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Abstract. We study the task of image inpainting, which is to fill in the
missing region of an incomplete image with plausible contents. To this
end, we propose a learning-based approach to generate visually coherent
completion given a high-resolution image with missing components. In
order to overcome the difficulty to directly learn the distribution of high-
dimensional image data, we divide the task into inference and translation
as two separate steps and model each step with a deep neural network.
We also use simple heuristics to guide the propagation of local textures
from the boundary to the hole. We show that, by using such techniques,
inpainting reduces to the problem of learning two image-feature transla-
tion functions in much smaller space and hence easier to train. We eval-
uate our method on several public datasets and show that we generate
results of better visual quality than previous state-of-the-art methods.

Keywords: Image inpainting · GANs · Feature manipulation.

1 Introduction

The problem of generating photo-realistic images from sampled noise or con-
ditioning on other inputs such as images, texts or labels has been heavily in-
vestigated. In spite of recent progress of deep generative models such as Pixel-
CNN [26], VAE [20] and GANs [12], generating high-resolution images remains
a difficult task. This is mainly because modeling the distribution of pixels is dif-
ficult and the trained models easily introduce blurry components and artifacts
when the dimensionality becomes high. Several approaches have been proposed

* indicates equal contributions.
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Fig. 1. Our result comparing with GL inpainting [14]. (a) & (d) The input image with
missing hole. (b) & (d) Inpainting result given by GL inpainting [14]. (c) & (f) Final
inpainting result using our approach. The size of images are 512x512.

to alleviate the problem, usually by leveraging multi-scale training [36, 6] or in-
corporating prior information [24].

In addition to the general image synthesis problem, the task of image in-
painting can be described as: given an incomplete image as input, how do we
fill in the missing parts with semantically and visually plausible contents. We
are interested in this problem for several reasons. First, it is a well-motivated
task for a common scenario where we may want to remove unwanted objects
from pictures or restore damaged photographs. Second, while purely unsuper-
vised learning may be challenging for large inputs, we show in this work that
the problem becomes more constrained and tractable when we train in a multi-
stage self-supervised manner and leverage the high-frequency information in the
known region.

Context-encoder [27] is one of the first works that apply deep neural networks
for image inpainting. It trains a deep generative model that maps an incomplete
image to a complete image using reconstruction loss and adversarial loss. While
adversarial loss significantly improves the inpainting quality, the results are still
quite blurry and contain notable artifacts. In addition, we found it fails to pro-
duce reasonable results for larger inputs like 512x512 images, showing it is unable
generalize to high-resolution inpainting task. More recently, [14] improved the
result by using dilated convolution and an additional local discriminator. How-
ever it is still limited to relatively small images and holes due to the spatial
support of the model.

Yang et al. [34] proposes to use style transfer for image inpainting. More
specifically, it initializes the hole with the output of context-encoder, and then
improves the texture by using style transfer techniques [21] to propagate the
high-frequency textures from the boundary to the hole. It shows that matching
the neural features not only transfers artistic styles, but can also synthesize real-
world images. The approach is optimization-based and applicable to images of
arbitrary sizes. However, the computation is costly and it takes long time to
inpaint a large image.

Our approach overcomes the limitation of the aforementioned methods. Be-
ing similar to [34], we decouple the inpainting process into two stages: inference
and translation. In the inference stage, we train an Image2Feature network that
initializes the hole with coarse prediction and extract its features. The predic-
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tion is blurry but contains high-level structure information in the hole. In the
translation stage, we train a Feature2Image network that transforms the feature
back into a complete image. It refines the contents in the hole and outputs a
complete image with sharp and realistic texture. Its main difference with [34] is
that, instead of relying on optimization, we model texture refinement as a learn-
ing problem. Both networks can be trained end-to-end and, with the trained
models, the inference can be done in a single forward pass, which is much faster
than iterative optimizations.

To ease the difficulty of training the Feature2Image network, we design a
“patch-swap” layer that propagates the high-frequency texture details from the
boundary to the hole. The patch-swap layer takes the feature map as input, and
replaces each neural patch inside the hole with the most similar patch on the
boundary. We then use the new feature map as the input to the Feature2Image
network. By re-using the neural patches on the boundary, the feature map con-
tains sufficient details, making the high-resolution image reconstruction feasible.

