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Abstract. Hyperspectral image (HSI) recovery from a single RGB im-
age has attracted much attention, whose performance has recently been
shown to be sensitive to the camera spectral sensitivity (CSS). In this
paper, we present an efficient convolutional neural network (CNN) based
method, which can jointly select the optimal CSS from a candidate
dataset and learn a mapping to recover HSI from a single RGB im-
age captured with this algorithmically selected camera. Given a specific
CSS, we first present a HSI recovery network, which accounts for the un-
derlying characteristics of the HSI, including spectral nonlinear mapping
and spatial similarity. Later, we append a CSS selection layer onto the
recovery network, and the optimal CSS can thus be automatically deter-
mined from the network weights under the nonnegative sparse constraint.
Experimental results show that our HSI recovery network outperforms
state-of-the-art methods in terms of both quantitative metrics and per-
ceptive quality, and the selection layer always returns a CSS consistent
to the best one determined by exhaustive search.

Keywords: Camera spectral sensitivity selection, hyperspectral image
recovery, spectral nonlinear mapping, and spatial similarity

1 Introduction

Compared with ordinary panchromatic and RGB images, the hyperspectral im-
age (HSI) of the natural scene can effectively describe the spectral distribution
and provide intrinsic and discriminative spectral information of the scene. It has
been proven beneficial to numerous applications, including segmentation [43],
classification [49], anomaly detection [50], face recognition [39], document anal-
ysis [28], food inspection [48], surveillance [37], earth observation [6], to name a
few.

Hyperspectral cameras are widely used for HSI acquisition, which needs to
densely sample the spectral signature across consecutive wavelength bands for
every scene point. Such devices often come with a high cost and tend to suffer
from the degradation of spatial/temporal resolution.
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Recently, some methods [38, 3, 42, 22] have been presented to directly recover
the HSI from a single RGB image. Since the mapping from RGB to spectrum
is three-to-many, some prior knowledge has been introduced. Examples include
radial basis function network mapping [38], K-SVD based sparse coding [3],
constrained sparse coding [42], and manifold-based mapping [22]. In particular,
Jia et al. [22] disclose the nonlinear characteristics of natural spectra, and show
that properly designing nonlinear mapping can significantly boost the recovery
accuracy. Inspired by this observation, we propose a spectral convolutional neural
network (CNN) to better approximate the underlying nonlinear mapping. In
contrast to the pixel-wise operation in [38, 3, 22], we further propose to better
utilize the spatial similarity in HSI via a properly designed spatial CNN. In
addition, the input RGB image is employed to guide the HSI reconstruction and
residual learning is used to further preserve the spatial structure in our network.
Experimental results show that our recovery network outperforms state-of-the-
art methods in terms of quantitative metrics and perceptive quality, and both
the spectral CNN module and the spatial CNN module have contributed to this
performance gain.

Existing methods [38, 3, 42, 22] mainly focus on the HSI recovery under a
given camera spectral sensitivity (CSS) function, while [4] shows that the qual-
ity of spectral recovery is sensitive to the CSS used. For example, given a
CSS dataset, the optimal CSS selection may improve the accuracy by 33%, as
shown in [4]. Rather than using exhaustive search, an evolutionary optimization
methodology is used in [4] to choose the optimal CSS, which still needs to train
the recovery method for multiple times and results in high time complexity.

Through experiments, we have found that the performance of our CNN-based
recovery method is dependent on the CSS as well. This motivates us to develop
a CNN-based CSS selection method with a single training process, which can
jointly work with our HSI recovery method and have low time complexity. In this
work, we propose a novel CSS selection layer, which can automatically determine
the optimal CSS from the network weights under nonnegative sparse constraint.
As illustrated in Figure 1, this filter selection layer is appended to the recovery
network, which jointly selects the proper CSS and learns the mapping for HSI
recovery from a single RGB image captured with the algorithmically selected
CSS. Experiment results show that the selection layer always gives a CSS that
is consistent with the best one determined by exhaustive search. The spectral
recovery accuracy can be further boosted by this optimal CSS, compared with
using a casually selected CSS. To the best of our knowledge, this work is the first
to integrate optimal CSS selection with HSI recovery via a unified CNN-based
framework, which boosts HSI recovery fidelity and has much lower complexity.

