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Abstract. We propose a new method for the absolute camera pose prob-
lem (PnP) which handles Rolling Shutter (RS) effects. Unlike all existing
methods which perform 3D-2D registration after augmenting the Global
Shutter (GS) projection model with the velocity parameters under var-
ious kinematic models, we propose to use local differential constraints.
These are established by drawing an analogy with Shape-from-Template
(SfT). The main idea consists in considering that RS distortions due to
camera ego-motion during image acquisition can be interpreted as virtual
deformations of a template captured by a GS camera. Once the virtual
deformations have been recovered using SfT, the camera pose and ego-
motion are computed by registering the deformed scene on the original
template. This 3D-3D registration involves a 3D cost function based on
the Euclidean point distance, more physically meaningful than the re-
projection error or the algebraic distance based cost functions used in
previous work. Results on both synthetic and real data show that the
proposed method outperforms existing RS pose estimation techniques in
terms of accuracy and stability of performance in various configurations.
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1 Introduction

Many modern CMOS cameras are equipped with Rolling Shutter (RS) sensors
which are relatively low-cost and electronically advantageous compared to Global
Shutter (GS) ones. However, in RS acquisition mode, the pixel rows are exposed
sequentially from the top to the bottom of the image. Therefore, images captured
by moving RS cameras produce distortions (e.g. wobble, skew), which defeat
the classical GS geometric models in 3D computer vision. Thus, new methods
adapted to RS cameras are strongly desired. Recently, many methods have been
designed to fit RS camera applications such as object pose calculation [1–3],
3D reconstruction from stereo rigs [3–5], bundle adjustment [6, 7], relative pose
estimation [8], dense matching [9, 4] and degeneracy understanding [10, 11].

Camera pose estimation (PnP) is the problem of calculating the pose of a cali-
brated camera from n 3D-2D correspondences. Camera pose estimation is impor-
tant and extensively used in Simultaneous Localization And Mapping (SLAM)
for robotics, object or camera localization and Augmented Reality (AR). Most
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existing works focus on solving the minimal problem based on the GS model [12–
15] with at least three point matches. Given such a minimal solution, RANSAC
and non-linear optimization are two frameworks to further improve robustness
and accuracy [16]. However, estimating the RS camera pose with the GS model
does not give satisfactory results [17].

A few works focus on RS camera pose estimation [18, 17, 19]. These all try
to extend GS-based PnP solutions by incorporating camera ego-motion in the
projection model. In contrast, we provide a completely new perspective in RS
projection and propose a novel solution to estimate RS camera pose and ego-
motion simultaneously (RS-PEnP).

Our solution is based on an analogy with Shape-from-Template (SfT). This
is the problem of reconstructing the shape of a deformable surface from a 3D
template and a single image [20]. We show that theoretically RS image distor-
tions caused by camera ego-motion can be expressed as virtual deformations of
3D shapes captured by a GS camera. Thus, the idea is to first retrieve virtual
shape deformations using SfT, and then to re-interpret these deformations as
RS effects by estimating camera ego-motion thanks to a new 3D-3D registra-
tion technique. By transforming the RS PnP problem into a 3D-3D registration
problem, we show that our RS-PEnP solution is more robust and stable than
existing works [17] because the constraints to be minimized are more physically
meaningful and are all expressed in the same metric dimension.

1.1 Related Work and Motivations

One of the key issues in solving RS geometric problems is incorporating feasible
camera ego-motion into projection models. Saurer et al. [18] propose a minimal
solver to estimate RS camera pose based on the translation-only model with
at least 5 3D-2D correspondences. However, this solution is limited to specific
scenarios, such as a forward moving vehicle. It is not feasible for the majority
of applications such as a hand-held camera, a drone or a moving robot, where
ego-rotation contributes significantly to RS effects [7, 21]. Albl et al. [19] propose
another minimal solver, which requires at least 5 3D-2D matches too. It is based
on a uniform ego-motion model. Nevertheless, it also requires the assistance of
inertial measurement units (IMUs), which makes the algorithm dependent on
additional sensors. Albl et al. also propose a minimal and non-iterative solution
to the RS-PEnP problem called R6P [17], which can achieve higher accuracy
than the standard P3P [12] by using an approximate doubly-linearized model.
The approximation requires that the rotation between camera and world frames
is small. Therefore, all 3D points need to be rotated first to satisfy the double-
linearization assumption based on a rough estimation from IMU measurements
or P3P. This pre-processing step makes R6P suffer from dependencies on ad-
ditional sensors or the risk that P3P gives a non satisfactory rough estimate.
Besides, R6P gives up to 20 feasible solutions and no flawless recipe is provided
to choose the right one, which may lead to unstable performances.