We note that by dividing the training into two stages of Image2Feature and
Feature2Image greatly reduces the dimensionality of possible mappings between
input and output. Injecting prior knowledge with patch-swap further guides the
training process such that it is easier to find the optimal transformation. When
being compared with the GL inpainting [14], we generate sharper and better
inpainting results at size 256x256. Our approach also scales to higher resolution
(i.e. 512x512), which GL inpainting fails to handle. As compared with neural
inpainting [34], our results have comparable or better visual quality in most
examples. In particular, our synthesized contents blends with the boundary more
seamlessly. Our approach is also much faster.

The main contributions of this paper are: (1) We design a learning-based
inpainting system that is able to synthesize missing parts in a high-resolution
image with high-quality contents and textures. (2) We propose a novel and ro-
bust training scheme that addresses the issue of feature manipulation and avoids
under-fitting. (3) We show that our trained model can achieve performance com-
parable with state-of-the-art and generalize to other tasks like style transfer.

2 Related Work

Image generation with generative adversarial networks (GANs) has gained re-
markable progress recently. The vanilla GANs [12] has shown promising perfor-
mance to generate sharp images, but training instability makes it hard to scale
to higher resolution images. Several techniques have been proposed to stabilize
the training process, including DCGAN [28], energy-based GAN [38], Wasser-
stein GAN (WGAN) [30, 1], WGAN-GP [13], BEGAN [4], LSGAN [23] and the
more recent Progressive GANs [19]. A more relevant task to inpainting is con-
ditional image generation. For example, Pix2Pix [17], Pix2Pix HD [32] and Cy-
cleGAN [40] translate images across different domains using paired or unpaired
data. Using deep neural network for image inpainting has also been studied
in [35, 27, 34, 33, 14].
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Fig. 2. Overview of our network architecture. We use Image2Feature network as coarse
inferrence and use VGG network to extract a feature map. Then patch-swap matches
neural patches from boundary to the hole. Finally the Feature2Image network trans-
lates to a complete, high-resolution image.

Our patch-swap can be related to recent works in neural style transfer. Gatys
et al. [10] first formulates style transfer as an optimization problem that combines
texture synthesis with content reconstruction. As an alternative, [8, 9, 26] use
neural-patch based similarity matching between the content and style images
for style transfer. Li and Wand [21] optimize the output image such that each
of the neural patch matches with a similar neural patch in the style image. This
enables arbitrary style transfer at the cost of expensive computation. [5] proposes
a fast approximation to [21] where it constructs the feature map directly and
uses an inverse network to synthesize the image in feed-forward manner.

Traditional non-neural inpainting algorithms [2, 3] mostly work on the image
space. While they share similar ideas of patch matching and propagation, they
are usually agnostic to high-level semantic and structural information.

3 Methodology

3.1 Problem Description

We formalize the task of image inpainting as follows: suppose we are given an
incomplete input image I0, with R and R̄ representing the missing region (the
hole) and the known region (the boundary) respectively. We would like to fill in
R with plausible contents IR and combine it with I0 as a new, complete image
I. Evaluating the quality of inpainting is mostly subject to human perception
but ideally, IR should meet the following criteria: 1. It has sharp and realistic-
looking textures; 2. It contains meaningful content and is coherent with IR̄ and
3. It looks like what appears in the ground truth image Igt (if available). In our
context, R can be either a single hole or multiple holes. It may also come with
arbitrary shape, placed on a random location of the image.
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3.2 System Overview

Our system divides the image inpainting tasks into three steps:
Inference: We use an Image2Feature network to fill an incomplete image with
coarse contents as inference and extract a feature map from the inpainted image.
Matching: We use patch-swap on the feature map to match the neural patches
from the high-resolution boundary to the hole with coarse inference.
Translation: We use a Feature2Image network to translate the feature map to
a complete image.
The entire pipeline is illustrated in Fig. 3.

3.3 Training

We introduce separate steps of training the Image2Feature and Feature2Image
network. For illustration purpose, we assume the size of I0 is 256x256x3 and the
hole R has size 128x128.

Inference: Training Image2Feature Network The goal of the Image2Feature
network is to fill in the hole with coarse prediction. During training, the input
to the Image2Feature translation network is the 256x256x3 incomplete image I0
and the output is a feature map F1 of size 64x64x256. The network consists of an
FCN-based module G1, which consists of a down-sampling front end, multiple
intermediate residual blocks and an up-sampling back end. G1 is followed by the
initial layers of the 19-layer VGG network [31]. Here we use the filter pyramid
of the VGG network as a higher-level representation of images similar to [10].
At first, I0 is given as input to G1 which produces a coarse prediction IR1 of size
128x128. IR1 is then embedded into R forming a complete image I1, which again
passes through the VGG19 network to get the activation of relu3 1 as F1. F1

has size 64x64x256. We also use an additional PatchGAN discriminator D1 to
facilitate adversarial training, which takes a pair of images as input and outputs
a vector of true/fake probabilities.

