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Abstract. The quick detection of specific substances in objects such as
produce items via non-destructive visual cues is vital to ensuring the
quality and safety of consumer products. At the same time, it is well-
known that the fluorescence excitation-emission characteristics of many
organic objects can serve as a kind of “fingerprint” for detecting the
presence of specific substances in classification tasks such as determining
if something is safe to consume. However, conventional capture of the
fluorescence excitation-emission matrix can take on the order of minutes
and can only be done for point measurements. In this paper, we pro-
pose a coded illumination approach whereby light spectra are learned
such that key visual fluorescent features can be easily seen for material
classification. We show that under a single coded illuminant, we can cap-
ture one RGB image and perform pixel-level classifications of materials
at high accuracy. This is demonstrated through effective classification of
different types of honey and alcohol using real images.

Keywords: Fluorescence · Coded Illumination · Classification

1 Introduction

The detection of specific substances in objects such as produce items via non-
destructive visual cues is vital to applications for ensuring the quality and safety
of consumer products. For example, in a factory setting, we may need to eval-
uate the quality of food products and whether they have been contaminated
with harmful bacteria and substances. A promising approach is to use coded
illumination, in which controlled, active lighting makes the distinctive features
of different materials visually apparent. In fact, a number of coded illumination
approaches for material classification have been proposed [1–4].
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Fig. 1: In many cases, visually distinguishing something like different types of
honey is difficult. In the top portion of the image, the left-most two vials contain
honey made from acacia flowers. The right-most two vials contain Canadian
clover honey. On the bottom, we have illuminated the samples with learned
illuminants that make the fluorescent emissions of the substances in the honey
show visually distinct appearances.

These aforementioned approaches are all promising but they do not con-
sider fluorescent effects, which have been shown to be especially effective in the
analysis of organic substances. In short, fluorescence is a process by which an
incident wavelength of light excites a substance and causes it to emit light of
typically longer wavelengths. Thus for a given substance, if we were to excite it
with the right kind of incident light, we would clearly see its distinctive features
(Fig. 1). Indeed, the distinctive excitation and emission characteristics from the
fluorescent component of various materials have been used for effective detection
of substances and classification tasks. For example, Sugiyama et al. [5] showed
that the fluorescence excitation-emission matrix can be used as a kind of “fluo-
rescence fingerprint” for detecting the presence of Mycotoxin in wheat (known
to cause vomiting, diarrhea, and headaches) and aerobic bacteria on beef. Flu-
orescence has also been used to identify cheeses [6] and wines [7], differentiate
between fresh or aged fish [8], determine the botanical origin of different types
of honey [9], and more.

However, conventional fluorescence-based analysis setups can only make point
measurements of the target object and are often slow. For example, [5] indicates
that capture of the excitation-emission matrix for a single point takes on the or-
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der of minutes. On the other hand, a number of techniques for capturing the re-
flective and fluorescent spectral components of entire scenes have been proposed
[10–13] but these either require multiple images or at least one hyperspectral
image, which limits their applicability in machine vision applications.

In this paper, we propose directly learning optimal coded illuminants and
weightings of the RGB channels in a camera to make fluorescent features for
classification visually apparent in images. We explicitly model reflective and
fluorescent effects and cast our formulation into an SVM framework [14] to jointly
learn the illuminants and RGB channel weights in an alternating optimization
scheme. We show that our final system is able to perform single-shot, pixel-
level classification of organic materials, so our system is suited to fast quality
control applications in settings such as factories. We demonstrate real sample
applications in the classification of different types of honey and alcohol. To our
knowledge, ours is the first approach for coded illumination-based classification
using fluorescence.