Our main contributions are that we

– Design a CNN-based HSI recovery network to account for spectral nonlinear
mapping and utilize spatial similarity in the image plane domain;

– Develop a CSS selection layer to retrieve the optimal CSS on the basis of
the nonnegative sparse constraint onto the weight factors;
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Fig. 1. Overview of the proposed method, which combines optimal CSS selection and
HSI recovery into a unified CNN-based framework. The parameters for these two as-
pects are jointly learned first. Then, the RGB images are captured under the selected
optimal CSS as the inputs and the underlying HSIs are reconstructed by using the
HSI recovery network. The black arrow shows the training process and the red arrow
denotes the testing process.

– Jointly determine the optimal CSS and learn an accurate HSI recovery map-
ping in a single training process.

2 Related Work

Hyperspectral imaging can effectively provide discriminative spectral informa-
tion of the scene. To obtain HSIs, whiskbroom and pushbroom style scanning
systems [41, 5] are widely used to capture the scene pointwisely or linewisely.
RGB or monochromatic cameras with variant filters [51, 10, 9] or specific illu-
minations [40, 19] were also used to capture the HSI. But all these methods
scanning along the spatial or spectral dimension result in low temporal resolu-
tion. To capture dynamic scenes, snapshot hyperspectral cameras [14, 16, 15, 8]
were developed to capture full 3D HSIs, but they sacrificed spatial resolution.

To obtain high-resolution HSIs in real time, some coding-based hyperspec-
tral imaging approaches have been presented, relying on the compressive sensing
(CS) theory. CASSI [17, 44] employed a coding aperture with the disperser to uni-
formly encode the spectral signals into 2D space. DCCHI [45, 46] incorporated
a co-located panchromatic camera to collect more information simultaneously
with the CASSI measurement. SSCSI [33] jointly encoded the spatial and spec-
tral dimensions in a single gray image. Besides, fusion-based approaches [25, 1,
32, 31, 12, 11, 35] were presented. These approaches were based on a hybrid cam-
era system, in which a low spatial resolution hyperspectral camera and a high
spatial resolution RGB camera were mounted in a coaxial system. The captured
two images could be fused into a high resolution HSI, which has the same spa-
tial resolution as the RGB image and same spectral resolution as the input HSI.
All these coding-based and fusion-based hyperspectral imaging systems demand
either high precision optical design or expensive hyperspectral camera.

To avoid using the above mentioned specialized devices, i.e. multiple illumi-
nations, filters, coding aperture and hyperspectral cameras, HSI recovery from
a single RGB image has attracted more attention. The spectral recovery from
three values provided by the RGB camera arouses a three-to-many mapping,
which is severely underdetermined in general.
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To unambiguously determine the spectrum, some prior knowledge on the
mapping is introduced. Nguyen et al. [38] learned the mapping between white
balanced RGB values and illumination-free spectral signals based on a radial ba-
sis function network. Arad and Ben-Shahar [3] built a large hyperspectral dataset
for natural scenes, and derived the mapping between hyperspectral signatures
and their RGB values under a dictionary learned by K-SVD. Robles-Kelly [42]
reconstructed the illumination-free HSI based on a constrained sparse coding
approach by using a set of prototypes extracted from the training set. Jia et

al. [22] proposed a two-step manifold-based mapping method, which highlighted
the role of nonlinear mapping in spectral recovery. In this work, we present a
spectral CNN module to better account for spectral nonlinear mapping, and a
spatial CNN module to further incorporate the spatial similarity.

Arad and Ben-Shahar [4] first recognized that the quality of HSI recovery
from a single RGB image was sensitive to the CSS selection. To avoid the heavy
computational cost of exhaustive search, they proposed an evolutionary opti-
mization based selection strategy. However, the training has still to be conducted
multiple times under different CSS instances. In this work, we propose a CSS
selection layer under the nonnegative sparse constraint, and jointly select the
optimal CSS and learn the mapping for HSI recovery via a unified CNN-based
framework. This can be achieved in only one training process, in contrast to
repeated training operations in [4].