For G1, the down-sampling front-end consists of three convolutional layers,
and each layer has stride 2. The intermediate part has 9 residual blocks stacked
together. The up-sampling back-end is the reverse of the front-end and consists of
three transposed convolution with stride 2. Every convolutional layer is followed
by batch normalization [16] and ReLu activation, except for the last layer which
outputs the image. We also use dilated convolution in all residual blocks. Similar
architecture has been used in [32] for image synthesis and [14] for inpainting.
Different from [32], we use dilated layer to increase the size of receptive field.
Comparing with [14], our receptive field is also larger given we have more down-
sampling blocks and more dilated layers in residual blocks.

During training, the overall loss function is defined as:

LG1
= λ1Lperceptual + λ2Ladv. (1)

The first term is the perceptual loss, which is shown to correspond better with
human perception of similarity [37] and has been widely used in many tasks [11,
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18, 7, 5]:

Lperceptual(F, Igt) = ‖ MF ◦ (F1 − vgg(Igt)) ‖1 . (2)

Here MF are the weighted masks yielding the loss to be computed only on
the hole of the feature map. We also assign higher weight to the overlapping
pixels between the hole and the boundary to ensure the composite is coherent.
The weights of VGG19 network are loaded from the ImageNet pre-trained model
and are fixed during training.

The adversarial loss is based on Generative Adversarial Networks (GANs)
and is defined as:

Ladv = max
D1

E[log(D1(I0, Igt)) + log(1−D1(I0, I1))]. (3)

We use a pair of images as input to the discriminator. Under the setting of
adversarial training, the real pair is the incomplete image I0 and the original
image Igt, while the fake pair is I0 and the prediction I1.

To align the absolute value of each loss, we set the weight λ1 = 10 and
λ2 = 1 respectively. We use Adam optimizer for training. The learning rate is
set as lrG = 2e−3 and lrD = 2e−4 and the momentum is set to 0.5.

Match: Patch-swap Operation Patch-swap is an operation which transforms
F1 into a new feature map F ′

1. The idea is that the prediction IR1 is blurry, lack-
ing many of the high-frequency details. Intuitively, we would like to propagate
the textures from IR̄1 onto IR1 but still preserves the high-level information of
IR1 . Instead of operating on I1 directly, we use F1 as a surrogate for texture
propagation. Similarly, we use r and r̄ to denote the region on F1 corresponding
to R and R̄ on I1. For each 3x3 neural patch pi(i = 1, 2, ..., N) of F1 overlapping
with r, we find the closest-matching neural patch in r̄ based on the following
cross-correlation metric:

d(p, p′) =
< p, p′ >

‖ p ‖ · ‖ p′ ‖
(4)

Suppose the closest-matching patch of pi is qi, we then replace pi with qi. After
each patch in r is swapped with its most similar patch in r̄, overlapping patches
are averaged and the output is a new feature map F ′

1. We illustrate the process
in Fig. 3.

Measuring the cross-correlations for all the neural patch pairs between the
hole and boundary is computationally expensive. To address this issue, we follow
similar implementation in [5] and speed up the computation using paralleled
convolution. We summarize the algorithm as following steps. First, we normalize
and stack the neural patches on r̄ and view the stacked vector as a convolution
filter. Next, we apply the convolution filter on r. The result is that at each
location of r we get a vector of values which is the cross-correlation between the
neural patch centered at that location and all patches in r̄. Finally, we replace
the patch in r with the patch in r̄ of maximum cross-correlation. Since the
whole process can be parallelized, the amount of time is significantly reduced.
In practice, it only takes about 0.1 seconds to process a 64x64x256 feature map.
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Fig. 3. Illustration of patch-swap operation. Each neural patch in the hole r searches
for the most similar neural patch on the boundary r̄, and then swaps with that patch.