2 Related Work

2.1 Material Classification Using Coded Illumination

The use of coded illumination to highlight discriminative features of material sur-
faces has shown great promise for machine vision classification applications. In
their early work, Gu and Liu [1] proposed a per-pixel material classification ap-
proach using spectral bidirectional reflectance distribution functions (BRDFs).
In their setup, they used formulations such as SVM or Fisher LDA to opti-
mize the intensities of multispectral and multidirectional light sources for binary
classification. They showed effective classification but their setup required cap-
turing two grayscale images because they needed to simulate negative intensities
via image subtraction. They also showed multiclass classification was possible
by solving a set of one-versus-one classification problems but this required K(K-
1)/2+1 grayscale images for K classes. Later, Liu and Gu [2] extended their work
to use RGB images. Using the same lighting setup but with a three-channel cam-
era, they then used the binary or multiclass Fisher LDA formulations to find the
3-D feature space that maximizes the ratio of the between-class to within-class
scattering. However, they still needed to capture two RGB images to simulate
negative intensities via image subtraction.

In Wang and Okabe [3], they proposed a coded illumination approach that
would only require a single image for per-pixel material classification. This pro-
vided a great advantage because single-shot systems are well suited to situations
where the objects are in motion. In a factory setting, one may expect objects
to be moving along quickly on a conveyer belt. The single-shot capability of
their system was made possible by enforcing non-negative constraints on the
learned coded illuminants so that a second image for simulating negative inten-
sities would not be needed. They also showed that it was possible to capture a
scene using one fixed set of coded illuminants and an RGB camera but in post-
processing, achieve multiclass classification. This was made possible by jointly
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learning a single set of non-negative coded illuminants with multiple postpro-
cessing grayscale conversions of the RGB image. The multiple grayscale images
generated from a single captured RGB image would then highlight features ef-
fective for multiple binary classification decisions.

In Blasinski et al. [4], they also proposed a non-negative coded illumination
approach to material classification. Specifically, they learned multiple illuminant
spectra based on an SVM formulation or non-negative PCA. They then captured
scenes using RGB camera spectral responses under the illuminants and show ef-
fective per-pixel classification in test scenes with different fruits. In general, they
reported that about 3–4 illuminants gave good performance with only modest
gains if more coded illuminants were added. Their paper differs from the previ-
ously mentioned papers in that they do not use multidirectional light but rather
vary the illuminants primarily in the spectral domain.

2.2 Fluorescence for Classification and Detection of Substances

The previously mentioned coded illumination approaches showed promising re-
sults. However, they all assumed scenes to be purely reflective and did not
consider fluorescent effects. We now briefly describe the difference between re-
flectance and fluorescence. In summary, reflectance is when both the incident
and reflected light from the material are of the same wavelength. On the other
hand, fluorescence is when light of a typically shorter wavelength “excites” a
substance and then typically longer wavelengths of light are “emitted”.

It is well-known that fluorescence can reveal a lot about the state of objects.
In particular, organic objects exhibit distinctive fluorescent characteristics based
on what kinds of substances and/or bacteria are present. For example, Sugiyama
et al. [5] used a fluorescence spectrometer to make point measurements to deter-
mine the spectral excitation-emission matrix of different organic objects. They
showed that the excitation-emission matrix could be treated as a kind of “fluo-
rescence fingerprint” to identify the presence of Mycotoxin in wheat (known to
cause vomiting, diarrhea, and headaches). They were also able to detect aerobic
bacteria on beef. As mentioned earlier, fluorescence has also been used for var-
ied tasks such as identifying different types of cheeses, wines, honey [6, 7, 9] and
even to tell the difference between fresh and aged fish [8]. It is well-known that
observing fluorescence is an effective means of analyzing various materials but
conventional measurements such as that of [5] do not capture the entire scene
and take on the order of minutes to capture the entire excitation-emission ma-
trix. This precludes applications to settings such as quality control in a factory
where numerous products could be moving quickly along a conveyer belt.

2.3 Fluorescence Imaging and Classification

In recent years, there have been a number of proposed techniques for capturing
fluorescence spectral components for entire scenes. Lam and Sato [10] proposed
using a sparse set of narrowband illuminants and images combined with basis
vectors to estimate the fluorescence spectral components. Fu et al. [11] proposed
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capturing hyperspectral images under two high frequency light spectra to esti-
mate the fluorescence spectral components. Later, Fu et al. [12] estimated the
components using an RGB camera and multiple active illuminants. Zheng et
al. [13] devised a means to estimate all the fluorescence spectral components
using only a single hyperspectral image. All the aforementioned approaches re-
quire either multiple images or at least one hyperspectral image, which limits
applications to static scenes.

