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Abstract. We present an instance segmentation scheme based on pixel
affinity information, which is the relationship of two pixels belonging to
the same instance. In our scheme, we use two neural networks with sim-
ilar structures. One predicts the pixel level semantic score and the other
is designed to derive pixel affinities. Regarding pixels as the vertexes and
affinities as edges, we then propose a simple yet effective graph merge
algorithm to cluster pixels into instances. Experiments show that our
scheme generates fine grained instance masks. With Cityscape training
data, the proposed scheme achieves 27.3 AP on test set.

Keywords: instance segmentation, pixel affinity, graph merge, proposal-
free

1 Introduction

With the fast development of Convolutional Neural Networks (CNN), re-
cent years have witnessed breakthroughs in various computer vision tasks. For
example, CNN based methods have surpassed humans in image classification
[24]. Rapid progress has been made in the areas of object detection [14, 26, 43],
semantic segmentation [17], and even instance segmentation [19, 21].

Semantic segmentation and instance segmentation try to label every pixel in
images. Instance segmentation is more challenging as it also tells which object
one pixel belongs to. Basically, there are two categories of methods for instance
segmentation. The first one is developed from object detection. If one already has
results of object detection, i.e. a bounding box for each object, one can move
one step further to refine the bounding box semantic information to generate
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instance results. Since the results rely on the proposals from object detection,
such a category can be regarded as proposal-based methods. The other one is to
cluster pixels into instances based on semantic segmentation results. We refer to
this category as proposal-free methods.

Recent instance segmentation methods have advanced in both directions
above. Proposal-based methods are usually extensions of object detection frame-
works [42, 38, 18]. Fully Convolutional Instance-aware Semantic Segmentation
(FCIS) [33] produces position-sensitive feature maps [12] and generates masks
by merging features in corresponding areas. Mask RCNN (Mask Region CNN)
[23] extends Faster RCNN [44] with another branch to generate masks with differ-
ent classes. Proposal-based methods produce instance-level results in the region
of interest (ROI) to make the mask precise. Therefore, performance depends
highly on the region proposal network (RPN) [44], and is usually influenced by
the regression accuracy of the bounding box.

Meanwhile, methods without proposal generation have also been developed.
The basic idea of these methods [34, 28, 15, 4] is to learn instance level features for
each pixel with a CNN, then a clustering method is applied to group the pixels
together. Sequential group network (SGN) [37] uses CNN to generate features
and makes group decisions based on a series of networks.

In this paper, we focus on proposal-free method and exploit semantic in-
formation from a new perspective. Similar to other proposal-free methods, we
develop our scheme based on semantic segmentation. In addition to using pixel-
wise classification results from semantic segmentation, we propose deriving pixel
affinity information that tells if two pixels belong to the same object. We design
networks to derive this information for neighboring pixels at various scales. We
then take the set of pixels as vertexes and the pixel affinities as the weights of
edges, constructing a graph from the output of the network. Then we propose
a simple graph merge algorithm to group the pixels into instances. More details
will be shown in Sec. 3.4. By doing so, we can achieve state-of-the-art results on
the Cityscapes test set with only Cityscapes training data.

Our main contributions are as follows:

• We introduce a novel proposal-free instance segmentation scheme, where
we use both semantic information and pixel affinity information to derive
instance segmentation results.

• We show that even with a simple graph merge algorithm, we can outperform
other methods, including proposal-based ones. It clearly shows that proposal-
free methods can have comparable or even better performance than proposal-
based methods. We hope that our findings will inspire more people to take
instance segmentation to new levels along this direction.

• We show that a semantic segmentation network is reasonably suitable for
pixel affinity prediction with only the meaning of the output changed.
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2 Related Work

Our proposed method is based on CNNs for semantic segmentation, and we adapt
this to generate pixel affinities. Thus, we first review previous works on semantic
segmentation, followed by discussing the works on instance segmentation, which
is further divided into proposal-based and proposal-free methods.