Translate: Training Feature2Image Translation Network The goal of the
Feature2Image network is to learn a mapping from the swapped feature map to
a complete and sharp image. It has a U-Net style generator G2 which is similar
to G1, except the number of hidden layers are different. The input to G2 is a
feature map of size 64x64x256. The generator has seven convolution blocks and
eight deconvolution blocks, and the first six deconvolutional layers are connected
with the convolutional layers using skip connection. The output is a complete
256x256x3 image. It also consists of a Patch-GAN based discriminator D2 for
adversarial training. However different from the Image2Feature network which
takes a pair of images as input, the input to D2 is a pair of image and feature
map.

A straightforward training paradigm is to use the output of the Image2Feature
network F1 as input to the patch-swap layer, and then use the swapped feature
F ′

1 to train the Feature2Image model. In this way, the feature map is derived
from the coarse prediction I1 and the whole system can be trained end-to-end.
However, in practice, we found that this leads to poor-quality reconstruction I

with notable noise and artifacts (Sec. 4). We further observed that using the
ground truth as training input gives rise to results of significantly improved vi-
sual quality. That is, we use the feature map Fgt = vgg(Igt) as input to the
patch-swap layer, and then use the swapped feature F ′

gt = patch swap(Fgt) to
train the Feature2Image model. Since Igt is not accessible at test time, we still use
F ′

1 = patch swap(F1) as input for inference. Note that now the Feature2Image
model trains and tests with different types of input, which is not a usual practice
to train a machine learning model.

Here we provide some intuition for this phenomenon. Essentially by training
the Feature2Image network, we are learning a mapping from the feature space
to the image space. Since F1 is the output of the Image2Feature network, it
inherently contains a significant amount of noise and ambiguity. Therefore the
feature space made up of F ′

1 has much higher dimensionality than the feature
space made up of F ′

gt. The outcome is that the model easily under-fits F ′

1, making
it difficult to learn a good mapping. Alternatively, by using F ′

gt, we are selecting a
clean, compact subset of features such that the space of mapping is much smaller,
making it easier to learn. Our experiment also shows that the model trained with
ground truth generalizes well to noisy input F ′

1 at test time. Similar to [39], we
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can further improve the robustness by sampling from both the ground truth and
Image2Feature prediction.

The overall loss for the Feature2Image translation network is defined as:

LG2
= λ1Lperceptual + λ2Ladv. (5)

The reconstruction loss is defined on the entire image between the final output
I and the ground truth Igt:

Lperceptual(I, Igt) =‖ vgg(I)− vgg(Igt) ‖2 . (6)

The adversarial loss is given by the discriminator D2 and is defined as:

Ladv = max
D2

E[log(D2(F
′

gt, Igt)) + log(1−D2(F
′

gt, I))]. (7)

The real and fake pair for adversarial training are (F ′

gt, Igt) and (F ′

gt, I).
When training the Feature2Image network we set λ1 = 10 and λ2 = 1. For the

learning rate, we set lrG = 2e−4 and lrD = 2e−4. Same as the Image2Feature
network, the momentum is set to 0.5.

3.4 Multi-scale Inference

Given the trained models, inference is straight-forward and can be done in a
single forward pass. The input I0 successively passes through the Image2Feature
network to get I1 and F1 = vgg(I1), then the patch-swap layer (F ′

1), and then
finally the Feature2Image network (I). We then use the center of I and blend
with I0 as the output.

�"
G$
$

�$
" �$

" �"�′$
"

�$
$

VGG G'
"swap

upsample

�$
$

VGG

�′$
$ �$

G'
$

�$
' �$

' �′$
' �

G'
'

swap

VGG

upsample

swap

Fig. 4. Multi-scale inference.

Our framework can be easily adapted to multi-scale. The key is that we
directly upsample the output of the lower scale as the input to the Feature2Image
network of the next scale (after using VGG network to extract features and apply
patch-swap). In this way, we will only need the Image2Feature network at the
smallest scale s0 to get I01 and F 0

1 . At higher scales si(i > 0) we simply set
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Isi1 = upsample(Isi−1) and let F si
1 = vgg(Isi1 ) (Fig. 4). Training Image2Feature

network can be challenging at high resolution. However by using the multi-scale
approach we are able to initialize from lower scales instead, allowing us to handle
large inputs effectively. We use multi-scale inference on all our experiments.