In this paper, we propose directly learning coded illuminants for material
classification tasks. We explicitly model fluorescence and derive a formulation
that can be cast into an SVM learning framework. In doing so, we create illu-
minants that excite the fluorescent components of specific substances such that
their distinctive features are easily seen under an RGB camera. Furthermore, our
proposed system only requires a single image and so is applicable to scenes with
moving objects (such as in a factory with conveyer belts). We demonstrate our
system with real applications in classifying different types of honey and alcohol.
In summary, our contributions are as follows:
1. We explicitly model the images of reflective-fluorescent materials under an

RGB camera and show that this formulation can be cast into an SVM learn-
ing framework for optimizing coded illuminants.

2. We demonstrate that the resultant coded illuminants can make it so that
visual features from the fluorescent components of substances are easily seen.

3. We provide a comparison between coded illuminants and standard illumi-
nants in classification tasks to demonstrate the benefits of our proposed
approach.

4. To our knowledge, we are the first to propose coded illuminants that leverage
fluorescence for classification tasks–despite the well-known observation that
fluorescence provides highly distinctive cues for detecting the presence of
substances.

3 Coded Spectral Response and Illumination for

Fluorescence-based Classification

3.1 Imaging Model

Most fluorescent materials actually have a combination of reflectance and flu-
orescence. So we start with presenting a model for how reflective-fluorescent
materials are observed under a given illumination spectrum for a single chan-
nel camera. It is well-known that the image of any given reflective-fluorescent
material is a linear combination of the reflected incident light and the emitted
light from the fluorescent component. This emitted light is typically shifted to
longer wavelengths than the incident light. Thus for a given camera, the out-
going wavelength λo for a reflective-fluorescent material illuminated by incident
light at wavelength λi can be modeled as

P (λo, λi) = R(λo)L(λi)δ(λo − λi)C(λo) + Em(λo)C(λo)Ex(λi)L(λi) (1)
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where R(λo) is the reflectance at wavelength λo, L(λi) is the illuminant at wave-
length λi, and C(λo) is the camera spectral response at wavelength λo. Em(λo)
and Ex(λi) are the emission and excitation of the fluorescent component at their
respective wavelengths. The excitation term Ex(λi) determines how much the
energy from incident light at wavelength λi is able to excite the fluorescent com-
ponent. On the other hand, the emission term Em(λo) determines how much
light at wavelength λo, the fluorescent component is able to emit relative to the
amount of energy from the excitation. δ(λo − λi) is the unit impulse function
where δ(0) = 1 and δ(x) = 0 for x 6= 0. The unit impulse function ensures only
the incident wavelength is reflected for the reflective component.

Then to determine the image of the material under wideband light for a
wideband camera, we can simply sum over all the possible combinations of wave-
lengths λo and λi:

I =

∫∫

P (λo, λi)dλodλi ≈

M
∑

m=1

X
∑

x=1

P (λ(m)
o , λ

(x)
i )∆λo∆λi. (2)

The right hand side of Eq. 2 is the discrete approximation that is used in practice.
In our setup, we calculate the P term at intervals of 10 nm for both wavelength
parameters.

4 Learning the Coded Illumination

We now describe how the imaging model in Eq. 2 can be used to formulate
a framework for learning an illuminant spectrum and weighting for the RGB
channels so that distinctive fluorescent features for classification are easily seen.
We could then perform pixel-wise classification of the types of materials present
with just a single image.

For convenience, let T (λo, λi) = R(λo)L(λi)δ(λo−λi)+Em(λo)Ex(λi). Then
Eq. 2 can be written in matrix form as
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= cTTl = fT l.