Semantic segmentation: Replacing fully connected layers with convolu-
tion layers, Fully Convolutional Networks (FCN) [46] adapts a classification net-
work for semantic segmentation. Following this, many works try to improve the
network to overcome shortcomings [35, 40, 48]. To preserve spatial resolution and
enlarge the corresponding respective field, [5, 47] introduce dilated/atrous con-
volution to the network structure. To explore multi-scale information, PSPNet
[48] designs a pyramid pooling structure [20, 30, 39] and Deeplabv2 [5] proposes
Atrous Spatial Pyramid Pooling (ASPP) to embed contextual information. Most
recently, Chen et al. have proposed Deeplabv3+ [8] by introducing an encoder-
decoder structure [41, 36, 16, 27] to [7] which achieves promising performance. In
this paper, we do not focus on network structure design. Any CNN for semantic
segmentation would be feasible for our work.

Proposal-based instance segmentation: These methods exploit region
proposals to locate the object and then obtain corresponding mask exploiting
detection models [13, 44, 38, 11]. DeepMask [42] proposes a network to classify
whether the patch contains an object and then generates a mask. Multi-task
Network Cascades (MNC) [10] provides a cascaded framework and decomposes
instance segmentation into three phases including box localization, mask genera-
tion and classification. Instance-sensitive FCN [12] extends features to position-
sensitive score maps, which contain necessary information for mask proposals,
and generates instances combined with objectiveness scores. FCIS [33] takes
position-sensitive maps further with inside/outside scores to encode informa-
tion for instance segmentation. Mask-RCNN [23] adds another branch on top of
Faster-RCNN [44] to predict mask outputs together with box prediction and clas-
sification, achieving excellent performance. MaskLab [6] combines Mask-RCNN
with position-sensitive scores and improves performance.

Proposal-free instance segmentation: These methods often consist of
two branches, a segmentation branch and a clustering-purpose branch. Pixel-wise
mask prediction is obtained by segmentation output and the clustering process
aims to group the pixels that belong to a certain instance together. Liang et al.
[34] predict the number of instances in an image and instance location for each
pixel together with the semantic mask. They then perform a spectral clustering
to group pixels. Long et al. [28] encode instance relationships to classes and
exploit the boundary information when clustering pixels. Alireza et al. [15] and
Bert et al. [4] try to learn the embedding vectors to cluster instances. SGN
[37] tends to propose a sequential framework to group the instances gradually
from points to lines and finally to instances, which currently achieves the best
performance of proposal-free methods.
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Fig. 1. Basic structure for the proposed framework.
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Fig. 2. Illustration for pixel affinity. (a) Locations for proposed neighbors. (b) The
yellow point indicates the current pixel. Other points are neighboring pixels, in which
red ones indicate pixels of different instances and blue ones indicate the same instance
(rider). The pixel distance is NOT real but only for an illustration. (c) The derived
labels and expected network output.

3 Our Approach

3.1 Overview

The fundamental framework of our approach is shown in Fig. 1. We propose
splitting the task of instance segmentation into two sequential steps. The first
step utilizes CNN to obtain class information and pixel affinity of the input
image, while the second step applies the graph merge algorithm on those results
to generate the pixel-level masks for each instance.

In the first step, we utilize a semantic segmentation network to generate the
class information for each pixel. Then, we use another network to generate infor-
mation which is helpful for instance segmentation. It is not straightforward to
make the network output pixel-level instance label directly, as labels of instances
are exchangeable. Under this circumstance, we propose learning whether a pair
of neighboring pixels belongs to the same instance. It is a binary classification
problem that can be handled by the network.

It is impractical to generate affinities between each pixel and all the others
in an image. Thus, we carefully select a set of neighboring pixels to generate
affinity information. Each channel of the network output represents a probability
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Fig. 3. Basic structure for instance branch, we utilize the basic framework from
Deeplabv3 [7] based on Resnet-101 [25].

of whether the neighbor pixel and the current one belong to the same instance,
as illustrated in Fig. 2(a). As can be seen from the instance branch in Fig. 1,
the pixel affinities apparently indicate the boundary and show the feasibility to
represent the instance information.

