed-S is for semi-supervised VOS, which chooses the ground-

truth segment in the first frame and fixes it in SCO. Proposed-S is based on the on-

line approach, Proposed-O. Moreover, we warp a segment result to the next frame

using optical flow, and then add the warped segment to the set of object instances.

Finally, we improve the segmentation qualities of object instances in the selected

tracks using a two-class Markov random field (MRF) optimizer in [59].

3.4 Complexity Analysis

Let us analyze the computational complexity of the proposed SCO process. For the con-

venience of analysis, we fix the number of object instances in each frame to N . Note that

SCO has two steps: initialization and update. In the initialization, N − 1 comparisons

are made to find the maximum saliency in each frame, requiring O(NT ) comparisons

in total. In the update step, N(T −2) additions and (N−1) comparisons are performed

for each frame in one iteration. Thus, the update step demands O(KNT 2) complexity,

where K is the number of iterations and is restricted to be less than 10 in this work.
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Table 1. Comparison with the conventional VOS algorithms on the DAVIS 2016 dataset. The

best results are boldfaced, and the second best ones are underlined.

Region similarity J Contour accuracy F
Algorithm Mean Recall Mean Recall

NLC [2] 0.641 0.731 0.593 0.658

CVOS [61] 0.514 0.581 0.490 0.578

TRC [30] 0.501 0.560 0.478 0.519

MSG [28] 0.543 0.636 0.525 0.613

KEY [21] 0.569 0.671 0.503 0.534

SAL [24] 0.426 0.386 0.383 0.264

FST [1] 0.575 0.652 0.536 0.579

ACO [4] 0.531 0.611 0.504 0.558

LMP [16] 0.697 0.829 0.663 0.783

FSEG [15] 0.716 0.877 0.658 0.790

ARP [23] 0.763 0.892 0.711 0.828

Proposed-F 0.796 0.947 0.770 0.912

Proposed-O 0.783 0.932 0.758 0.896

Proposed-M 0.787 0.928 0.764 0.895

We repeat the SCO process N times to extract N object tracks. Thus, the complex-

ity is O(KN2T 2). Finally, in the postprocessing, the Hungarian matching of O(N3)
complexity is performed for each frame. Hence the complexity of the postprocessing

is O(N3T ). The overall complexity of the proposed algorithm can be approximated to

O(KN2T 2), since T is larger than N in general. This complexity is significantly lower

than the binary integer program in [57], which requires O(2T
2N2

) complexity in the

worst case because of the depth-first node selection [60]. Moreover, the proposed SCO

yields better segmentation performance than [57], as will be shown in Section 4.

4 Experimental Results

Given a video sequence, the proposed algorithm can yield a segmentation mask for

each frame, which delineates primary objects at the pixel level. Hence, we compare the

proposed algorithm with the conventional VOS algorithms in [1, 2, 4, 15, 16, 21, 23, 24,

28, 30, 33, 35, 61, 62] and the conventional SOD algorithms in [8, 10, 24, 48, 63–65],

which also extract primary or salient objects from each frame at the pixel level. For the

comparison, we use the DAVIS dataset [19] and the FBMS dataset [20].

DAVIS Dataset [19]: It has two versions, DAVIS 2016 and DAVIS 2017. DAVIS 2016

is a benchmark to evaluate VOS algorithms. It consists of 50 video sequences, which

are divided into training and test sequences. We assess the proposed algorithm using

both the training and test sequences. Each sequence contains a single object or spa-

tially connected objects, e.g. a motorbike and its rider, which appear repeatedly in the

sequence. The spatially connected objects are also regarded as a primary object.

DAVIS 2016 was extended to DAVIS 2017, which is for semi-supervised VOS.

It is composed of the train-validation, test-develop, and test-challenge subsets, which

contain 90, 30, and 30 videos, respectively. We evaluate the proposed algorithm on

the train-validation set. Note that DAVIS 2017 is more challenging than DAVIS 2016,
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Table 2. Comparison with the conventional VOS algorithms on the DAVIS 2017 dataset. The

best results are boldfaced, and the second best ones are underlined.