Magerand et al. [22] present a polynomial projection model for RS cameras
and propose the constrained global optimization of its parameters by means



Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template 3

Fig. 1. An overview of the proposed pose and ego-motion estimation
method: Step 1: Given an RS image and a known 3D template, we reconstruct the
virtually deformed shape using SfT. Step 2: By performing 3D-3D registration between
the virtually deformed shape and the template, RS camera pose and ego-motion are
obtained simultaneously.

of a semidefinite programming problem obtained from the generalized problem
of moments method. Contrarily to other methods, their optimization does not
require an initialization and can be considered for automatic feature matching
in a RANSAC framework. Unfortunately, the resolution is left to an automatic
but computationally expensive solver.

In summary, a new efficient and stable solution to estimate the pose and
ego-motion of an RS camera under general motion, without the need for other
sensors, is still absent from the literature. Such a solution is highly required by
many potential applications.

1.2 Contribution and Paper Organization

The main contributions of this paper are:

• We show and prove for the first time that RS effects can be explained by the
GS-based projection of a virtually deformed shape. Thus, we show the analogy
between the SfT and RS-PEnP problems.

• We propose a novel RS-PEnP method, illustrated in Fig. 1, which first
recovers the virtual template deformation using SfT and then computes the
pose and velocity parameters using 3D-3D registration.

We first introduce the RS projection model and the formulation of the RS
camera pose problem in section 2. Then we give a brief introduction to the SfT
problem in section 3. The links between the SfT and RS-PEnP problems are
analyzed in section 4. In section 5, we show how to retrieve RS camera pose and
ego-motion by using 3D-3D registration. The evaluation of the proposed method
and conclusions are presented in sections 6 and 7.
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2 The RS Pose and Ego-motion Problem

2.1 The RS Projection Model

In the static case, an RS camera is equivalent to a GS one. It follows a classical
pinhole camera projection model defined by the intrinsic parameters matrix K,
rotationR ∈ SO(3) and translation t ∈ R

3 between world and camera coordinate
systems [23]:

qi = ΠGS(K[R t]P̃i) = ΠGS(KQi) (1)

whereΠGS is the GS projection operator defined asΠGS([X Y Z]⊤) = 1
Z
[X Y ]⊤,

P̃i are the homogeneous coordinates of a 3D point Pi = [Xi, Yi, Zi]
⊤ in world

coordinates, transformed by camera pose into camera coordinates as Qi. Finally,
qi = [ui, vi]

⊤ is its projection in the image.
For a moving RS camera, during frame exposure, each row will be captured

in turn and thus with a different pose, yielding a new projection operator ΠRS .
Thus, Eq. (1) becomes:

qi = ΠRS(KQi) = ΠGS(KQRS
i ) = ΠGS(K[R(vi) t(vi)]P̃i) (2)

where R(vi) and t(vi) define the camera pose when the image row of index vi
is acquired. Therefore, a static 3D point Pi in world coordinates is transformed
into QRS

i , instead of Qi, in camera coordinates.

2.2 RS Pose and Ego-motion Estimation (RS-PEnP)

Except [24], all existing methods for RS are based on augmenting the projec-
tion model by the rotational and translational velocity parameters during image
acquisition. Considering that the scanning time for one frame is generally very
short, different kinematic models are considered in order to express R(vi) and
t(vi). Unfortunately, these additional parameters bring non-linearity in the pro-
jection model. A compromise should then be found between the accuracy of the
kinematic model and the possibility to find an elegant and efficient solution for
the RS-PEnP problem. A realistic simplified model is the uniform motion during
each image acquisition (i.e. constant translational and rotational speed).