In the second step, we consider the whole image as a graph and apply the
graph merge algorithm on the network output to generate instance segmentation
results. For every instance, the class label is determined by voting among all
pixels based on semantic labels.

3.2 Semantic Branch

Deeplabv3 [7] is one of the state-of-the-art networks in semantic segmentation.
Thus, we use it as the semantic branch in our proposed framework. It should be
noted that other semantic segmentation approaches could also be used in our
framework.

3.3 Instance Branch

We select several pixel pairs, with the output of instance branch representing
whether they belong to the same instance. Theoretically, if an instance is com-
posed of only one connected area, we can merge the instance with only two pairs
of pixel affinities, i.e. whether (p(x, y), p(x−1, y)) and (p(x, y), p(x, y−1)) belong
to the same instance, p(x, y) is the pixel at location (x, y) in an image I. For the
robustness to noise and ability to handle fragmented instances, we choose the
following pixel set as the neighborhood of the current pixel p(x, y)

N(x, y) =
⋃

d∈D

Nd(x, y), (1)

where Nd(x, y) is the set of eight-neighbors of p(x, y) with distance d, which can
be expressed as

Nd(x, y) = {p(x+ a, y + b), ∀a, b ∈ {d, 0,−d}} \ {p(x, y)}, (2)
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Fig. 4. A brief illustration for the graph merge algorithm

and D is the set of distances. In our implementation, D = {1, 2, 4, 8, 16, 32, 64},
as illustrated in Fig. 2(a).

We employ the network in Fig. 3 as the instance branch, in which we remove
the last softmax activation of the semantic segmentation network and minimize
the cross entropy loss after sigmoid activation. There are 8 × 7 = 56 elements
in the set N(x, y), so we assign 56 channels to the last layer. In the training
procedure, the corresponding label is assigned as 1 if the pixel pair belongs to
the same instance. In the inference procedure, we treat the network outputs as
the probability of the pixel pair belonging to the same instance. We make a
simple illustration of the selected neighbors in Fig. 2(b), and the corresponding
label is shown in Fig. 2(c).

3.4 Graph Merge

The graph merge algorithm takes the semantic segmentation and pixel affinity
results as input to generate instance segmentation results. Let vertex set V be
the set of pixels and edge set E be the set of pixel affinities obtained from the
network. Then, we have a graph G = (V,E). It should be noted that the output
of the instance branch is symmetrical. Pair (p(x, y), p(xc, yc)) obtained at (x, y)
and (p(xc, yc), p(x, y)) at (xc, yc) have same physical meaning, both indicating
the probability of these two pixels belonging to a certain instance. We average
the corresponding probabilities before using them as the initial E. Thus, G can
be considered an undirected graph.

Let e(i, j) denote an edge connecting vertex i and j. We first find the edge
e(u, v) with maximum probability and merge u, v together into a new super-pixel
uv. It should be noted that we do not distinguish pixel and super-pixel explicitly,
and uv is just a symbol indicating it is merged from u and v. After merging u, v,
we need to update the graph G. For vertex set V , two pixels are removed and a
new super-pixel is added,

V := V \ {u, v} ∪ {uv}. (3)

Then, the edge set E needs to be updated. We define E(u) =
⋃

k∈Ku

{e(u, k)}
representing all edges connecting with u. Ku is the set of pixels connecting to
u. E(u) and E(v) should be discarded as u and v have been removed. Kuv =
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Ku ∪Kv \ {u, v}, E is updated as follows,

E := E \ E(u) \ E(v)
⋃

k∈Kuv

{e(uv, k)}. (4)

For k ∈ K(u) ∩ K(v), e(uv, k) is the average of e(u, k) and e(v, k). Otherwise,
e(uv, k) inherits from e(u, k) or e(v, k) directly.