(3)

Note that T is basically the fluorescence excitation-emission matrix of the mate-
rial (but with reflectance terms added in), c is the vector representing the camera
spectral response, and l is the vector representing the illuminant spectrum. We
define vector f as the reflective-fluorescent feature of the given material under
camera spectral response c. Thus for a given camera spectral response and mate-
rial’s T matrix, the image of the material under illuminant l is the inner-product
between reflective-fluorescent feature f and illuminant l.
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In the case of an RGB camera, we have three channels. So for a single illu-
minant, the reflective-fluorescent material’s image would consist of three values
computed as





Ir
Ig
Ib



 =





fT
r

fT
g

fT
b



 l. (4)

For discussion purposes, we also define the weighting of the RGB values:

I =
(

wr wg wb

)





Ir
Ig
Ib



 = wrl
Tfr + wgl

Tfg + wbl
Tf b (5)

where wr, wg, and wb are weights in the summation of the image of the materials
under each RGB channel.

From Eq. 5, we can see that for an RGB camera, the combination of illumi-
nant spectrum l and RGB weighting values wr, wg, and wb constitute a linear
discriminant hyperplane of the form

I + b = wrl
Tfr + wgl

Tfg + wbl
Tf b + b = 0 (6)

where b is a bias term. Then given a set of features fr, fg, f b, and class labels
y ∈ {1,−1}, we might try to learn an appropriate hyperplane using a soft-
margin SVM [14]. This is similar to previous work that used soft-margin SVM
optimization inspired approaches to learn coded illuminants [1–4]. However, past
approaches have only considered the reflectance of incident light but not fluo-
rescence excitation-emissions as we do here. Going back to our discussion, Eq. 6
shows that we have unknown illuminant spectrum l and unknown RGB weight-
ing values wr, wg, and wb. In addition, the first three terms in the summation are
all dependent on illuminant spectrum l. Thus the standard SVM soft-margin op-
timization procedure cannot be used. Fortunately, we have found that although
Wang and Okabe [3] worked in the domain of reflectance BRDFs and did not
optimize light spectra, their reformulated SVM soft-margin optimization can be
used in the spectral domain for learning our proposed fluorescence-based coded
illuminants. For clarity, we present the optimization formulation with our fluo-
rescence terms integrated here:

min
l,wr,wg,wb,b,ξn

1

2
|l|

2
(w2

r + w2
g + w2

b ) + β

N
∑

n=1

ξn

s.t. yn[l
T (wrfnr + wgfng + wbfnb) + b] ≥ 1− ξn (n = 1, 2, ..., N),

ξn ≥ 0 (n = 1, 2, ..., N),

lk ≥ 0 (k = 1, 2, ...,K).

(7)

N is the number of training samples, fnm denotes the nth reflective-fluorescent
training sample for camera color channel m. ξn is the slack variable and β is the
weight penalty term. In our setup, we use coded illuminants ranging from 350
nm - 640 nm in increments of 10 nm so K = 30.
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Fig. 2: Consumer products collected for our dataset. Various types of honey (top)
and alcohol (bottom) spanning different brands are shown.

The above formulation has an unknown illuminant spectrum l and unknown
set of RGB weighting values wr, wg, wb. In our setup, we solve for the RGB
weights and then the illuminant spectrum and bias using alternating iterations
of quadratic programming. Specifically, we initialize the illuminant spectrum

l =
(

1 1 ... 1
)T

and bias b = 1 and solve for the RGB weighting values. Then
the RGB weights are fixed and we solve for the illuminant spectrum and bias.
The iterations are repeated until convergence or a preset maximum number of
iterations is reached.

5 Experiments

5.1 Data Collection

We built a dataset consisting of various types of honey and alcohol (Fig. 2).
Specifically, we obtained acacia honey (4 brands), Canadian clover honey (4
brands), orange honey (3 brands), whisky (3 brands), scotch (3 brands), bourbon
(3 brands), brandy (2 brands), and cognac (2 brands). For each product, we used
a fluorescence spectrometer to capture 20 x 20 hyperspectral images of the given
sample at multiple narrowbands ranging from 350 nm - 640 nm in increments
of 10 nm. The narrowband lights were all normalized in postprocessing so that
they would have equal intensity.