3 Shape-from-Template

SfT refers to the task of template-based monocular 3D reconstruction, which
estimates the 3D shape of a deformable surface by using different physic-based
deformation rules [25, 20]. Fig. 2 illustrates the geometric modeling of SfT. A 3D
template τ ⊂ R

3 transforms to the deformed shape S ⊂ R
3 by a 3D deformation

Ψ ∈ C1(τ,R3). If Ω ⊂ R
2 is a 2D space obtained by flattening a 3D template τ ,

thus, an unknown deformed embedding ϕ ⊂ C1(Ω,R3) maps a 2D point p ∈ Ω
to Q ∈ S. Finally, Q can be projected onto an image point q ∈ I by a known
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Fig. 2. Geometric modeling of SfT.

GS-based projection function ΠGS . The known transformation between Ω and I
is denoted as η. It is obtained from 3D-2D point correspondences using Bsplines
as in [26]. The goal of SfT is to obtain the deformed surface S given p, q and
the first order derivatives of the optical flow at p, namely ∂η

∂p
(p).

The deformation constraints used to solve SfT can be categorized as:
• Isometric deformation. The geodesic distances are preserved by the deforma-
tion [20, 25–28]. This assumption commonly holds for paper, cloth and volumet-
ric objects.
• Conformal deformation. The isometric constraint can be relaxed to conformal
deformation, which preserves angles and possibly handles isotropic extensible
surfaces such as a balloon [20].
• Elastic deformation. Linear [29, 30] or non-linear [31] elastic deformations are
used to constrain extensible surfaces. Elastic SfT does not have local solution,
in contrast to isometric SfT, and requires boundary condition to be available, as
a set of known 3D surface points.

4 Moving Object under RS or Deformed Template under

GS?

4.1 An Equivalence between RS Projection and Surface
Deformation

The main idea in this paper is that distortions in RS images caused by camera
ego-motion can be expressed as the virtual deformation of a 3D shape captured
by a GS camera. We first model the GS projection of a known 3D shape after a
deformation Ψ :

mi = ΠGS(KΨ(Pi)) (3)

If we define the deformation as ΨRS(Pi) = R(vi)Pi + t(vi), Eq. (3) becomes
similar to Eq. (2):

mi = ΠGS(KΨRS(Pi)) = ΠGS(K(R(vi)Pi + t(vi))) = ΠRS(KQi) (4)
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Fig. 3. Equivalence between the RS projection of a rigid object and a GS projection
of a virtually deformed template.

Fig. 4. The 3D template shapes (green) captured by a RS camera under different
atomic ego-motions (first row) yield distorted RS images (second row). The exact same
images are also obtained as the projection of the corresponding virtually deformed
3D shapes (blue) into a GS camera (third row). The type of corresponding virtual
deformations are also given, see main text for details.

Eq. (4) and Fig. 3 show that 3D shapes observed by a moving an RS camera
are equivalent to corresponding deformed 3D shapes filmed by a GS camera.
We name this virtual corresponding deformation ΨRS as the equivalent RS

deformation and the virtually deformed shape ΨRS(Pi) as the equivalent

RS deformed shape .

4.2 Reconstruction of the Virtual RS Deformed Shape

After showing the link between the RS-PEnP and SfT problems, we focus on
how to reconstruct the equivalent RS deformed shape by using SfT. Since the
assumption on the physical properties of the template plays a crucial role in
solving the SfT problem we should determine which one of the deformation
constraints can best describe the equivalent RS deformation.

Any RS ego-motion can be regarded as a combination of six atomic ego-
motions: translation along the X (dx), Y (dy), Z (dz) axes and rotation about
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the X (ωx), Y (ωy), Z (ωz) axes. Fig. 4 shows RS images and equivalent RS
deformed shapes produced by different types of RS ego-motions. Albl et al. [19]
and Rengarajan et al. [32] illustrated four different types of RS effects (2D de-
formations) produced by camera ego-motion. Differently, we focus on virtual 3D
deformations instead. Fig. 4 also shows that the corresponding virtual defor-
mations caused by different camera ego-motions can be summarized into three
types, by assuming a vertical scanning direction of the 3D template:

(i) Horizontal wobble: Translation along the x-axis, rotation along the y-axis
and z-axis create surface wobble along the horizontal direction (perpendicular
to the scan direction). In such cases, the distances are preserved only along the
horizontal direction while the angles change during the deformation.