After updating G, we continue to find a new maximum edge and repeat
the procedure iteratively until the maximum probability is smaller than the
threshold rw. We summarize the procedure above in Algorithm 1. We then obtain
a set of V and each pixel/super-pixel represents an instance. We recover the
super-pixels to sets of pixels and filter the sets with a cardinality threshold rc
which means we only preserve the instance with pixels more than rc. We get
a set of pixels X as an instance and calculate the confidence of the instance
from the initial E. We average all the edges e(i, j) for both i, j ∈ X, and this
confidence indicates the probability of X being an instance.

Algorithm 1 Graph Merge Algorithm

Require: Averaged instance branch output P (u, v), thresholds rw
Ensure: Merge result V , E
1: Initialize V with pixels and E with e(u, v) = P (u, v)
2: while Maximum e(u, v) ∈ E ≥ rw do
3: Merge u, v to super-pixel uv
4: Update V : V ⇐ V \ {u, v} ∪ {uv}
5: Kuv = Ku ∪Kv \ {u, v}
6: for k ∈ Ku,v do
7: if k ∈ E(u) ∩ E(v) then
8: e(uv, k) is the average of e(u, k) and e(v, k)
9: else
10: e(uv, k) = k ∈ Ku? e(u, k) : e(v, k)
11: end if
12: end for
13: Update E: E ⇐ E \ E(u) \ E(v)

⋃
k∈Kuv

{e(uv, k)}
14: end while

We prefer the spatially neighboring pixels to be merged together. For this rea-
son, we divide D = {1, 2, 4, 8, 16, 32, 64} as three subsets Ds = {1, 2, 4}, Dm =
{8, 16} andDl = {32, 64} with which we do our graph merge sequentially. Firstly,
we merge pixels with probabilities in Ds with a large threshold rws = 0.97, and
then all edges with distances in Dm are added. We continue our graph merge
with a lower threshold rwm = 0.7 and repeat the operation for Dl with rwl = 0.3.

4 Implementation Details

The fundamental framework of our approach has been introduced in the previous
section. In this section, we elaborate on the implementation details.
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4.1 Excluding Background

Background pixels do not need to be considered in the graph merge procedure,
since they should not be present in any instance. Excluding them decreases the
image size and accelerates the whole process. We refer to the interested sub-
regions containing foreground objects as ROI in our method. Different from
the ROI in the proposal-based method, the ROI in our method may contain
multiple objects. In implementation, we look for connected areas of foreground
pixels as ROIs. The foreground pixels will be aggregated to super-pixels when
generating feasible areas for connecting the separated components belonging to
a certain instance. In our implementation, the super-pixel is 32x32, which means
if any pixel in a 32x32 region is foreground pixel, we consider the whole 32x32
region as foreground. We extend the connected area with a few pixels (16 in
our implementation) and find the tightest bounding boxes, which is used as
the input of our approach. Different from thousands of proposals used in the
proposal-based instance segmentation algorithms, the number of ROIs in our
approach is usually less than 10.

4.2 Pixel Affinity Refinement

Besides determining the instance class, the semantic segmentation results can
help more with the graph merge algorithm. Intuitively, if two pixels have different
semantic labels, they should not belong to a certain instance. Thus, we propose
refining the pixel affinity output from the instance branch in Fig. 1 by scores
from the semantic branch. We denote P (x, y, c) as the probability of p(x, y) and
p(xc, yc) belonging to a certain instance from the instance branch. We refine it
by multiplying the semantic similarity of these two pixels.