4 Experiments

4.1 Experiment Setup

We separately train and test on two public datasets: COCO [22] and ImageNet
CLS-LOC [29]. The number of training images in each dataset are: 118,287 for
COCO and 1,281,167 for ImageNet CLS-LOC. We compare with content aware
fill (CAF) [2], context encoder (CE) [27], neural patch synthesis (NPS) [34] and
global local inpainting (GLI) [14]. For CE, NPS, and GLI, we used the public
available trained model. CE and NPS are trained to handle fixed holes, while
GLI and CAF can handle arbitrary holes. To fairly evaluate, we experimented
on both settings of fixed hole and random hole. For fixed hole, we compare with
CAF, CE, NPS, and GLI on image size 512x512 from ImageNet test set. The hole
is set to be 224x224 located at the image center. For random hole, we compare
with CAF and GLI, using COCO test images resized to 256x256. In the case of
random hole, the hole size ranges from 32 to 128 and is placed anywhere on the
image. We observed that for small holes on 256x256 images, using patch-swap
and Feature2Image network to refine is optional as our Image2Feature network
already generates satisfying results most of the time. While for 512x512 images,
it is necessary to apply multi-scale inpainting, starting from size 256x256. To
address both sizes and to apply multi-scale, we train the Image2Feature network
at 256x256 and train the Feature2Image network at both 256x256 and 512x512.
During training, we use early stopping, meaning we terminate the training when
the loss on the held-out validation set converges. On our NVIDIA GeForce GTX
1080Ti GPU, training typically takes one day to finish for each model, and test
time is around 400ms for a 512x512 image.

4.2 Results

Quantitative Comparison Table 1 shows numerical comparison result be-
tween our approach, CE [27], GLI [14] and NPS [34]. We adopt three quality
measurements: mean ℓ1 error, SSIM, and inception score [30]. Since context en-
coder only inpaints 128x128 images and we failed to train the model for larger
inputs, we directly use the 128x128 results and bi-linearly upsample them to
512x512. Here we also compute the SSIM over the hole area only. We see that
although our mean ℓ1 error is higher, we achieve the best SSIM and inception
score among all the methods, showing our results are closer to the ground truth
by human perception. Besides, mean ℓ1 error is not an optimal measure for in-
painting, as it favors averaged colors and blurry results and does not directly
account for the end goal of perceptual quality.
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Table 1. Numerical comparison on 200 test images of ImageNet.

Method Mean ℓ1 Error SSIM Inception Score

CE [27] 15.46% 0.45 9.80

NPS [34] 15.13% 0.52 10.85

GLI [14] 15.81% 0.55 11.18

our approach 15.61% 0.56 11.36

Visual Result Fig. 9 shows our comparison with GLI [1] in random hole cases.
We can see that our method could handle multiple situations better, such as
object removal, object completion and texture generation, while GLIs results are
noisier and less coherent. From Fig. 10, we could also find that our results are
better than GLI most of the time for large holes. This shows that directly training
a network for large hole inpainting is difficult, and it is where our “patch-swap”
can be most helpful. In addition, our results have significantly fewer artifacts
than GLI. Comparing with CAF, we can better predict the global structure
and fill in contents more coherent with the surrounding context. Comparing
with CE, we can handle much larger images and the synthesized contents are
much sharper. Comparing with NPS whose results mostly depend on CE, we
have similar or better quality most of the time, and our algorithm also runs
much faster. Meanwhile, our final results improve over the intermediate output
of Image2Feature. This demonstrates that using patch-swap and Feature2Image
transformation is beneficial and necessary.
User Study To better evaluate and compare with other methods, we randomly
select 400 images from the COCO test set and randomly distribute these images
to 20 users. Each user is given 20 images with holes together with the inpainting
results of NPS, GLI, and ours. Each of them is asked to rank the results in non-
increasing order (meaning they can say two results have similar quality). We
collected 399 valid votes in total found our results are ranked best most of the
time: in 75.9% of the rankings our result receives highest score. In particular,
our results are overwhelmingly better than GLI, receiving higher score 91.2%
of the time. This is largely because GLI does not handle large holes well. Our
results are also comparable with NPS, ranking higher or the same 86.2% of the
time.

4.3 Analysis

Comparison Comparing with [34], not only our approach is much faster but
also has several advantages. First, the Feature2Image network synthesizes the
entire image while [34] only optimizes the hole part. By aligning the color of
the boundary between the output and the input, we can slightly adjust the
tone to make the hole blend with the boundary more seamlessly and naturally
(Fig. 10). Second, our model is trained to directly model the statistics of real-
world images and works well on all resolutions, while [34] is unable to produce
sharp results when the image is small. Comparing with other learning-based
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inpainting methods, our approach is more general as we can handle larger inputs
like 512x512. In contrast, [27] can only inpaint 128x128 images while [14] is
limited to 256x256 images and the holes are limited to be smaller than 128x128.