(ii) Vertical shrinking/extension: Translation along the y-axis or rotation
along the x-axis produce a similar effect, which shrinks or extends the 3D shape
along the scan direction (vertical). This deformation preserves the distances
along the horizontal direction but changes the angles. Thus, unlike an elastic
deformation, stretching the surface in the vertical direction will not introduce a
compression in the horizontal direction.

(iii) Vertical wobble: Beside horizontal wobble, rotation along the z-axis also
leads to wobble in the vertical direction. The distances along the horizontal
direction remain unchanged while the angles vary dynamically.

It is important to notice that the virtual deformations do not follow any clas-
sical physics-based SfT surface models such as isometry, conformity or elasticity:
isometric surface deformation preserves the distances along all directions while
the equivalent RS distortion only preserves the distances along the horizontal
direction. The conformal deformation is a relaxation of the isometric model,
which allows local isotropic scaling and preserves the angles during deforma-
tion. However, it cannot describe how the virtual deformation angles change.
The elastic surface stretches in one direction and generally produces extension
in the orthogonal direction. In contrast, no shrinking or extension occurs along
the horizontal direction during the equivalent RS deformation.

We focus on reconstructing the equivalent RS deformed shape based on the
isometric and conformal deformations for the following reasons:

• The isometric constraint holds along the horizontal direction on the 3D shapes.
Since the image acquisition time is commonly short, the effects of extension and
compression of the 3D shape are limited, which makes the isometric model work
in practice. Alternatively, the conformal model can reconstruct extensible 3D
shapes [20]. Thus, the conformal model as a relaxation of the isometric model
can be theoretically considered a better approximation to the equivalent RS
deformation.

• A complex equivalent RS deformed shape will be produced if an RS camera
is under general ego-motion, which is the composition of six types of atomic
ego-motions. Therefore, different surface patches on the shape could be under
different 3D deformations. Importantly, the isometric and conformal SfT solu-
tions we used from [20] exploit local differential constraints and recover the local
deformation around each point on the shape independently. The assumption we
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Fig. 5. Choosing the best equivalent RS shape from conformal SfT.

implicitly make is thus that the camera projection is GS in each neighbourhood.
This turns out to be a very mild and valid assumption in practice.

• Analytical solutions to SfT using the isometric and conformal models are
reported in [20], which are therefore faster and show the potential to form real-
time applications [27]. In contrast, the existing solutions to the elastic model are
made slower [29, 30] and require boundary conditions unavailable in RS-PEnP.

Isometric deformation. Bartoli et al. showed that only one solution exists
to isometric surface reconstitution from a single view and proposed the first
analytical algorithm [20]. A stable solution framework for isometric SfT has
been proposed later [28]. Thanks to the existing isometric algorithms, we can
stably and efficiently obtain a single reconstruction of equivalent RS deformed
shape ΨRS(Pi).

Conformal deformation. Contrarily to the isometric case, conformal-based
SfT theoretically yields a small, discrete set of solutions (at least two) and a
global scale ambiguity [20]. Thus, we obtain multiple reconstructed equivalent
RS deformed shapes by using the analytical SfT method under the conformal
constraint. However, only one reconstruction is close to the real equivalent RS
deformed shape ΨRS(Pi). Therefore, we pick up the most practically reasonable
reconstruction based on distance preservation along the horizontal direction. We
assume that a total of m reconstructed shapes

{
ΨRS
j (P), j = 1, 2...,m

}
are

obtained. As shown in Fig. 5 the 2D points located close to each other in the
scanning direction in the image are segmented into b groups Gk, k ∈ [1, b] of Nk

points. In the experiments, we group two 2D points into the same group if their
difference of row index is lower than a threshold (experimentally set as 5 pixels).
Then, we calculate a global scale factor sj of each reconstructed equivalent RS

deformed shape to the template by using sj = 2
n(n−1)