3 Joint Optimal CSS Selection and HSI Recovery

In this section, we present a CNN-based method for simultaneous optimal CSS
selection and HSI recovery from a single RGB image. The overall framework
of the proposed method is shown in Figure 1. In the training stage, given a
large set of CSS functions and HSIs, we first synthesize multiple RGB images
for each HSI under variant CSS functions, which are the input of the network.
The designed optimal CSS selection network is utilized to select the best CSS
and the corresponding RGB channels. In the HSI recovery network, we design
a spectral CNN to approximate the complex nonlinear mapping between the
RGB space and the spectra space, and a spatial CNN for the spatial similarity.
The CSS selection network and the spectral recovery network are combined to
recover the HSI, which should be close enough to its corresponding HSI in the
training dataset. In the testing stage, the input RGB image is obtained under
the selected CSS. A HSI will be obtained by feeding this input RGB image into
the recovery network, which has been learned in the training stage.

In the following, we first describe the motivation of our network structure by
digesting common approaches for HSI recovery from a single RGB image. Then,
we introduce our CNN-based method for both HSI recovery and optimal CSS
selection. Finally, the learning detail is provided.



Joint CSS Selection and HSI Recovery 5

3.1 Preliminaries and Motivation

Let Y ∈ R
3×M and X ∈ R

B×M denote the input RGB image and the recovered
HSI, where M and B are the number of pixels and bands in the HSI. The
relationship between Y and X can be described as

Y = CX, (1)

where C ∈ R
3×B denotes the RGB CSS function.

Most state-of-the-art methods assume that the CSS function is known and
model HSI recovery from a single RGB image as

E(X) = Ed(X,Y) + λEs(X), (2)

where the first term Ed(X,Y) is the data term, and it guarantees that the
recovered X should be projected to Y under the CSS function C. The second
term Es(X) is the prior regularization for X.

The models for the first term in the previous works [38, 3, 42, 22] can be
generally described as

Ed(X,Y) = ‖fd(X)−Y‖2F . (3)

where the function fd is linear mapping for [3, 42] and spectral nonlinear mapping
for [38, 22]. [22] shows that the nonlinear mapping can effectively assist HSI
recovery, compared with the linear constraint in [3].

In addition, [3, 42] assume that the spectra can be sparsely described by
several bases, which means

Es(X) = ‖Dα−X‖2F + ‖α‖1, (4)

where D is the learned spectral dictionary and α is the corresponding spectral
sparse coefficient. [38] and [22] implicitly assume that the spectral information
lies in a low dimensional space in the model.

Furthermore, since the neighboring pixels in the recovered HSI X should be
similar, [42] also has the spatial constraint as

Es(X) = ‖fs(X)‖2F , (5)

where the function fs denotes the local spatial operation.
According to these analyzes, we present a CNN-based HSI recovery method

from a single RGB image, which can effectively learn the nonlinear spectral
mapping and the spatial structure information to improve the recovered HSI.

Besides, from Equation (1), we can see that the quality of recovered HSI
X is influenced by both the input RGB image Y and the CSS function C.
Meanwhile, [4] shows that the selection of CSS significantly affects the quality of
HSI recovery. To boost the accuracy of recovered HSI, it is essential to select the
optimal CSS as well. Therefore, our method models the optimal CSS selection
and the HSI recovery via a unified CNN-based framework.
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Fig. 2. The architecture of CNN-based HSI recovery from a single RGB image.

3.2 HSI Recovery

Previous works have shown that effectively exploiting the underlying character-
istics of the HSI — spectral nonlinear mapping [38, 22] and spatial similarity [42]
— can reconstruct high quality HSI from a single RGB image. Compared with
these approaches, our method utilizes multiple CNN layers in spectral CNN
to deeply learn the nonlinear mapping between spectra and RGB space, and
employs DenseNet blocks [21] and ResNet modules [20] in the spatial CNN to
enlarge the receptive field and obtain more spatial similarity in the space do-
main. Besides, our method uses the input RGB image to further guide the HSI
recovery and residual learning to preserve the spatial structure. Figure 2 shows
the HSI recovery network.