Ablation Study For the Feature2Image network, we observed that replacing
the deconvolutional layers in the decoder part with resize-convolution layers
resolves the checkerboard patterns as described in [25] (Fig. 5 left). We also
tried only using ℓ2 loss instead of perceptual loss, which gives blurrier inpaint-
ing (Fig. 5 middle). Additionally, we experimented different activation layers of
VGG19 to extract features and found that relu3 1 works better than relu2 1

and relu4 1.

We may also use iterative inference by running Feature2Image network mul-
tiple times. At each iteration, the final output is used as input to VGG and
patch-swap, and then again given to Feature2Image network for inference. We
found iteratively applying Feature2Image improves the sharpness of the texture
but sometimes aggregates the artifacts near the boundary.

For the Image2Feature network, an alternative is to use vanilla context en-
coder [27] to generate I00 as the initial inference. However, we found our model
produces better results as it is much deeper, and leverages the fully convolutional
network and dilated layer.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Left: using deconvolution (a) vs resize-convolution (b). Middle: using ℓ2 recon-
struction loss (c) vs using perceptual loss (d). Right: Training Feature2Image network
using different input data. (e) Result when trained with the Image2Feature prediction.
(f) Result when trained with ground truth. (g) Result when fine-tuned with ground
truth and prediction mixtures.

As discussed in Sec. 3.3, an important practice to guarantee successful train-
ing of the Feature2Image network is to use ground truth image as input rather
than using the output of the Image2Feature network. Fig. 5 also shows that
training with the prediction from the Image2Feature network gives very noisy
results, while the models trained with ground truth or further fine-tuned with
ground-truth and prediction mixtures can produce satisfying inpainting.

Our framework can be easily applied to real-world tasks. Fig. 6 shows exam-
ples of using our approach to remove unwanted objects in photography. Given
our network is fully convolutional, it is straight-straightforward to apply it to
photos of arbitrary sizes. It is also able to fill in holes of arbitrary shapes, and
can handle much larger holes than [15].
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The Feature2Image network essentially learns a universal function to recon-
struct an image from a swapped feature map, therefore can also be applied to
other tasks. For example, by first constructing a swapped feature map from a
content and a style image, we can use the network to reconstruct a new image
for style transfer. Fig. 7 shows examples of using our Feature2Image network
trained on COCO towards arbitrary style transfer. Although the network is ag-
nostic to the styles being transferred, it is still capable of generating satisfying
results and runs in real-time. This shows the strong generalization ability of our
learned model, as it’s only trained on a single COCO dataset, unlike other style
transfer methods.

(a) (b) (c) (d) (e) (f)

Fig. 6. Arbitrary shape inpainting of real-world photography. (a), (d): Input. (b), (e):
Inpainting mask. (c), (f): Output.

(a) (b) (c) (d) (e) (f)

Fig. 7. Arbitrary style transfer. (a), (d): Content. (b), (e): Style. (c), (f): Result.

Our approach is very good at recovering a partially missing object like a
plane or a bird (Fig. 10). However, it can fail if the image has overly compli-
cated structures and patterns, or a major part of an object is missing such that
Image2Feature network is unable to provide a good inference (Fig. 8).

(a) (b) (c) (d) (e) (f)

Fig. 8. Failure cases. (a), (c) and (e): Input. (b), (d) and (f): Output.
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Fig. 9. Visual comparisons of ImageNet results with random hole. Each example from
top to bottom: input image, GLI [14], our result. All images have size 256× 256.

5 Conclusion

We propose a learning-based approach to synthesize missing contents in a high-
resolution image. Our model is able to inpaint an image with realistic and sharp
contents in a feed-forward manner. We show that we can simplify training by
breaking down the task into multiple stages, where the mapping function in each
stage has smaller dimensionality. It is worth noting that our approach is a meta-
algorithm and naturally we could explore a variety of network architectures and
training techniques to improve the inference and the final result. We also expect
that similar idea of multi-stage, multi-scale training could be used to directly
synthesize high-resolution images from sampling.
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Fig. 10. Visual comparisons of ImageNet and COCO results. Each example from left to
right: input image, CAF [2], CE [27],NPS [34], GLI [14], our result w/o Feature2Image,
our final result. All images have size 512× 512.
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