∑
i,i′∈[1,n],i 6=i′

dii′/d
j
ii′ ,

where dii′ is the euclidean distance between 3D points Pi and Pi′ and djii′ is
the euclidean distance of the corresponding reconstructed 3D points ΨRS

j (Pi)

and ΨRS
j (Pi′). We choose i, i′ ∈ [1, n] randomly and calculate the average value.
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Finally, we choose the reconstruction ΨRS
j (P) with the smallest sum of distance

differences along the horizontal direction between each equivalent RS deformed
shapes xdjii′ and known 3D template xdii′ as the best solution:

argmin
j∈[1,m]

b∑

k=1

∑

i,i′∈[1,Nk],
i 6=i′

|sj
xdjii′ −

xdii′ | (5)

5 Camera Pose and Ego-motion Computation

5.1 Kinematic Model and RS Projection

Since the acquisition time of a frame is commonly short, one can generally assume
a uniform kinematic model (with constant translational and rotational veloci-
ties). Moreover, by considering small rotation angles, we obtain the so-called
linearized model, which has been used in many applications [22, 17, 8, 10].

By using the linearized RS ego-motion model, the rotation R(vi) and trans-
lation t(vi) of the ith row in Eq. (2) become:

R(vi) = (I+ [ω]×vi)R0

t(vi) = t0 + dvi
(6)

where R0 and t0 are the rotation and the translation of the first row, which we
set as the reference pose for the frame, d and ω = [ω1, ω2, ω3]

⊤ are the trans-
lational and rotational velocities respectively. Thus, the rotation during acquisi-
tion can be defined by Rodrigues’s formula as aa⊤(1− cos(viω)) + I cos(viω) +
[a]× sin(viω), where ω = |ω|, a = ω/ω. With the assumption of short acquisition
time, Rodrigues’s formula can be simplified as I+vi[ω]× by using the first order
Taylor expansion, where [ω]× is the skew-symmetric matrix of ω.

5.2 3D-3D Registration

After obtaining the equivalent RS shape ΨRS(P), we register the virtually de-
formed shape to the known 3D template P using the RS ego-motion model.
By iteratively minimizing the distance errors between the known 3D template
and the reconstructed equivalent RS shape, we can obtain the camera pose and
ego-motion parameters simultaneously:

argmin
R0,t0,ω,d

n∑

i=1

∥∥R(vi)Pi + t(vi)− ΨRS(Pi)
∥∥ (7)

where R0 and t0 are initialized using a classical PnP method [34]. Actually,
we slightly abused the term ‘registration’ to mean that the 3D points of the
virtually deformed surface are fitted with the corresponding 3D points of the
template. This can be seen as a registration where the recovered parameters
are not a mere rigid transformation but a local motion with constant velocity.
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Fig. 6. Reconstructed equivalent RS deformed shapes by AnIRS (magenta points)
and AnCRS (green crosses) compared to ground truth structure (blue circles) under
six types of camera ego-motion.

The ego-motion parameters (ω,d) are initialized by the following two steps: (1)
Group image points into sets of vertically close points (so that the RS effect can
be neglected) and run P3P for each set. (2) Initialize d and ω by computing the
relative translation and rotation between groups and dividing by the scan time.
Alternatively, we can operate in the same procedure by grouping the points of
the deformed surface into subsets of close 3D points, which are registered by
3D point transformations [35]. However, in many practical situations, it is more
convenient and more efficient to set the initial values of d and ω to 0, which in
our experiments always allowed convergence toward the correct solution.

6 Experiments

In our experiments, the analytical isometric solution [28]1 (AnIRS) and analyti-
cal conformal solution (AnCRS) [20]1 are used to reconstruct the equivalent RS
deformed shape of both synthetic and real planar and non planar templates un-
der isometric and conformal constraints respectively. The Levenberg-Marquardt
algorithm is used in the non-linear pose and ego-motion estimation from Eq. (7).