Region similarity J Contour accuracy F
Algorithm Mean Recall Mean Recall

A. Unsupervised VOS

NLC [2] 0.514 0.555 0.486 0.494

FST [1] 0.496 0.529 0.480 0.468

ACO [4] 0.450 0.464 0.448 0.430

ARP [23] 0.633 0.729 0.612 0.678

Proposed-F 0.685 0.792 0.677 0.773

Proposed-O 0.674 0.785 0.663 0.759

Proposed-M 0.714 0.839 0.705 0.813

B. Semi-supervised VOS

OSVOS [33] 0.566 0.638 0.639 0.738

OnAVOS [62] 0.616 0.674 0.691 0.754

Proposed-S 0.665 0.797 0.688 0.821

since multiple objects, which are not connected to one another, correspond to different

targets. The union region of those multiple instances is regarded as the ground for the

evaluation of the unsupervised algorithms, while multiple instance annotations are used

for that of the semi-supervised algorithms.

FBMS Dataset: The FBMS dataset [20] is for segmenting out moving objects in

videos, where multiple objects are labeled as the ground-truth. It consists of 59 video se-

quences, which are split into 29 training and 30 test sequences. We assess the proposed

algorithm using the test sequences.

4.1 Comparison with Video Object Segmentation Techniques

We compare the proposed algorithm with the conventional VOS algorithms, by employ-

ing the metrics of the region similarity J and the contour accuracy F [19]. The region

similarity J is defined as the intersection over union (IoU) ratio J =
|Sp∩Sgt|
|Sp∪Sgt|

, where

Sp and Sgt are an estimated segment and the ground-truth. Also, the contour accuracy

F is the F-measure, which is the harmonic mean of contour precision and recall rates. In

these metrics, there are two statistics: ‘Mean’ measures the average score and ‘Recall’

denotes the proportion of the frames whose scores are higher than 0.5.

Evaluation on DAVIS 2016 Dataset: Table 1 compares the results on DAVIS 2016

dataset. The scores of the conventional algorithms are from the DAVIS dataset web-

site [19]. All three versions of the proposed algorithm (Proposed-F, Proposed-O, and

Proposed-M) outperform all conventional algorithms. Note that even the online version

Proposed-O performs better than the state-of-the-art algorithm ARP [23], even though

ARP is an offline approach. Also, Proposed-F surpasses all conventional algorithms

significantly, e.g. by convincing margins of 3.3% and 5.9% against ARP in terms of

Mean J and Mean F . Especially, Proposed-F yields a very high recall score of the

region similarity J , which is almost as high as 95%. As compared with Proposed-F,

Proposed-M provides lower performances, since it selects non-primary objects, as well

as primary ones, in some videos.
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(a) (b) (c) (d) (e) (f)

Fig. 4. VOS results of Proposed-M on the DAVIS 2017 dataset: (a) the ground-truth of primary

objects in 1st frames, (b) the detection results in 1st frames, and (c)∼(f) the detection results

in the subsequent frames. From top to bottom, “Dog-agility,” “Boxing-fisheye,” “Dog-gooses,”

“Kid-football,” and “Sheep.” Detected regions are depicted in red.

Table 3. Comparison of the Mean J scores on the FBMS dataset. The best result is boldfaced,

and the second best one is underlined.

Video [1] [3] [2] [4] [23] Proposed-F Proposed-M

Average 0.555 0.473 0.445 0.542 0.598 0.625 0.686

Evaluation on DAVIS 2017 Dataset: Table 2 compares the proposed algorithm with

the conventional unsupervised algorithms [1,2,4,23] and semi-supervised ones [33,62]

on DAVIS 2017. The train-validation set and validation set are used for evaluating

unsupervised and semi-supervised algorithms, respectively. We compute the results

of [1, 2, 4, 23] using the source codes, provided by the respective authors, and take the

scores of [33,62] from the DAVIS website [19]. All unsupervised algorithms yield lower

scores on DAVIS 2017 than on DAVIS 2016, since DAVIS 2017 is more challenging

due to multiple primary objects. Nevertheless, the three versions of the proposed algo-

rithm provide the best results in all metrics. Especially, Proposed-M undergoes the least

degradation in the performance. This indicates that the proposed algorithm extracts mul-

tiple primary objects more reliably than the conventional ones. Fig. 4 presents examples

of segmentation results.

