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Abstract. Despite many advances in deep-learning based semantic seg-
mentation, performance drop due to distribution mismatch is often en-
countered in the real world. Recently, a few domain adaptation and active
learning approaches have been proposed to mitigate the performance
drop. However, very little attention has been made toward leveraging
information in videos which are naturally captured in most camera sys-
tems. In this work, we propose to leverage “motion prior” in videos for
improving human segmentation in a weakly-supervised active learning
setting. By extracting motion information using optical flow in videos,
we can extract candidate foreground motion segments (referred to as
motion prior) potentially corresponding to human segments. We pro-
pose to learn a memory-network-based policy model to select strong

candidate segments (referred to as strong motion prior) through rein-
forcement learning. The selected segments have high precision and are
directly used to finetune the model. In a newly collected surveillance
camera dataset and a publicly available UrbanStreet dataset, our pro-
posed method improves the performance of human segmentation across
multiple scenes and modalities (i.e., RGB to Infrared (IR)). Last but not
least, our method is empirically complementary to existing domain adap-
tation approaches such that additional performance gain is achieved by
combining our weakly-supervised active learning approach with domain
adaptation approaches.

Keywords: Active Learning, Domain Adaptation, Human Segmenta-
tion

1 Introduction

Intelligent camera systems with the capability to recognize objects often en-
counter issues caused by data distribution mismatch in the real world. For in-
stance, surveillance cameras encounter various weather conditions, view angles,
lighting conditions, and sensor modalities (e.g., RGB, infrared or even thermal).
A standard solution is to collect more labeled images from various distributions
to train a more robust model. However, collecting high-quality labels is very
expensive and time-consuming, especially for segmentation and detection tasks.
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Fig. 1. (top): RGB patches and
their corresponding patch-based
motion priors extracted from
videos. The priors can be classified
into “good” and “bad” ones.
(bottom): Our proposed active
learning strategy can select good
motion priors to improve perfor-
mance in a cross-modality (RGB
to IR) segmentation scenario.

These considerations raise two critical questions: (1) “how to select data points
for training such that the accuracy improved as much as possible?” and (2) “how
to obtain the label of the selected data points with cost as low as possible?”

Active learning is one of the common paradigms to address the “how to se-
lect” question since it is defined as learning to select data points to label, from
a pool of unlabeled data points, in order to maximize the accuracy. There exist
many heuristics [1] which have been proven to be effective when applied to clas-
sical machine learning models. However, Sener and Savarese [2] have shown that
these heuristics are less effective when applied to CNN. To overcome the limi-
tation, Sener and Savarese [2] propose a new active learning method specifically
designed for Convolutional Neural Networks (CNNs). Despite recent advances,
Most active learning methods require human to label the selected data points.
For segmentation and detection tasks, the cost of labeling a small set of selected
data points can still be relatively expensive and time-consuming.

On the other hand, instead of collecting independent images, it is generally
easy to collect a sequence of images (i.e., a video) from always-on camera sys-
tems. Sequences of images have two main properties: (1) images close in time are
similar/redundant, and (2) difference in two consecutive images reveals motion
information potentially corresponding to moving objects. Very little attention,
however, has been made toward exploiting these properties in a video to auto-
matically provide supervision to boost recognition performance and mitigate the
performance drop caused by distribution mismatch. This is related to the “how
to obtain labels” question. If we can obtain labels automatically from videos, it
will be immensely beneficial for intelligent camera systems. In fact, researchers
have proposed to extract motion information from a sequence of images. For in-
stance, given two consecutive frames, dense optical flow can be extracted for each
pixel. Given a longer sequence of frames, sparse long-term trajectories of pixels
can be extracted. In the rest of the paper, we refer to these motion information
in a video as “motion prior”.

In this work, we propose to leverage motion prior in videos for improving
human segmentation accuracy. We first compute dense optical flow between two
consecutive frames. Then, we treat pixels with flow higher than a threshold
as candidates of foreground motion segments, which are referred to as “motion
prior”. Due to the nature of imperfect optical flow, a majority of the segments are
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quite noisy (see examples in Fig. 1). Considering that only some candidates are
good and many candidates are noisy, we propose to learn a memory-network-
based policy model to select good candidate segments through reinforcement
learning. The selected good segments are then used as additional ground truth
to finetune the human segmenter. In this way, we can achieve active learning
without additional human annotation.