Let P(x, y) = (p0(x, y), p1(x, y), · · · , pm(x, y)) denote the probability output
of the semantic branch. m + 1 denotes the number of classes (including back-
ground), pi(x, y) denotes the probability of the pixel belonging to the i-th class
and p0(x, y) is the background probability. The inner product of the probabili-
ties of two pixels indicates the probability of these two pixels having a certain
semantic label. We do not care about background pixels, so we discard the back-
ground probability and calculate the inner product of P(x, y) and P(xc, yc) as∑m

i=1
pi(x, y)pi(xc, yc). We then refine the pixel affinity by

Pr(x, y, c) = σ(

m∑

i=1

pi(x, y)pi(xc, yc))P (x, y, c), (5)

where

σ(x) = 2× (
1

1 + e−αx
−

1

2
)a. (6)

This σ() function is modified from the sigmoid function and we set α = 5 to
weaken the influence of the semantic inner product.
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Fig. 5. Illustration for forcing local merge. We simulate the merging process with dis-
tance {1, 2, 4} and window size 2, we only show edges involved in this process. Pixels
with identical colors are merged and we update the new weights for edges. The left
graph shows that the new probability in distance {2} should only be averaged by the
original weights from distance {4} in the same direction. However, the right graph
shows the new probability for distance {1} should be an average of the edges from
both distance {1} and {2}.

Despite the information we mentioned above, we find that the semantic seg-
mentation model may confuse different classes. Thus, we define the confusion
matrix. The confusion matrix in semantic segmentation means a matrix where
cij represents the count of pixels belonging to class i classified to class j. Given
this, we can find that the semantic segmentation model sometimes misclassifies
a pixel in a subclass, but rarely across sets. Thus, we combine classes in each set
together as a super-class to further weaken the influence on instance segmen-
tation from the semantic term. Moreover, we set the inner product to 0, when
the two pixels are in different super-classes, which helps to refine the instance
segmentation results.

4.3 Resizing ROIs

Like what ROI pooling does, we enlarge the shortened edge of the proposed
boxes to a fixed size and proportionally enlarge the other edge, which we use as
the input. For the Cityscapes dataset, we scale the height of each ROI to 513,
if the original height is smaller than that. The reason of scaling it to 513 is that
the networks are trained with 513x513 patches. Thus, we would like to use the
same value for inference. Moreover, we limit the scaling factor to be less than 4.
Resizing ROIs is helpful for finding more small instances.

4.4 Forcing Local Merge

We force the neighboring m × m pixels to be merged before the graph merge.
During the process, we recalculate the pixel affinities according to our graph
algorithm in Sec. 3.4. Fig. 5 shows a simple example. Force merging neighboring
pixels not only filters out the noises of the network output by averaging, but
also decreases the input size of the graph merge algorithm to save on processing
time. We will provide results on different merge window size in Sec 5.3.

4.5 Semantic Class Partition

To get more exquisite ROIs, we refer to the semantic super-classes in Sec. 4.2
and apply it to the procedure of generating connected areas. We add together
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the probabilities in each super-class and classify the pixels to super-classes. To
find the foreground region of a super-class, we only consider the pixels classified
to this super-class as foreground and all the others as background. Detailed
experiment results will be provided in Sec. 5.3.

5 Experiment Evaluation

We evaluate our method on the Cityscapes dataset [9], which consists of 5, 000
images representing complex urban street scenes with a resolution of 2048×1024.
Images in the dataset are split into training, validation, and test sets of 2, 975,
500, and 1, 525 images, respectively. We use average precision (AP) as our metric
to evaluate the results, which is calculated by the mean of the IOU threshold
from 0.5 to 0.95 with the step of 0.05.

As most of the images in the Cityscapes dataset are background on top or
bottom, we discard the parts with no semantic labeled pixels on the top or
bottom for 90% of training images randomly, in order to make our data more ef-
fective. To improve semantic segmentation performance, we utilize coarse labeled
training data by selecting patches containing trunk, train, and bus as additional
training data to train the semantic branch. We crop 1554 patches from coarse
labeled data. To augment data with different scale objects, we also crop sev-
eral upsampled areas in the fine labeled data. As a result, the final patched fine
labeled training data includes 14178 patches, including 2975 original training
images with 90% of them having been dropped top and bottom background pix-
els. The networks are trained with Tensorflow [1] and the graph merge algorithm
is implemented in C++.