Also, notice that Proposed-S outperforms the conventional semi-supervised algo-

rithms [33, 62], even though [33, 62] involve the fine-tuning, which requires the high

computational complexity.

Evaluation on FMBS Dataset: Table 3 compares the Mean J scores on the FBMS

dataset. The scores of the conventional algorithms are from [23]. Compared with the

state-of-the-art algorithm [23], Proposed-M improves the performance by 8.8%.
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Table 4. Comparison of the proposed SCO with the conventional matching techniques [3, 57] on

the DAVIS 2016 and DAVIS 2017 datasets.

DAVIS2016 DAVIS2017

Algorithm Mean J Recall J Mean J Recall J

FCIS+ [3] 0.737 0.869 0.635 0.734

FCIS+ [57] 0.710 0.829 0.623 0.725

FCIS + SCO + Proposed-M w/o PPMRF 0.769 0.921 0.694 0.827

FCIS + SCO + Proposed-M 0.787 0.928 0.714 0.839

FCIS + SCO + Oracle 0.799 0.959 0.769 0.923

FCIS + SCO + Proposed-M + DF 0.755 0.878 0.666 0.775

Efficacy of SCO: We analyze the efficacy of the proposed SCO. Note that SCO yields

multiple salient object tracks, which are used to produce VOS results. We compare SCO

with the conventional matching techniques for primary object segmentation [3] and

multiple object tracking [57]. More specifically, given object instances from FCIS [11],

we obtain multiple object tracks by employing the conventional techniques [3, 57].

Since [3] is designed to yield a single object track, we repeatedly perform [3] to ob-

tain multiple object tracks. On the other hand, [57] solves the binary integer problem to

produce multiple suboptimal cliques directly. Table 4 compares the proposed SCO with

these conventional techniques. For all three methods, we produce segmentation results

from the multiple object tracks using the method of Proposed-M.

We see that the proposed SCO outperforms the conventional methods [3, 57] sig-

nificantly, even when the postprocessing and MRF (PPMRF) are not applied. Also, we

perform oracle experiments for the performance upper bounds: we obtain segmentation

results by matching object instances with the ground-truth segments. The proposed al-

gorithm yields scores close to these oracle results. Finally, we use deep features (DF)

instead of color-based bag-of-visual-words to compute edge weights in the graph. To

this end, we extract feature maps by concatenating outputs of conv1, conv3, and conv5

in VGG-16 [66]. To generate a feature of an object instance, we average the values of

pixels within the object for each channel of the feature maps. DF degrades the perfor-

mance in this application, since deep semantic features undesirably yield high similarity

weights between different objects in the same class.

4.2 Comparison with Salient Object Detection Techniques

To assess SOD results, we adopt three performance metrics: precision-recall (PR) curves,

F-measure, and mean absolute error (MAE). The precision is the ratio
|Sp∩Sgt|

|Sp|
and the

recall is
|Sp∩Sgt|

|Sgt|
, where Sp and Sgt are an estimated result and the ground-truth, re-

spectively. F-measure is defined as the harmonic mean of the precision and the recall,

i.e. F-measure = (1+β2)·precision·recall
β2·precision+recall where β2 is set to 0.3 as in [10]. Also, MAE is

defined as the average of pixel-wise differences between Sp and Sgt.