Our policy is trained on a hold-out dataset with unlabeled videos and a set
of labeled images. The training of the policy is formulated as a reinforcement
learning problem where the reward is the accuracy of the labeled images and
the action is whether to select each motion segment. Once the policy is trained,
we can apply the policy to select motion segments in challenging cross-modality
(RGB to IR) or cross-scene settings. We refer our setting as weakly-supervised
active learning since the policy needs to be trained on an additional hold-out
dataset.

In a newly collected surveillance camera dataset and a publicly available Ur-
banStreet dataset, our proposed method improves the performance of human
segmentation across multiple scenes and modalities (i.e., RGB to Infrared (IR)).
Last but not least, our method is empirically complementary to existing domain
adaptation approaches such that additional performance gain is achieved by com-
bining our weakly-supervised active learning approach with domain adaptation
approaches.

In the following sections, we first describe the related works in Sec. 2. Then,
we introduce our new surveillance cameras dataset in Sec. 3. Our main technical
contribution—policy-based weakly-supervised active learning for strong motion
prior selection—is introduced in Sec. 4. Finally, we report our experimental
results in Sec. 5.

2 Related Works

We discuss the related work in the fields of motion segmentation, human seg-
mentation, active learning and domain adaptation.

2.1 Motion Segmentation

Motion segmentation aims to decompose a video into foreground objects and
background using motion information. Feature-based motion segmentation meth-
ods assume that segmentation of different motions is equivalent to segment the
extracted feature trajectories into different clusters. These methods can be classi-
fied into two types: affinity-based methods [3,4] and subspace-based method [5,6].
Some of the works utilize properties of trajectory data. For example, Yan and
Pollefeys [7] use geometric constraint and locality to solve the problem. Re-
cently, [8,9] propose to jointly tackle the motion segmentation and optical flow
tasks. Nirkin et al. [10] use motion as a prior and propose a man in the loop for
producing segmentation labels. In our work, we simply obtain candidate mov-
ing object segments via high-quality optical flow. Most importantly, none of the
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work aforementioned leverage motion segmentation for weakly-supervised active
learning.

2.2 Human Segmentation

Human segmentation has a wide range of applications. For instance, human
segmentation in a high-density scene (crowded or occluded) acquired from a
stationary camera has been discussed in early works [11,12]. Spina et al. [13]
demonstrate applications in pose estimation and behavior study. On the other
hand, in many applications, real-time performance is critical. Song et al. [14]
achieve 1000 fps using a CNN-based architecture which outperforms traditional
methods in both speed and accuracy. Some works use motion information for
helping human segmentation, for instance, Guo et al. [15] base on local color
distribution and shape priors through optical flow, and Lu et al. [16] describe
a hierarchical MRF model to bridge low-level video fragments with high-level
human motion and appearance.

In recent years, thermal and infrared systems have gained popularity for
night vision. Hence, human segmentation on infrared images has become an
important topic. For example, Tan et al. [17] propose a background subtraction
based method for human segmentation on thermal infrared images. He et al. [18]
further utilize predicted human segments on infrared images to guide robots
search. To demonstrate severe domain shift, we evaluate our method mainly on
cross-modality (RGB to IR) domain adaptation for human segmentation.

2.3 Active learning

An active learning algorithm can explore informative instances, querying desired
output form users or other sources. Uncertainty-based approaches are widely
used. These works consider uncertainty as the selection strategies. They find
hard examples by dropout MC sampling [19], using heuristics like highest en-
tropy [20], or geometric distance to decision boundaries [21,22]. Other approaches
consider the diversity of selected samples, using k-means algorithms [2,23] or
sparse representation for subset selection [24]. Still other important concepts
also help the performance, such as selecting instances which will maximize the
variance of output [25,26], or introducing the relationships between data points
in structured data [27,28].

Recently, some works model the active learning process as a sequence of
querying actions, using deep reinforcement learning. Fang et al. [29] demon-
strates on cross-lingual setting and Bachman et al. [30] models the learning
algorithm via meta-learning. Our approach is similar to these methods using
learnable strategy rather than predefined heuristic. Above methods show their
goal to reduce human label cost. However, we use active learning for unsuper-
vised finetuning since our method selects automatically computed motion priors,
requiring ZERO human label cost once the policy has learned.
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2.4 Domain Adaptation

Domain adaptation leverages information from one or more source domains to
improve the performance on target domain. Recent methods focus on learning
deep representations to be robust to domain shift [31]. Several other works pro-
pose to align source and target domains in feature space based on Maximum
Mean Discrepancy (MMD) [32] or Central Moment Discrepancy (CMD) [33].