5.2 Experiment Setup and Classification Tasks

System Setup: Our proposed system consists of an RGB camera and coded
illuminant spectrum as the light source. We use a PointGrey GS3-U3-23S6 cam-
era with color filters as our RGB camera. Note that this camera has a linear
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response function with manual settings for gamma correction and white bal-
ance. Thus our setup assumes a linear response function. However, we can still
use an sRGB camera with a non-linear response function by first obtaining its
response function in advance and then converting it to give a linear response
image. For the first part of our classification experiments, we take the 20 x 20
hyperspectral images from our dataset and simulate the image of each sam-
ple under our RGB camera’s known set of RGB spectral response functions and
coded illuminants (ranging from 350 nm - 640 nm in increments of 10 nm). In the
next phase of our tests, we demonstrate an implementation of our system using
our PointGrey GS3-U3-23S6 RGB camera and a Nikon ELS programmable light
source for generating coded illuminant spectra. For a given coded illuminant we
can then capture an RGB image and classify each pixel using the discriminant
hyperplane defined in Eq. 6.

Classification Tasks: For the classification tasks, our aim is to differentiate
between different types of honey and alcohol in a one-versus-one manner. As an
example, consider the problem of classifying acacia honey versus Canadian clover
honey. In this case, we use two samples (one sample from each type of honey)
and learn a coded illuminant spectrum to separate them. (Each sample is an
image that consists of 20 x 20 pixels so this means we have 400 datapoints per
sample to learn the coded illuminant.) The coded illuminant spectrum is then
used as the light source for the 2D RGB images of all instances of acacia honey
and Canadian clover honey in our dataset that were not used in the training
data. We note that all these different instances of honey come from different
brands.

Training-Testing Splits: In our example on acacia versus Canadian clover
honey, we described a single training-testing split in our classification tests. To
thoroughly test the classification of acacia honey versus Canadian clover honey,
we exhaustively try all combinations of training-testing splits of the data in
which the training set always consists of one sample of each type of honey. We
then determine the average accuracy of all the pixel-level classifications on the
test set (containing exclusively different brands from the training set) and report
them. We also repeat the same test procedure for various combinations of one-
versus-one classification problems for different types of honey as well as different
types of alcohol.

Comparisons to Non-coded Illuminants: We also repeat our experi-
ments with three conventional illuminants (Fig. 3). We conduct these tests by
using the same formulation as Eq. 7 to learn a discriminant hyperplane but the
illuminant spectrum is kept fixed. In other words, only the bias term and RGB
weighting values are learned for the classification task. Then for testing, the fixed
standard illuminant, learned bias term, and learned RGB weights are used for
pixel-level classification as is done in the coded illumination tests.
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(a) 5000K LED (b) Fluorescent Light (c) Incandescent Light

Fig. 3: Conventional (non-coded) illuminants used for comparisons to coded il-
luminants for classification tasks.

6 Results

We report the average accuracies on classifying different types of honey based
on botanical origin (which kinds of flowers they were made from) in Table 1. We
see that the proposed coded illuminants can be used for effective classification.
In Fig. 4, we show examples of the excitation-emission matrices of different in-
stances of honey and their categories. We also include examples of learned coded
illuminants for separating classes based on these excitation-emission character-
istics. We can see that the coded illuminants will emphasize the range of wave-
lengths where the material exhibits high excitation and emission. As mentioned
earlier, for tests with conventional illuminants, we used Eq. 7 to learn weights
for the RGB channels and the bias term but kept the illuminant fixed. We found
that the resultant classifiers using conventional illuminants would output the
same class label for input test data in almost all the cases. Thus many of the
average accuracies in Table 1 appear to be the same (e.g. 40% appears because
the number of instances in the testing set consisted of 60% of one class versus
40% of the other class). On the other hand, using our proposed coded illuminant
approach, we achieved effective classification of different types of honey despite
only training on two samples of particular brands of honey and then testing on
multiple brands. We note though, that in the case of Canadian clover honey ver-
sus orange honey, our accuracy was lower. However, our proposed approach still
allowed for effective discrimination of other types of honey whereas conventional
non-coded lighting could not classify any honey in most of the cases.