Fig. 5 compares the proposed algorithm with the conventional SOD algorithms for

still images [63, 64] and video sequences [8, 10, 24, 48, 65]. The scores of the conven-

tional algorithms are from [10]. The conventional algorithms use thresholds to binarize

continuous saliency maps to compute precision and recall rates. Thus, in Fig. 5, the PR

curves are obtained by varying the thresholds from 0 to 255. In contrast, the proposed
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Fig. 5. Comparison of the precision-recall performances of the proposed algorithm with those of

the conventional algorithms: (a) DAVIS 2016 and (b) FBMS datasets.

Table 5. Comparison with the conventional SOD algorithms. The best results are boldfaced.

DAVIS 2016 FBMS

Algorithm F-measure MAE F-measure MAE

MD [63] 0.561 0.129 0.646 0.105

MC [64] 0.440 0.176 0.479 0.195

TIMP [65] 0.454 0.185 0.444 0.177

GAFL [48] 0.624 0.098 0.596 0.133

SAGE [24] 0.559 0.101 0.589 0.131

RWRV [8] 0.231 0.246 0.227 0.260

FCN [10] 0.699 0.064 0.696 0.077

Proposed-F 0.896 0.017 0.801 0.112

Proposed-M 0.888 0.020 0.816 0.072

algorithm provides a single binary map for primary objects, without requiring a thresh-

old. Therefore, the performance of Proposed-F or Proposed-M is given by a single dot

for the pair of the average precision and recall. Both Proposed-F and Proposed-M sig-

nificantly surpass all conventional algorithms on both DAVIS and FBMS datasets.

Table 5 compares the F-measure and MAE performances. The proposed algorithm

yields only one F-measure score, corresponding to the dot in Fig. 5. In contrast, each

conventional algorithm yields 256 F-measure scores by varying the binarization thresh-

old. Its maximum F-score is reported in Table 5 for impartial comparison. The pro-

posed algorithm outperforms the conventional algorithms significantly. For example,

Proposed-M yields about 0.19 and 0.12 higher F-measure scores than the state-of-the-

art algorithm [10] on the DAVIS and FBMS datasets, respectively.

4.3 Running Time Analysis

We measure the running times of the SCO algorithm for finding cliques in a complete

k-partite graph. In this test, we use the “Boxing-fisheye” sequence in the DAVIS 2017

dataset. Also, we use a computer with a 2.6GHz CPU. The running time of the proposed

SCO algorithm is affected by two factors: 1) the number N of object instances in a

frame and 2) the number T of frames in a sequence. Fig. 6(a) shows the running times

according to N , when T is fixed to 50. Fig. 6(b) plots the running times according to
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Fig. 6. The running times according to the number of (a) object instances and (b) frames.

Table 6. Running times in seconds per frame (SPF).

FCIS Optical flow Saliency estimation Feature extraction MRF Total

Time (SPF) 0.24 0.93 1.16 0.15 0.96 3.44

T , when N is limited to 10. We see that the proposed algorithm is faster than the binary

integer program in [57], which consumes about 1 second when N = 10 and T = 50 .

Table 6 lists the average running times per frame on DAVIS 2016. The proposed

algorithm performs FCIS [11] for generating object instances and also the optical flow

estimation, saliency estimation, feature extraction at each frame. Then, it does SCO

for the global optimization. SCO takes 0.304 second for the entire sequence, which is

negligible. Then, the proposed algorithm also performs the MRF optimization at each

frame. In total, the proposed algorithm takes 3.44 seconds per frame (SPF). It is much

faster than the conventional deep-learning-based VOS algorithms [15] and [16], which

take about 18 SPF and 7 SPF, respectively.

5 Conclusions

We proposed a novel algorithm to segment out primary objects in a video sequence, by

solving the problem of finding cliques in a complete k-partite graph. We first generated

object instances in each frame. Then, we chose a salient instance from each frame to

construct the salient object track. For this purpose, we developed the SCO technique to

consider both the saliency and similarity energies. By applying SCO repeatedly, we ob-

tained multiple salient object tracks. Experimental results showed that the proposed al-

gorithm significantly outperforms the state-of-the-art VOS and video SOD algorithms.
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