Spectral CNN Previous works for the spectral recovery from a single RGB im-
age [38, 3, 42, 22] mainly consider the spectral mapping between the input RGB
image and the recovered HSI. It is well-known that CNN can effectively learn
the nonlinear mapping. Thus, we design a spectral CNN to learn the spectral
nonlinear mapping between the RGB values and the corresponding spectrum,
which consists of L layers. The output of the l-th layer is expressed as

Fl = ReLU(Wl ∗ Fl−1 + bl), where F0 = Y, (6)

where ReLU(x) = max{x, 0}, denoting a rectified linear unit [36]. Wl and bl

represent the filters and biases for the l-th layer, respectively. For the first layer,
we compute a0 feature maps using an s1 × s1 receptive field, where a0 = 64 in
our network. Filters are of size 3×s1×s1×a0, when the input is an RGB image.
In the 2-nd to (L−1)-th layers, we also compute a0 feature maps using an s1×s1
receptive field and a rectified linear unit. The filters are of size a0× s1× s1× a0.
Finally, the last layer uses the same receptive field and the filters are of size
a0 × s1 × s1 ×B. In the experiments, we set L = 5.
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To perform the spectral nonlinear mapping, s1 = 1 and the receptive field is
1× 1 in the spatial domain. It implies that only the spectral nonlinear mapping
is learned without any spatial structure.

RGB Guidance Many researches for pan-sharping [2, 52] employ the panchro-
matic image to preserve the structural information, as the two input images
should have similar spatial structure for the same scene. Inspired by this, we use
the input RGB image to guide the spatial information reconstruction, which is
modeled by stacking the input RGB image and the initialized HSI FL from the
spectral CNN mentioned above. Thus, the output of the (L+1)-th layer can be
expressed as

FL+1 = C(WL+1 ∗ stack(Y,FL) + bL+1), (7)

where C denotes the activation function. It is batch normalization (BN) [34]
followed by a ReLU [36].

Spatial CNN Due to abundant self-repeating patterns in natural images [7, 13],
the spatial information is usually similar in the neighboring area. To effectively
exploit the spatial similarity, we need to obtain abundant spatial correlation in
much larger area, which can be carried out by using several DenseNet blocks
[21]. We employ N DenseNet blocks into the designed network, and the output
of the n-th DenseNet block can be expressed as

Sn = Dn(stack(S0, · · · ,Sn−1)), where S0 = FL+1, (8)

where Dn denotes the n-th DenseNet block function.
In each DenseNet block, there are K ResNet modules [20]. For the n-th

DenseNet block, the input is Sn−1 and the k-th ResNet module can be expressed
as

Hk
n = Rn(H

k−1
n ) +Hk−1

n , where H0
n = Sn−1. (9)

In our spatial CNN, we set N = 4 and K = 4.
In addition, since the spatial structural information mainly exists in the high-

pass components, we employ the residual learning to efficiently reconstruct detail
information like [27]. Thus, the final output can be described as

X̂ = SN + FL. (10)

3.3 Optimal CSS Selection

Previous work [4] shows that the quality of HSI recovery is sensitive to the CSS
used to generate the input RGB image. As will be shown in Section 4.3, we
perform our HSI recovery method by using the synthetic RGB images under
different CSS functions in a brute force way. From Figure 5, we can see that
the accuracy of HSI recovery has about 10%∼25% difference. It means that
properly choosing a CSS will contribute to the HSI recovery accuracy as well.
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Fig. 3. The illustration of the optimal CSS selection.

The exhaustive search method and the evolutionary optimization method in [4]
are not appropriate for our CNN-based HSI recovery method, since they need to
train the HSI recovery network multiple times, which is extremely slow. Thus,
we propose to design a selection convolution layer to retrieve the optimal CSS,
which only needs to train once and has much lower time complexity.