On the other hand, adversarial training [34] has been applied for domain
adaptation as well [35,36,37]. Liu et al. [35] propose Coupled GAN which gener-
ates a joint distribution of two domains for classification. Ganin et al. [36] applies
adversarial training for achieving maximal confusion between the two domains.
Other works such as Domain Separation Networks (DSN) [38] split the feature
into shared representations and private ones, in order to improve the ability to
extract domain-invariant features. Most of the works mentioned above focus on
classification. Hoffman et al. [39], Chen et al. [40] and more recent works [41,42]
extend to segmentation which is closer to our human segmentation task. In this
work, we show that our proposed weakly-supervised active learning approach is
complementary to state-of-the-art domain adaptation approaches.

3 Surveillance Datasets

In order to create challenging scenarios in videos, we have collected a new surveil-
lance camera dataset consisting of large distribution mismatch due to cross-
domains scenarios: cross-modalities (i.e., RGB to InfraRed (IR)) and across-
scenes. It is surprisingly difficult to find existing segmentation annotated cross-
domains video dataset. Due to the high cost of labeling, most public annotated
video dataset are usually very small, not to mention about crossing multiple
domains. In our dataset; we highlight cross-modalities for its high appearance
mismatch and practical value. For surveillance application, good human seg-
mentations across multiple sensor modality and scenes is essential. This dataset
directly validates the proposed method in real-world surveillance scenarios.

We collect four datasets: Gym-RGB, Gym-IR, Store-RGB , and Multi-Scene-
IR. There are two different sensor modes on typical surveillance cameras, color
and infrared, which we denote as “RGB” and “IR”, respectively. To simulate
real-world usage, we let the camera ambient light sensor to automatically switch
between the two modes. Typically, when there is sufficient lighting, the cameras
operate in RGB mode; on the other hand, when it gets dark, the IR mode is
activated to improve sensitivity. All datasets are videos collected by stationary
cameras, we label a subset of frame sparsely sampled from each video.

3.1 Cross-domains Settings

We divide our data into source S and target T domains. In this dataset, we treat
all RGB data as source domain and all IR data as target domain in order to test
challenging cross-modalities settings. In both domains, we further define training
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T and evaluation E sets. All evaluation set contains labeled images. In the source
domain, training T consists of a few labeled images IS

T and unlabeled video
frames VS

T . The labeled training images IS
T are used to pre-train our segmenter.

The unlabeled video frames VS
T are used to extract motion prior information

(Sec. 4.1). Both the unlabeled video frames VS
T and the evaluation set IS

E in the
source domain are used to train our motion prior selector using reinforcement
learning (Sec. 4.2). In the target domain, training T consists of only unlabeled
video frames VT

T which are used to extract motion prior information. Finally,
we report the cross-domains performance on the evaluation set IT

E in the target
domain. The statistics about a number of videos and labeled images in each set
of the source and target domain are shown in Table. 1 and 2, respectively.

Gym-RGB Store-RGB

Train Test Train Test

Images Videos Images Images Videos Images

749 406 237 985 985 255

Table 1. Source domain datasets. “Im-
ages” refers to the number of images
that are labeled. “Videos” refers to the
number of videos that contain unla-
beled frames.

Gym-IR Multi-Scene-IR

Train Test Train Test

Videos Images Videos Images

929 492 253 89

Table 2. Target domain datasets. “Im-
ages” refers to the number of labeled
images. “Videos” refers to the number
of videos consist of unlabeled frames.
Note that there are no labeled training
images in the target domain.

3.2 Data Collection Details

For the Store-RGB dataset, we have only color (RGB) images since there is suf-
ficient fluorescent lighting in the stores all day. On the other hand, we collect
infrared data (Multi-Scene-IR) from multiple scenes, such as house, office, walk-
way, park, playground, etc. For Gym scene, the data comes in both RGB and
IR modalities due to natural day-and-night lighting transitions. For all videos,
there are about 6 to 15 frames in one video with 1080×1920 resolution.