6.1 Synthetic Data

We simulated a calibrated pin-hole camera with 640×480 px resolution and 320
px focal length. The camera was located randomly on a sphere with a radius of 20
units and was pointing to a simulated surface (10×10 units) with varying average
scanning angles from 0 to 90 deg. We randomly drew n points on the surface to
form the 3D template. Random Gaussian noise with standard deviation σ was
also added to the 2D projected points q.
Recovering the equivalent RS deformed shape. We first evaluate the re-
construction accuracy of AnIRS and AnCRS on the equivalent RS deformed
shape. Since the types of deformation depend on the type of RS ego-motion,
we measure the mean and standard deviation of distances between the recon-
structed 3D points and the corresponding points on the 3D template under six
atomic ego-motion types (section 4.2). For each motion type, we run 200 trials
to obtain statistics. We varied the number of 3D-2D matches from 10 to 121 and

1 http://igt.ip.uca.fr/∼ab/Research
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Table 1. Mean (|eI |, |eC |) and standard deviation (σI , σC) of reconstruction errors
(expressed in units) of the equivalent RS deformed shape by AnIRS and AnCRS
under six types of camera ego-motion.

dx dy dz ωx ωy ωz

|eI | 0.0130283 0.0113629 0.0001183 0.0023273 0.0020031 0.1338190
|eC | 0.0040963 0.0052104 0.0009037 0.0000921 0.0008493 0.0008417
σI 0.0001810 0.0000943 0.0000014 0.0000834 0.0007209 0.0393570
σC 0.0000318 0.0000529 0.0000310 0.0000206 0.0003639 0.0001201

used a noise level σ = 1 px. At each trial, the ego-motion speed was randomly
set as follows: translational speed varying from 0 to 3 units/frame and rotational
speed varying from 0 to 20 deg/frame.

The results in Fig. 6 show that both AnIRS and AnCRS provide stable
and high accuracy results for the equivalent RS deformed shape reconstruction.
The quantitative evaluation in Table 1 demonstrates that AnCRS generally
performs better than AnIRS. Specifically, it indicates that the advantages of
AnCRS are significant in the cases of ego-rotation along the x or z-axis. The
only exception is in translation along the z-axis, where the equivalent RS de-
formation is with relatively smaller extension/shrinking than other types. Thus,
AnIRS gives better results thanAnCRS. However, all observations confirm our
analysis in section 4.2 that conformal surfaces can better model the extensibility
of equivalent RS deformation generally.

Pose estimation. We compared AnIRS and AnCRS in camera pose estima-
tion with both the GS PnP solution GS-PnP2 [13] and the RS-PEnP solution
RS-PnP3 which uses R6P [17]. Since the ground truth of camera poses are
known, we measured the absolute error of rotation (deg) and translation (units).

• Accuracy vs ego-motion speed. We fixed the number of 3D-2D matches
to 60 and noise level to σ = 1 px. We increased the translational speed and
rotational speed from 0 to 3 units/frame and 20 deg/frame gradually. At each
configuration, we run 100 trials with random velocity directions and measured
the average pose errors. The results in Fig. 7(a,b) show that both AnIRS and
AnCRS provide significantly more accurate estimates of camera orientation
and translation with all ego-rotation configurations (ωx, ωy and ωz) compared
to GS-PnP and RS-PnP. Under three ego-translations, AnIRS and AnCRS
show an obvious superiority in camera rotation estimation, and perform slightly
better in camera translation estimation than RS-PnP. As expected, GS-based
GS-PnP fails in pose estimation once the ego-motion is strong. In contrast,
RS-PnP achieves better results in translation than GS-PnP, but both of them
provide an inaccurate estimate for camera rotation to the same extent.

•Accuracy vs image noise. In this experiment, we evaluated the robustness of
the four solutions against different noise levels. Thus, we fixed the camera with

2 estimateWorldCameraPose function in MATLAB
3 http://cmp.felk.cvut.cz/∼alblcene/r6p
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Fig. 7. Pose estimation errors for AnIRS, AnCRS, the GS GS-PnP and RS-PnP
under different ego-translations (a), ego-rotations (b), image noise levels (c) and number
of matches (d).

translational and rotational speed at 1 unit/frame and 5 deg/frame. Random
noise with levels varying from 0 to 2 px were added to the 60 image points.
The results in Fig. 7(c) show that both AnIRS and AnCRS are robust to
the increasing image noise. In contrast, GS-PnP and RS-PnP are relatively
sensitive to image noise.
• Accuracy vs number of matches. The number of 3D-2D matches has a
great impact on the PnP problem. Therefore, we evaluated the performance of
the proposed method with different numbers of 3D-2D matches. The camera was
fixed with translational and rotational speed at 1 unit/frame and 5 deg/frame.
The image noise level was set to 1 px. Then we increased the number of matches
from 10 to 120. The results in Fig. 7(d) show that the estimation accuracy
of all four methods increases with the number of matches. However AnIRS
and AnCRS provides better results in both rotation and translation estimation
compared to GS-PnP and RS-PnP.