To select the optimal CSS function, RGB images for each HSI are first synthe-
sized with all CSS functions in a candidate dataset. Let Cj (j = 1, · · · , J) denote
the j-th CSS function. Each synthetic RGB image via the j-th CSS function and
the t-th HSI in the training dataset can be described as

Yj,t = CjXt. (11)

Thus, for each scene, the input RGB images are obtained by stacking all RGB
images under different CSS functions, i.e.,

Yt = stack(Y1,t, · · · ,Yj,t, · · · ,YJ,t). (12)

Since our work mainly focuses on the HSI recovery from a single RGB image,
we will select a CSS from an existing camera, without considering the combi-
nation of channels from different cameras. Note that the simulated RGB image
cannot be negative, so the weight to select CSS should be nonnegative. To cor-
rectly localize the promising CSS, we further add a sparsity constraint. Thus,
we design a convolution layer for the optimal CSS selection, which acts as the
largest weight learned in the network under the nonnegative sparse constraint.
To enforce the nonnegative constraint, the weights in this convolution layer for
CSS selection are set to be positive. As for the sparse constraint, the weights are
learned under the sparsity promoting l1-norm.

The optimal CSS selection is equivalent to an RGB image selection in Yt,
which is synthesized with the selected optimal CSS. As shown in Figure 3, we
first separate RGB bands into three branches, which share the same convolution
filter V . The size of this filter is J × 1× 1× a1, where a1 = 1 is the number of
the output band for each branch. Thus, the output of this optimal CSS selection
network can be expressed as

Ŷt = stack(V ∗ Yt(R),V ∗ Yt(G),V ∗ Yt(B)), (13)
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where Yt(R), Yt(G), and Yt(B) denote all the red, green, and blue channels in
Yt, respectively.

The values in V can be determined by minimizing the mean squared error
(MSE) under the nonnegative sparse constraint between the selected RGB image

Ŷ and the corresponding ground truth image

Lc(V ) =
1

T

T∑

t=1

‖Ŷt(V )−Yt‖
2 + ‖V‖1, s.t. V ≥ 0, (14)

where Ŷt is the t-th output, Yt is the t-th corresponding selected optimal CSS,
and T is the number of training samples. A larger value in V represents that
its corresponding CSS is better for HSI recovery. Consequently, the CSS corre-
sponding to the largest value in V is selected as the optimal CSS.

3.4 Learning Details

The parameters for the HSI recovery network are denoted as Θ, and can be
achieved by minimizing the MSE between the reconstructed HSI X̂ and the
corresponding ground truth image,

Ls(Θ) =
1

T

T∑

t=1

‖X̂t(Ŷt,Θ)−Xt‖
2 + ‖Θ‖22, (15)

where X̂t is the t-th output, Xt is the corresponding ground truth, and Ŷt is
the corresponding selected RGB image by the CSS selection network.

In our method, since the output of CSS selection network in Equation (14)
is the input of HSI recovery network, it depends on the HSI recovery network
training. Thus, we first append the optimal CSS selection network onto the HSI
recovery network to select the optimal CSS and learn the mapping for spectral
recovery together. In this joint training phase, we train the entire network by
minimizing the loss

L = Lc(V ) + τLs(Θ), (16)

where τ is a predefined parameter. Please note that Yt needs not to be explicitly
labeled in this joint training process, and thus ‖Ŷt(V )−Yt‖

2 can be ignored in
Equation (14). Then, the CSS corresponding to the largest value in V is selected
as the optimal CSS, which is used to synthesize RGB images. These synthetic
RGB images act as the input of the recovery network to recover HSIs.

The loss is minimized with the adaptive moment estimation method [29].
For all designed network modules, we set the mini-batch size to 16, momentum
parameter to 0.9, and weight decay to 10−4. To fit the nonnegative constraint
for the optimal CSS selection, its convolution layer’s weights are initialized as
random positive numbers and all negative weights are set to zero during the
forward and backward propagation. In the HSI recovery network, all convolution
layer’s weights are initialized by the method in [18]. The network has been trained
with the deep learning tool Caffe [23] on a NVIDIA Titan X GPU.
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4 Experimental Results

In the following, we will first introduce the datasets used for training and testing
of all methods, and the metrics for quantitative evaluation. Then, we compare
our method with several state-of-the-art HSI recovery methods under a typi-
cal CSS. In addition, the effectiveness of our optimal CSS selection method is
evaluated on two CSS datasets.