4 Our Method

We describe how to obtain motion prior from optical flow (Sec. 4.1) and select a
set of strong motion prior. Before that, we first define some common notations
below.
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Notation. We use i, n, and k to index pixel, patch and the order of input data,
respectively. m indicates motion prior, and mi denotes the motion prior of the
ith pixel.

4.1 Motion Priors from Video Frames

Our goal is to obtain a set of motion prior m (i.e., candidate foreground mask)
from video frames. Although many sophisticated motion segmentation methods
can be used, we simply apply a state-of-the-art optical flow method [43]. Then,
we obtain m as the binarized flow map such that mi = 1 if its flow magnitude is
larger than a threshold τ . Since surveillance cameras in our dataset are typically
stationary, we may assume that most background and foreground pixels cor-
responding to small and large flow magnitude, respectively. For non-stationary
cameras, other motion segmentation methods (e.g., [44]) can be used to handle
camera motion.

These automatically obtained motion priors inevitably will be noisy and con-
tain outliers. Hence, we propose a memory-network-based policy model to select
more accurate ones instead of directly finetuning the segmenter with all noisy
labels. The usage of motion priors is illustrated in Fig. 3.

4.2 Motion Priors Selection

We train a policy model π which learns to select a set of strong motion pri-
ors. Further, these strong motion priors are treated as ground truth to directly
fine-tune our model using cross-entropy loss. Instead of manually labeling strong

motion priors and training the policy in a supervised fashion, we train the policy
using reinforcement learning, which rewards from directly improving the human
segmentation accuracy on a hold-out evaluation set in source domain. The train-
ing procedure of our policy model is illustrated in Fig. 2.
Policy model. We define the policy π as the following probability function:

π(a|I,m(I);φ) , (1)

where I is an image, m(I) is its corresponding motion prior, a ∈ {0, 1} is the
binary action to select (a = 1) or not (a = 0), and φ is the model parameters.

4.2.1 Network Architecture. Inspired by the ideal using Memory Net-
work [45] in Deep Q-Network (DQN) proposed by Oh at el. [46], we use an
memory-network-based policy model which consists of three components: (1) a
feature encoder for extracting features from images and motion priors, (2) a
memory retaining a recent history of observations, and (3) an action decision
layers taking both content features and retrieved memory state to decide the
action.
Feature encoder. We propose a two-stream CNN to firstly encode image ap-
pearance I and motion prior m(I) separately. To fuse them, we concatenate the
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Fig. 2. Training Procedure of Policy Model via reinforcement learning. The policy
model φ (consist of policy CNN and memory network) takes both the image I and the
motion prior m(I) as inputs and predicts an action, selecting m(I) as a good prior
or not. The selected priors are further used to improve segmenter θ, and then the
improvement shown on a hold-out evaluation set will become a reward to update the
policy model φ.

embedded features from two streams. Then, we apply a linear transformation on
the concatenated feature to mix the features. Not that it is essential to make our
policy network robust to domain shift since it is trained only in source domain
but applied in the target domain. We found motion priors are more invariant
(relative to RGB images) across domains. Hence, we propose late-fusion and
increase the number of features for motion priors.
Memory network. There are two operations, “write” and “read”, in memory
network, which is similar to the architecture proposed in [46].

– Write.
The encoded features of last L observations are stored into the memory by
linear transformation. Two types of memories are represented as key and
value, which are defined as follows,

M
key
k = W keyEk (2)

Mval
k = W valEk, (3)

where M
key
k , Mval

k ∈ R
d×L are stored memories with embedding dimension

d, and k is the index of input data order. W key and W val are parameters
of writing module. Ek = {ek−i}i=1,2,...,L ∈ R

e×L is concatenation of last L

features of observations which are selected as good priors.
– Read.

Based on soft attention mechanism, the reading output will be the inner
product between the content embedding h and key memories Mkey

k .
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pk,ℓ =
exp(h⊺

kM
key
k [ℓ])

∑L

j=1
exp(h⊺

kM
key
k [j])

, (4)

where hk = Whek, and Wh are model parameters for content embedding.
pk,ℓ is the soft attention for ℓth memory block. Take the attention weights
on value memories Mval

k as the retrieved output, which can be represented
as below,

ok = Mval
k pk, (5)

where ok ∈ R
d is retrieved memory output.