6.2 Real Data

Augmented Reality with an RS video. The four methods have been fur-
ther evaluated by using real RS images. A planar marker providing 64 3D-2D
matches was captured by a hand-held logitech webcam. Strong RS effects are
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Fig. 8. Visual comparison of reprojected object boundaries by different camera pose
and ego-motion estimates. erp is the reprojection error of the 3D marker points.

Fig. 9. Results of pose registration with real RS video: (a) An example of input RS
image. (b) Rotation and translation errors of each frame. (c) Estimated trajectories
by GS-PnP, RS-PnP, AnIRS and AnCRS compared to ground truth.

present on the recorded video due to the quick arbitrary camera ego-motion.
This scenario can occur in many AR applications. After obtaining the camera
pose and ego-motion, the boundaries of the calibration board were reprojected
into the RS image. As shown in Fig. 8(c), if the poses and ego-motions are accu-
rately recovered, the reprojected matrix boundaries can perfectly fit the planar
marker. In addition to visual checking, the mean value of reprojection errors of
3D marker points of each frame were used as a quantitative measurement.

In the first frame, all four methods obtained acceptable reprojected matrix
boundaries due to the small RS effects. However, finding more inliers does not
ensure retrieving the true pose and ego-motion, as RS-PnP yields 20 geomet-
rically feasible solutions and it is challenging to pick the true one. For example,
Fig. 8(a) shows the estimated pose in our AR dataset, where only static cam-
era frames (without ego-motion) were picked. Fig. 8(b) shows that R6P gives
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distributed locations and huge ego-motion up to 5m/frame, while P3P and our
method give similar poses.

In the second frame, with the camera quickly moving, RS-PnP and The GS-
based method GS-PnP provide unstable estimates of camera pose. In contrast,
both proposed methodsAnIRS andAnCRS significantly outperformGS-PnP
and RS-PnP. It is noteworthy that AnCRS achieves slightly smaller reprojec-
tion errors than AnIRS. This coincides with the observations made in the syn-
thetic experiments and confirms the theoretical analysis of section 4.2 that the
conformal constraint is more suitable to explain the equivalent RS deformations.
Pose registration with real RS video. We tested the four methods for pose
registration of an SfM reconstruction. The public dataset [7] was used, which was
captured by both RS and GS cameras installed on a rig. The 3D points were
obtained by performing SfM with the GS images. 3D-2D correspondences can
be obtained by matching RS images to GS images. The results are presented in
Fig. 9. The proposed methods AnIRS and AnCRS give clearly more accurate
estimates than GS-PnP and RS-PnP for most frames.
Running time. The experiments were conducted on an i5 CPU at 2.8GHz
with 4G RAM. On average, it took around 2.8s for AnIRS (0.1s for isometric
reconstruction and 2.7s for 3D-3D registration) and 14.6s for AnCRS (10.6s
for conformal reconstruction and 4s for 3D-3D registration). Since the proposed
method was implemented in MATLAB, an improvement can be expected when
using C++ and GPU acceleration, as shown in [27].

7 Conclusion

We have proposed a novel method which addresses the RS-PEnP problem from
a new angle: using SfT. By analyzing the link between the SfT and RS-PEnP
problems we have shown that RS effects can be explained by the GS projection
of a virtually deformed shape. As a result the RS-PEnP problem is transformed
into a 3D-3D registration problem. Experimental results have shown that the
proposed methods outperform existing RS-PEnP techniques in terms of accuracy
and stability. We interpret this improved accuracy as the result of transforming
the problem from a 3D-2D registration into a 3D-3D registration problem. This
has enabled us to use 3D point-distances instead of the re-projection errors,
which carry more physical meaning and make the error terms homogeneous. A
possible extension of our work is to derive the exact differential properties of
equivalent RS deformation.
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