4.1 Datasets and Metrics

We evaluate our joint CSS selection and CNN-based HSI recovery from a single
RGB image on three public hyperspectral datasets, including the ICVL dataset
[3], the NUS dataset [38], and the Harvard dataset [9]. The ICVL dataset consists
of 201 images, which is by far the most comprehensive natural hyperspectral
dataset. We randomly select 101 images in this dataset for training and use
the rest for testing. The NUS dataset contains 41 HSIs in the training set and
25 HSIs in the testing set. The Harvard dataset consists of 50 outdoor images
captured under daylight illumination. We remove those 6 images with strong
highlights, and randomly use 35 images for training and 9 images for testing. All
HSIs in these datasets have 31 bands. Two CSS datasets are used to evaluate
the optimal CSS selection. The first dataset [24] contains 28 CSS curves and the
second dataset [26] contains 12 CSS curves. Both datasets cover different camera
types and brands.

We uniformly extract the patch pairs from each HSI and its corresponding
RGB images under variant CSS functions with the size of 64× 64 and the stride
of 61. We randomly select 90% pairs for training and 10% pairs for validation.
The RGB patches are regarded as the network’s input and the HSI patches are
regarded as the ground truth.

Three image quality metrics are utilized to evaluate the performance of
all methods, including root-mean-square error (RMSE), structural similarity
(SSIM) [47], and spectral angle mapping (SAM) [30]. RMSE and SSIM are cal-
culated on each 2D spatial image, which measure the spatial fidelity between the
recovered HSI and the ground truth. SAM is calculated on the 1D spectral vec-
tor, which shows the spectral fidelity. Smaller values of RMSE and SAM suggest
better performance, while a larger value of SSIM implies better performance.

4.2 Evaluation on HSI Recovery

Here, we first compare our CNN-based HSI recovery method with three state-of-
the-art HSI recovery methods from a single RGB image under the known CSS,
including radial basis function network based method (RBF) [38], the sparse
representation based method (SR) [3], and manifold-based mapping (MM) [22].
The original HSIs in datasets serve as ground truth. To fairly compare with
these methods, we use the CSS function of Canon 5D Mark II to synthesize
RGB values, which is the same as [22].
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Table 1. RMSE, SSIM, and SAM results for different HSI recovery methods on there
HSI datasets.

Dataset Metrics RBF SR MM Ours

ICVL
RMSE 7.7152 3.0223 2.1245 1.3533

SSIM 0.9546 0.9582 0.9946 0.9975

SAM 0.1419 0.0645 0.0470 0.0277

NUS
RMSE 14.8785 8.9766 6.1825 5.2426

SSIM 0.8648 0.8701 0.9555 0.9649

SAM 0.3239 0.2358 0.2114 0.1712

Harvard
RMSE 11.8101 4.9534 4.9616 2.1923

SSIM 0.9539 0.9126 0.9541 0.9924

SAM 0.1723 0.1848 0.2273 0.0956

Table 2. Time complexity for different HSI recovery methods. (Unit: second)

Size RBF SR MM Ours(CPU) Ours(GPU)

256× 256× 31 0.20 2.08 4.13 18.94 0.09

512× 512× 31 0.69 8.38 16.27 75.87 0.36

1024× 1024× 31 2.55 33.36 65.67 299.04 1.58

Table 1 provides the average results over all HSIs in the testing sets from three
HSI datasets, for quantitative comparison of RBF, SR, MM and our method. The
best results are highlighted in bold. We observe that MM [22] outperforms the
other two methods. The reason is that MM effectively approximates the spectral
nonlinear mapping between the RGB values and spectral signatures, compared
with RBF and SR. This demonstrates that the spectral nonlinear mapping is
much relevant for HSI recovery from a single RGB image. Our method provides
substantial improvements over all these methods, in terms of RMSE, SSIM and
SAM. This reveals the advantages of deeply exploiting the intrinsic properties
of HSIs and verifies the effectiveness of our HSI recovery network.