The memory network is expected to handle the problem of data redundancy,
or the policy may tend to select very similar candidates. We concatenate the
memory output ok with current content feature ek as last features for taking
action (select or not).

4.2.2 Reward. We use the improved segmentation accuracy on a hold-out
set in the source domain as the reward r as follows,

r = IoU(IS
E ; θ)− IoU(IS

E ; θ
0) , (6)

where IoU is the Intersection over Union (IoU) metric which is standard for
semantic segmentation, θ0 is the initial parameters of the human segmentor, θ
is the current parameters of the human segmentor, and IS

E is the set of images
in the hold-out set in the source domain.

After few earlier episodes, IoU(IS
E ; θ

0) is replaced with other estimated base-
line value such as averaged reward in near episodes, in order to maintain learning
efficiency.

4.2.3 Policy Gradient. According to above reward function, we compute
the policy gradient to update the model parameters φ, represented as below,

∇φ

1

K

K∑

k=1

r · log π(ak | Ik,m(Ik);φ) ; Ik ∈ VS
T , (7)

where k is the image index, K =| VS
T |, and VS

T is the set of unlabelled training
video frames in source domain.

4.2.4 Training Procedure. We conduct the following steps iteratively until
the reward and policy loss converge.

– Given φ, we use the policy network to select a set of image (i.e., K = {k; ak =
1}) with motion priors.

– Given K, we use (Ik,m(Ik))k∈K as additional pairs of image and ground
truth segmentation to finetune the human segmentation parameters θ.
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– Given the new θ, we compute the reward r in Eq. 6.
– Given r, we compute policy gradient in Eq. 7 and update the policy param-

eters φ using Gradient Decent (GD).
– A budget of used data for training the segmenter θ is defined as b, i.e. an

episode early stops at step s as
s∑

k=1

ak = b. Last, we reset the parameters of

the segmentor θ = θ0 when an episode finishes.

We further extend the procedure above from image-based to patch-based
selection. We propose to select motion priors at patch-level since there are very
few motion priors which are accurate throughout the entire image. In contrast,
there are many patch-based motion priors which are almost completely accurate
throughout the entire patch. Next, we define the patch-based selection process.

4.2.5 Patch-based Selection. Define the nth patch in an image correspond-
ing to a set of pixels Rn, we can write patch-based motion prior as,

mn = {mi; i ∈ Rn} . (8)

The image-based policy gradient in Eq. 7 is modified to,

∇φ

1

KN

K∑

k=1

N∑

n=1

r · log π(ak,n | Ik,n,m(Ik)n;φ) , (9)

where Ik,n denotes the appearance of the nth patch on the kth image, N is
the number of patches in an image. In order to focus on foreground patches and
reduce search space, we also automatically filter out patches with all background
motion prior (i.e., mi = 0 for all i ∈ R(n)).

4.2.6 Inference on Target Domain. We apply the trained policy π to select
a set of image patches KT along with strong motion prior from the unlabeled
training frames in the target domain VT

T . They are referred to as patch-wise
strong motion prior as below,

KT = {(k, n); ak,n = 1} . (10)

Given KT , we use (Ik,n,m(Ik)n)k∈KT
as additional pairs of image and ground

truth human segmentation and introduce cross-entropy loss for fine-tuning in
the target domain. See Fig. 3.

5 Experiments

We conduct experiments to validate the proposed weakly-supervised active learn-
ing method in cross-modalities and cross-scenes settings. Firstly, the result shows
that the proposed policy-based active learning method can select informative
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Fig. 3. The figure illustrates the extraction and usage of motion prior. Top-half shows
the path to generate motion priors from videos, followed by policy model-based selec-
tion. Bottom-half shows selected priors for fine-tuning segmenter on target domain.

samples on a new target domain in Sec. 5.2. Moreover, we show the proposed
active learning method is complementary to recent adversarial-based domain
adaptation frameworks [38,40]. The performance gains of our method integrated
with domain adaptation methods are shown in Sec. 5.3.

We demonstrate the weakly-supervised active learning with the cross-domains
setting via our collected source datasets Gym and Store in camera modality-
RGB, along with multiple target datasets, including our remaining datasets in
camera modality-IR, and one public available pedestrian dataset,UrbanStreet [47],
which contains 18 stereo sequences of pedestrians taken from a stereo rig mounted
on a car driving in the streets of Philadelphia.