In Table 2, we can see classification results on various types of whisky versus
brandy. Since whisky is distilled beer and brandy is distilled wine, we would
expect various categories of whisky to be separable from brandy. Indeed, we can
see in Table 2, that the classification accuracies using our coded illumination
approach indicate we can differentiate between different types of whisky and
brandy. In Table 3, we show results from tests on various types of whisky versus
various types of whisky. Since they are more similar to each other than in the
case of whisky versus brandy, the overall classification accuracies are lower. In
Fig. 5, we show examples of the types of coded illuminants learned for classifying
alcohol. There is a good amount of variety in their characteristics.
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(a) Acacia Honey (b) Acacia Honey (c) Acacia vs. Clover

(d) Canadian Clover Honey (e) Canadian Clover Honey (f) Acacia vs. Orange

(g) Orange Honey (h) Orange Honey (i) Clover vs. Orange

Fig. 4: Examples of Excitation-Emission Matrices and Coded Illuminants for
Differentiating Between Types of Honey

Up to this point, we have presented binary classification results but our
formulation also allows for multiclass classification. Typically, multiclass clas-
sification is performed by using multiple binary classifiers to decide on class
membership. Our formulation actually allows for obtaining V linear discrimi-
nant hyperplanes with only a single image. This is because it is possible to take
a single image under only one coded illuminant and then learn a set of RGB
weights wvr, wvg, wvb, and biases bv for each linear discriminant hyperplane
v. Thus using basically the same optimization formulation as binary classifica-
tion, we start with a single fixed illuminant spectrum and biases bv. We then
iteratively update each set of RGB weights for each binary classification prob-
lem. Then the multiple sets of RGB weights are all fixed and we update the
single illuminant spectrum and biases bv. This alternating process is repeated
until convergence or a preset number of iterations is reached. For final classifi-
cation, these multiple hyperplanes can then be used to vote for the class labels
of test cases. In Table 4, we can see results on four-class classification of alcohol.
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Table 1: Average accuracies from all the training-testing splits for classifying dif-
ferent types of honey. For the non-coded illuminants, many of the classifications
gave the same output label regardless of the test input. Thus there are many
cases with 40% accuracy because the test sets in those cases had 60% of one
class versus 40% of the other class.

Classification/Illuminant 5000K LED Fluorescent Incandescent Coded
Light (Proposed)

Acacia vs. Canadian Clover 50.00% 50.67% 50.67% 91.17%

Acacia vs. Orange 40.00% 40.00% 40.00% 78.26%

Canadian Clover vs. Orange 41.67% 40.00% 45.00% 52.03%

Table 2: Average accuracies from all the training-testing splits for classifying
various types of Whisky vs. Brandy. Similar to the tests on honey, the classifiers
in the case of non-coded light classified all input data as some type of whisky so
there are many cases of 66.67% accuracy.

Classification/Illuminant 5000K LED Fluorescent Incandescent Coded
Light (Proposed)

Scotch vs. Cognac 66.67% 66.67% 66.67% 100.00%

Bourbon vs. Brandy 66.67% 66.67% 66.67% 71.44%

Bourbon vs. Cognac 66.67% 66.67% 66.67% 95.97%

Scotch vs. Brandy 66.67% 66.67% 66.67% 99.43%

Whisky vs. Cognac 66.67% 66.67% 66.67% 99.50%

Whisky vs. Brandy 66.67% 66.67% 66.67% 93.00%

Multiple training-testing splits were chosen in each case such that the test sets
would have four test cases, one from each class. We can see that the multiclass
classification accuracies using our coded illumination approach indicate we can
differentiate between four different types of alcohol. For the non-coded illumi-
nants, many of the classifications gave the same output label regardless of the
test input. We found that many cases using the non-coded illuminants resulted
in 25% accuracy, which is the same as random guessing.