5.1 Training Strategy

For the basic setting, the network output strides for both semantic and instance
branch are set to 16, and they are trained with input images of size 513× 513.

For the semantic branch, the network structure is defined as introduced in
Sec. 3.2, whose weight is initialized with ImageNet [45] pretrained ResNet-101
model. During training, we use 4 Nvidia P40 GPUs with SGD [31] in the follow-
ing steps. (1) We use 19-class semantic labeled data in the Cityscapes dataset
fine and coarse data together, with an initial learning rate of 0.02 and a batch
size of 16 per GPU. The model is trained using 100k iterations and the learning
rate is multiplied by 0.7 every 15k iterations. (2) As the instance segmenta-
tion only focuses on 8 foreground objects, we then finetune the network with
9 classes labeled data (8 foreground objects and 1 background). Training data
for this model contains a mix of 2 times fine labeled patched data and coarse
labeled patches. We keep the other training setting unchanged. (3) We finetune
the model with 3 times of original fine labeled data together with coarse labeled
patches, with other training settings remaining unchanged.

For instance branch, we initialize the network with the ImageNet pretrained
model. We train this model with patched fine labeled training data for 120k
iterations, with other settings identical to step (1) in semantic model training.
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Table 1. Instance segmentation performance on the Cityscapes test set. All results
listed are trained only with Cityscapes.

Methods person rider car trunk bus train mcycle bicycle AP 50% AP

InstanceCut[29] 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7 27.9 13.0
SAIS[22] 14.6 12.9 35.7 16.0 23.2 19.0 10.3 7.8 36.7 17.4
DWT[3] 15.5 14.1 31.5 22.5 27.0 22.9 13.9 8.0 35.3 19.4
DIN[2] 16.5 16.7 25.7 20.6 30.0 23.4 17.1 10.1 38.8 20.0
SGN[37] 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4 44.9 25.0

Mask RCNN[23] 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0 49.9 26.2

Ours 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8 45.6 27.3

5.2 Main Results

As shown in Table 1, our method notably improves the performance and achieves
27.3 AP on the Cityscapes test set, which outperforms Mask RCNN trained with
only Cityscapes train data by 1.1 points (4.2% relatively).

We show qualitive results for our algorithm in Fig. 6. As shown in the figure,
we produce high quality results on both semantic and instance masks, where we
get precise boundaries. As shown in the last row of results, we can handle the
problem of fragmented instances and merge the separated parts together.

Our method outperforms Mask RCNN on AP but gets a relatively lower
performance on AP 50%. This could mean we would get a higher score when
the IOU threshold is larger. It also means that Mask RCNN could find more
instances with relatively less accurate masks (higher AP 50%), but our method
achieves more accurate boundaries. The bounding box of proposal-based method
may lead to a rough mask, which will be judged as correct with a small IOU.

Utilizing the implementation of Mask RCNN in Detectron4, we generate the
instance masks and compare them with our results. As shown in Fig. 7, our
results are finer grained. It can be expected that results will be better if we
substitute the mask from Mask RCNN with ours when both approaches have
prediction of a certain instance.

5.3 Detailed Results

We report the ablation studies with val set and discuss in detail.
Baseline: we take the algorithm we describe in Sec. 4.1 as the baseline, for

excluding backgrounds helps to significantly speedup the graph merge algorithm
and hardly affects the final results. We get 18.9% AP as our baseline, and we
will introduce the results for strategies applied to the graph merge algorithm.

We show the experiment results for graph merge strategies in Table. 2. For
pixel affinity refinement, we add semantic information to refine the probability
and get a 22.8% AP result. As shown in the table, it provides 3.9 points AP
improvement. Then we resize the ROIs with a fixed size of 513, and we get a

4 https://github.com/facebookresearch/Detectron
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Fig. 6. Results on Cityscapes val dataset, original image, semantic results, instance
results and ground truth from left to right. Results in the last two rows are cropped
from the original ones for better visualization.