To visualize the experimental results for all methods, several representa-
tive recovered HSIs and the corresponding recovered spectral errors on three
datasets are shown in Figure 4. The ground truth, our results, error images for
RBF/SR/MM/our methods, and RMSE results along spectra for all methods are
shown from top to bottom. The ground truth and our results are the 16-th band
for all scenes. The error images are the average absolution errors between the
ground truth and the recovered results across spectra. We can observe that the
recovered images from our method are consistently more accurate for all scenes,
which verifies that our method can provide higher spatial accuracy. The RMSE
results along spectra for all methods show that the results of our method are
much closer to the ground truth than other compared methods along spectra,
which demonstrates that our approach obtains higher spectral fidelity.

The average testing time among 10 independent trials for HSIs with different
sizes of all compared methods is included in Table 2. All results performed on
an Intel Core i7-6800K CPU are provided. We can see that our method have
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Fig. 4. Visual quality comparison on six typical scenes in HSI datasets. The ground
truth, recovered HSI by our method, the error map for RBF/SR/MM/our results, and
RMSE results along spectra for all methods are shown from top to bottom.

higher time complexity on CPU, yet the running time on GPU is much shorter.
Compared with the other methods, our method on GPU can reconstruct HSIs
more than 10 frames per second for size of 256× 256× 31.

4.3 Evaluation on CSS Selection

To evaluate the effect of CSS functions in our spectral recovery network, we
have conducted experiments to evaluate the performance of HSI recovery on
both CSS datasets [24, 26]. First, we perform all methods on the synthetic RGB
images by different CSS functions in a brute force way. As shown in Figure 5, we
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Fig. 5. The RMSE results of our HSI recovery network on three HSI and two CSS
datasets. The red and green bars indicate the best and worst CSS functions for the
HSI recovery in a brute force way, respectively.

(a) The CSS in [24] (b) The CSS in [26]

Fig. 6. The selected optimal CSS by our method on three HSI datasets.

can indeed observe that our method is also dependent on the CSS selection. In
spite of that, our method is still superior even with an improper CSS. To obtain
an optimal CSS for improved HSI recovery by training once, our method uses a
convolutional layer to select the optimal CSS. In Figure 6, we can see that our
method can effectively select the optimal CSS, which is consistent with the best
one determined by exhaustive search. In addition, the selected CSS keeps the
same for all three HSI dataset, which seems to indicate that this CSS properly
encodes the intrinsic spectral information of the physical world.
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Worst Middle Best Worst Middle Best

(a) The CSS functions in [24] (b) The CSS functions in [26]

Fig. 7. Visual quality comparison under different CSS functions on a typical scene.
The recovered HSIs under the worst/middle/best CSS functions in [24] and [26] are
shown in (a) and (b), respectively.

Figure 7 shows the HSI recovery results of a typical scene under different
CSS functions. The recovered HSIs under the worst/middle/best CSS functions
in [24] and [26] in terms of Figure 5 are shown in (a) and (b), respectively.
We can see that the results under the selected optimal CSS are much close to
the ground truth, which further demonstrates the effectiveness of joint optimal
CSS selection and the accuracy of the learned CNN nonlinear mapping in HSI
recovery.

5 Conclusion

In this paper, we have presented an effective CNN-based method to jointly select
the optimal camera spectral sensitivity function and learn an accurate mapping
to reconstruct hyperspectral image from an RGB image. We first propose a
spectral recovery network with properly designed modules to account for the
underlying characteristics of the HSI, including spectral nonlinear mapping and
spatial similarity. Meanwhile, a camera spectral sensitivity selection layer is de-
veloped to append onto the recovery network, which can automatically retrieve
the optimal sensitivity functions by using the nonnegative sparse constraint. Ex-
perimental results show that our method can provide substantial improvements
over the current state-of-the-art methods in terms of both objective metric and
subjective visual quality.

Our current network selects the optimal sensitivity from off-the-shelf cam-
eras. Therefore, there is no need to produce a new filter array, which is known
to be extremely expensive. However, filter array makers are indeed able to pro-
duce novel filter arrays, which might be better for this spectral recovery task
than all existing RGB cameras. It is thus worth investigating the limitations of
current filter manufacturing techniques and exploring how to incorporate these
limitations in a more relaxed filter response designing (rather than selection)
process.
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