5.1 Implementation Details

In all experiments, we use U-Net structure [48] as our baseline segmentation
model for comparison. The code and models are evaluated in the Pytorch frame-
work. For fair comparisons, we use the Intersection over Union (IoU) [49] as
evaluation metrics for all experiments, where IoU = TP

TP+TF+FP
. The quanti-

tative results in Tables. 3 and 4 show the IoU scores of foreground class. For
training our policy model, we use initial learning rate of 1 × 10−4 with Adam
optimizer [50]. The discount factor for policy gradient is set to 1. We train about
5000 episodes. In the training procedure, an initialized segmenter pre-trained on
MSCOCO [51] is further fine-tuned with the policy model.

5.2 Weakly-supervised Active Learning with Cross-Domain Setting

We compare our Policy-based Active Learning method (referred to as PAL) with
two methods: Random and Human Selection in Table. 3. The number of used
motion-prior patches is pre-defined in all settings as a budget b = 60. Note that
all methods share the same motion prior candidates (cropped patches).
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Table 3. Cross-domain human segmentation performance (IoU) comparison of the
proposed weakly-supervised active learning method “PAL” with other strategies. U-
and Seg- denote the model architectures: U-Net and SegNet, respectively. First row
“Source Only” is direct application of pre-trained model on target domain data. To
best of our knowledge, none of the existing active learning algorithm use only prior
instead of true label for fine-tuning on target domain.

Source Gym-RGB Gym-RGB Gym-RGB Store-RGB Store-RGB Store-RGB
Target Gym-IR Multi-Scene-IR UrbanStreet(-RGB) Gym-IR UrbanStreet(-RGB) Multi-Scene-IR

Source Only (U-) 48.6% 16.8% 48.5% 26.7% 61.7% 29.2%
(Seg-) 51.1% 23.6% 52.3% 23.6% 63.5% 35.8%

PAL (U-) 55.6% 30.5% 51.2% 32.3% 64.8% 34.3%
(Seg-) 57.0% 38.4% 56.6% 26.9% 65.3% 39.0%

Random (U-) 52.5% 26.5% 49.3% 29.3% 62.4% 30.2%
(Seg-) 56.7% 37.2% 55.3% 24.8% 63.4% 33.2%

Human- (U-) 57.5% 34.6% 55.8% 32.5% 68.5% 41.0%
Selection (Seg-) 57.5% 42.3% 59.7% 32.7% 65.9% 46.5%

Random. Randomly select a set of motion priors from a data pool. And we
report the average results over ten selected sets.
Human Selection. We manually select a set of motion priors whose motion
priors are closer to true annotations while also considering data divergence. The
results can be viewed as an upper bound for our method.

We conduct three kinds of cross-domains applications: (1) cross-modalities,
(2) cross-scenes, and (3) cross-modalities & -scenes. The experimental results
are summarized in Table. 3. We choose two baseline segmentation models, U-
Net and SegNet, to demonstrate generalization of the method. We also provide
qualitative results in Fig. 5.
Cross-modalities in same scene. In our experiment, we change data in Gym
from RGB images to infrared images. In Table. 3, the first column (Gym-RGB
to Gym-IR) shows our method “PAL” has +3.1% IoU performance related to
random selection and improves +7% IoU from “Source Only” (not using infor-
mation on target domain).
Cross-scenes in same modality. We also validate our proposed method on
public available datasets. However, it’s hard to find a public dataset with IR
videos with segmentation annotations. We replace with a public dataset Ur-

banStreet as the target domain whose appearance is very different from our
surveillance camera dataset but captured in same modality (RGB). Our method
still works under the condition of great appearance change. We conduct two ex-
periments: Gym-RGB → UrbanStreet and Store-RGB → UrbanStreet showed in
Table. 3. The results show +2.7% and +3.1% relative IoU form source model, re-
spectively. Note that UrbanStreet contains many moving vehicles. Our method
still can distinguish human motion segments form another moving segments,
which may come from cars or slight camera motions. This result demonstrates
the robustness of our weakly-supervised active learning approach.
Cross-scenes and -modalities. This is the most general situation to deal
with for applications of surveillance cameras. We show the results of Gym →
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Store-RGB → Gym-IR Gym-RGB → Gym-IR

number of used patches

Io
U

(%
)

Fig. 4. The performance of human seg-
mentations on target domain using our
PAL method, where the policy-based
active learning is trained on Gym-RGB
and Store-RGB (Source), respectively,
and is applied to Gym-IR (Target).
Note that only motion prior (ZERO la-
bel) is used for target domain.