Fig. 7. Results compared with Mask RCNN. The first row is our results and the second
row are results from Mask RCNN. As shown in the figure, we generate more fine-grained
masks.

raise of 5.9 points AP, which significantly improve the results. The merge win-
dow size influences the results a lot. We have a 0.5 point improvement utilizing
window size 2 and a 1.2 point drop with a window size of 4. As we can see,
utilizing 2 as the window size not only reduces the complexity of graph merge,
but also improves performance. Utilizing 4 causes a loss of detailed information
and performs below expectations. Therefore, we utilize 2 in the following ex-
periments. As mentioned in Sec. 4.1, we finally divide semantic classes into 3
subclasses for semantic class partition:{person, rider}, {car, trunk, bus, train}
and {motorcycle, bicycle}, finding feasible areas separately. Such separation re-
duces the influence across subclasses and makes the ROI resize more effectively.
We get a 1.5 improvement by applying this technique from 29.0% to 30.5%, as
shown in the table. It should be noted that utilizing larger images can make
results better, but it also increases processing time.

Besides the strategies we utilize in the graph merge, we also test our model for
different inference strategies referring to [7]. Output stride is always important
for segmentation-like tasks. Small output stride usually means more detailed
information but more inference time cost and smaller batch size in training. We
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Fig. 8. Examples of faliure case

Table 2. Graph Merge Strategy: we test for our graph merge strategies for our al-
gorithm including PAR: Pixel Affinity Refinement, RR: Resizing ROIs, FLM: Forcing
Local Merge and SCP: Semantic Class Partition. Note that 2 and 4 in FLM represent
the merge window size, default as 1.

PAR RR FLM SCP AP

18.9
X 22.8
X X 28.7

X X 2 29.2
X X 4 27.5

X X 2 X 30.7

test our models first trained on output stride 16, then we finetune models on
output stride 8 as in [7]. It shows in Table. 3 that both semantic and instance
model finetuned with output stride 8 improve results by 0.5 point individually.
When combined together, we achieve 32.1% AP with 1.4 point improvement
compared with output stride 16.

We apply horizontal flips and semantic class refinement as alternative infer-
ence strategies. Horizontal flips for semantic inference brings 0.7 point increase
in AP, and for instance inference flip, 0.5 point improvement is observed. We
then achieve 33.5% AP combining these two flips.

Through observations on the val set, we find that instances in bicycle and
motorcycle often fail to be connected when they are fragmented. To improve
such situations, we map the pixel affinities between these two classes with Equ.
6 at the distance d = 64. As shown in Table 3, semantic class refinement yields
0.6 point improvement, and we get our best result of 34.1% AP on the val set.

5.4 Discussions

In our current implementation, the maximum distance of the instance branch
output is 64. This means that the graph merge algorithm is not able to merge two
non-adjacent parts with distance greater than 64. Adding more output channels
can hardly help overall performance. Moreover, using other network structures,
which could achieve better results on semantic segmentation may further improve
the performance of the proposed graph merge algorithm. Some existing methods,
such as [32], could solve the graph merge problem but [32] is much slower than
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Table 3. Additional inference strategies: We test for additional inference strate-
gies for our algorithm including Semantic OS: output stride for semantic branch,
Instance OS: output stride for instance branch SHF: Semantic horizontal flip infer-
ence,IHF: Instance horizontal flip inference and SCR: Semantic Class Refinement. We
also list several results from other methods for comparison.

Methods Semantic OS Instance OS SHF IHF SCR AP

DWT[3] 21.2
SGN[37] 29.2

Mask RCNN[23] 31.5

Ours

16 16 30.7
8 16 31.2
16 8 31.2
8 8 32.1
8 8 X 32.8
8 8 X 32.6
8 8 X X 33.5
8 8 X X X 34.1

the proposed method. The current graph merge step is implemented on CPU and
we believe there is big potential to use a multi-core CPU system for acceleration.
Some examples of failure case are shown in Fig. 8. The proposed method may
miss some small objects or merge different instances together by mistake.