Overall, our proposed coded illumination fluorescence-based classification ap-
proach showed significant improvement over using conventional light sources. As
expected, when intraclass variation is high for both the classes in question, the
accuracies are lower. Likewise, separation of different categories of items with
very similar characteristics was, as expected, difficult. However, in all our tests,
we only used one sample per class and tested on more instances than training
data. Thus the overall good classification performance despite the difficult tests
shows the effectiveness of our approach.

The experiments presented so far made use of real images but they were
narrowband images that were used to simulate an RGB camera using a given
set of spectral response functions. This allowed us to perform a large number
of extensive tests. We now demonstrate a single-shot setup using a PointGrey
GS3-U3-23S6 RGB camera and Nikon ELS programmable light source to gen-
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Table 3: Average accuracies on the training-testing splits for Whisky vs. Whisky
classification. In the table,“Whisky” is used to denote generic whisky, which are
then classified against specific types of whisky such as bourbon or scotch.

Classification/Illuminant 5000K LED Fluorescent Incandescent Coded
Light (Proposed)

Whisky vs. Bourbon 52.58% 50.00% 44.27% 61.10%

Whisky vs. Scotch 50.00% 50.00% 55.00% 77.30%

Scotch vs. Bourbon 50.00% 50.00% 50.00% 58.16%

Table 4: Average accuracies from all the training-testing splits for classifying
four-class types of alcohol.

Classification/Illuminant Coded (Proposed)

Whisky vs. Scotch vs. Bourbon vs. Brandy 55.10%

Whisky vs. Scotch vs. Bourbon vs. Cognac 51.04%

Whisky vs. Scotch vs. Brandy vs. Cognac 62.65%

Whisky vs. Bourbon vs. Brandy vs. Cognac 68.93%

Scotch vs. Bourbon vs. Brandy vs. Cognac 64.84%

erate coded illuminants (Fig. 6). We chose to compare the results from our
programmable light source setup to two training-testing splits from our previ-
ous tests. The results are presented in Table 5. In the table, we can see the two
training-testing splits and the average pixel classification accuracies. The column
denoted “ideal” shows results from our tests using the real captured narrowband
images that are then used to simulate RGB images using spectral response func-
tions. In this case, the tests show what accuracies ideally generated illuminants
could yield. Not surprisingly the coded illuminant generated by the Nikon ELS
results in a lower accuracy for the honey classification test. It is interesting that
in some cases, such as in the bourbon versus scotch test, the results were similar
between the programmable light source and ideal setups. Future work will in-
vestigate the differences between the programmable light source setup and ideal
light setup.

Table 5: Comparison of ideal setup vs. programmable light source for two specific
training-testing splits. “Ideal” denotes the results from our narrowband images
that were used to simulate RGB images under coded illuminants.

Ideal Programmable Light Source

Acacia vs. Canadian Clover 92.69% 85.96%

Bourbon vs. Scotch 85.06% 85.75%
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(a) Bourbon vs. Brandy (b) Scotch vs. Brandy (c) Whisky vs. Cognac

Fig. 5: Coded Illumination for Alcohol Classification

Fig. 6: Setup with Programmable Light Source

7 Conclusion

We have demonstrated the effectiveness of learning coded illumination to lever-
age the particular excitation-emission characteristics of substances in materials
for classification purposes. In addition, our system only requires a single image
under one illuminant and thus is applicable for use in such settings as factory
quality and safety control. We also demonstrated the use of a programmable
light source to show that coded illuminants can be generated in reality. There
are some cases where our system could not classify well. These are likely due to
a combination of high intraclass variability and low interclass difference (e.g. dif-
ferentiating different kinds of whisky). In the future, we will investigate ways to
capture unique excitation-emission characteristics with more detail. One possible
approach is to learn coded camera spectral responses instead of just weighting
the RGB channels. Building a larger dataset to obtain more training data may
also allow us to build stronger classifiers.
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