Table 4. Cross-domain human segmentation performance (IoU) comparison of the
proposed method (bold) with other baselines in 6 diverse source-target domain pairs.
The last two rows show the combined methods outperform each of sub-method, im-
plying the active learning approach is complementary to original domain adaptation
framework.

Source Gym-RGB Gym-RGB Gym-RGB Store-RGB Store-RGB Store-RGB
Target Gym-IR Multi-Scene-IR UrbanStreet(-RGB) Gym-IR UrbanStreet(-RGB) Multi-Scene-IR

Source Only 48.6% 16.8% 48.5% 26.7% 61.7% 29.2%
PAL 55.6% 30.5% 51.2% 32.3% 64.8% 34.3%
DSN [38] 54.3% 25.9% 52.6% 31.8% 62.3% 34.4%
NMD [40] 52.1% 26.1% 52.1% 31.7% 63.1% 34.5%

PAL+DSN 55.8% 35.8% 54.5% 36.4% 66.2% 39.0%
PAL+NMD 55.6% 36.7% 54.5% 34.0% 64.6% 36.3%

Multi-scene, Store → Gym and Store → Multi-Scene in Table 3. Note that all
settings are from RGB to IR. In all settings, the result shows that PAL offers
significant improvement from “Source Only” and better than “Random”. In the
case of Store-RGB → Gym-IR, the result of our method is very close to the
upper bound “Human Selection” with only a 0.2% gap.

The performance curves by exploring incrementally more amounts of priors
are shown in Fig. 5.2. We show the effectiveness of PAL comparing with Random
and Human selection results. Interestingly, the curve in Store-RGB → Gym-
IR implies that the mIoU can increase by adding more strong priors. Since
we can obtain motion priors from unlabeled videos with ZERO label cost, our
method can be efficient practical to improve performance by simply collecting
more unlabeled videos.

5.3 Combined with adversarial Domain Adaptation

In this part, we integrate the proposed weakly-supervised active learning with
other existing unsupervised domain adaptation (DA) methods for two reasons.
Firstly, unsupervised DA shares the same goal of ZERO label cost on target
domain. Secondly, intuitively our method should be complementary to unsuper-
vised DA. Most of the unsupervised DA methods only have fine-tuning loss on
source domain, since the label is not available on target domain. However, our
weakly-supervised active learning policy enables fine-tuning on target domain
using the policy-selected strong motion priors.
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Before After Before After

Fig. 5. Qualitative results of improving human segmentation on target domain of the
following five source-target settings: Store-RGB→Gym-IR (top-left 6 images), Gym-
RGB→Multi-Scene-IR (top-right 6 images), and Store-RGB→Multi-Scene-IR (the
third row). The last row shows Gym-RGB→Gym-IR and Gym-RGB→UrbanStreet,
respectively. The columns “After” denotes improved segmentations by PAL+NMD.
Bounding-boxes in dash-line highlight the significant change.

On the concern of performance and complexity, we combine proposed PAL
with two of existing methods, DSN [38] and NMD [40]. Demonstrating in same
cross-domains settings as the previous section, we do the comparison between
proposed PAL with these unsupervised domain adaptation baselines, and show
these two types approaches (PAL vs. UDA) are complementary with each other
since the combined method reach the greatest improvement on target domain.
See results in Table. 4. For instance, in the setting Gym-RGB → Multi-Scene IR
(second column), the combined method “PAL+NMD” achieve about 6.2% IoU
improvements from each sub-approach.

6 Conclusion

We propose to leverage “motion prior” in videos to improve human segmentation
with cross-domain setting. We propose a memory-network-based policy model
to select “strong” motion prior through reinforcement learning. The selected
segments have high precision and are used to fine-tune the model on target
domain. Moreover, the active learning strategy is shown to be complementary to
adversarial-based domain adaptation methods. In a newly collected surveillance
camera datasets, we show that our proposed method significantly improves the
performance of human segmentation across multiple scenes and modalities.
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