6 Conclusions

In this paper, we introduce a proposal-free instance segmentation scheme via
affinity derivation and graph merge. We generate semantic segmentation results
and pixel affinities from two separate networks with a similar structure. Taking
this information as input, we regard pixels as vertexes and pixel affinity infor-
mation as edges to build a graph. The proposed graph merge algorithm is then
used to cluster the pixels into instances. Our method outperforms Mask RCNN
on the Cityscapes dataset by 1.1 point AP improvement using only Cityscapes
training data. It shows that the proposal-free method can achieve state-of-the-art
performance. We notice that the performance of semantic segmentation keeps
improving with new methods, which can easily lead to performance improvement
for instance segmentation via our method. The proposed graph merge algorithm
is simple. We believe that more advanced algorithms can lead to even better
performance. Improvements along these directions are left for further work.

Acknowledgement. Yiding Liu, Wengang Zhou and Houqiang Li’s work was sup-
ported in part by 973 Program under Contract 2015CB351803, Natural Science Foun-
dation of China (NSFC) under Contract 61390514 and Contract 61632019.



Affinity Derivation and Graph Merge for Instance Segmentation 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Arnab, A., Torr, P.H.S.: Pixelwise instance segmentation with a dy-
namically instantiated network. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 879–888 (July 2017).
https://doi.org/10.1109/CVPR.2017.100

3. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
2858–2866 (July 2017). https://doi.org/10.1109/CVPR.2017.305

4. Brabandere, B.D., Neven, D., Gool, L.V.: Semantic instance segmentation
for autonomous driving. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). pp. 478–480 (July 2017).
https://doi.org/10.1109/CVPRW.2017.66

5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 40(4), 834–848 (April 2018). https://doi.org/10.1109/TPAMI.2017.2699184

6. Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.:
Masklab: Instance segmentation by refining object detection with semantic and
direction features. arXiv preprint arXiv:1712.04837 (2017)

7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

8. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation. arXiv preprint
arXiv:1802.02611 (2018)

9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for se-
mantic urban scene understanding. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 3213–3223 (June 2016).
https://doi.org/10.1109/CVPR.2016.350

10. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-
task network cascades. In: 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 3150–3158 (June 2016).
https://doi.org/10.1109/CVPR.2016.343

11. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable con-
volutional networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV). pp. 764–773 (Oct 2017). https://doi.org/10.1109/ICCV.2017.89

12. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional
networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision
– ECCV 2016. pp. 534–549. Springer International Publishing, Cham (2016)

13. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully
convolutional networks. In: Advances in neural information processing systems.
pp. 379–387 (2016)

14. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2155–2162 (June 2014). https://doi.org/10.1109/CVPR.2014.276



16 Y. Liu, S. Yang, B. Li, W. Zhou, J. Xu, H. Li and Y. Lu

15. Fathi, A., Wojna, Z., Rathod, V., Wang, P., Song, H.O., Guadarrama, S., Murphy,
K.P.: Semantic instance segmentation via deep metric learning. arXiv preprint
arXiv:1703.10277 (2017)

16. Fu, J., Liu, J., Wang, Y., Lu, H.: Stacked deconvolutional network for semantic
segmentation. arXiv preprint arXiv:1708.04943 (2017)

17. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-
Rodriguez, J.: A review on deep learning techniques applied to semantic segmen-
tation. arXiv preprint arXiv:1704.06857 (2017)

18. Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vi-
sion (ICCV). pp. 1440–1448 (Dec 2015). https://doi.org/10.1109/ICCV.2015.169

19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 580–587 (June 2014).
https://doi.org/10.1109/CVPR.2014.81

20. Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classifica-
tion with sets of image features. In: Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1. vol. 2, pp. 1458–1465 Vol. 2 (Oct 2005).
https://doi.org/10.1109/ICCV.2005.239
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