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Abstract. In this paper, we propose a novel joint Task-Recursive Learn-
ing (TRL) framework for the closing-loop semantic segmentation and
monocular depth estimation tasks. TRL can recursively refine the re-
sults of both tasks through serialized task-level interactions. In order to
mutually-boost for each other, we encapsulate the interaction into a spe-
cific Task-Attentional Module (TAM) to adaptively enhance some coun-
terpart patterns of both tasks. Further, to make the inference more cred-
ible, we propagate previous learning experiences on both tasks into the
next network evolution by explicitly concatenating previous responses.
The sequence of task-level interactions are finally evolved along a coarse-
to-fine scale space such that the required details may be reconstructed
progressively. Extensive experiments on NYU-Depth v2 and SUN RGB-
D datasets demonstrate that our method achieves state-of-the-art results
for monocular depth estimation and semantic segmentation.

Keywords: Depth Estimation, Semantic Segmentation, Recursive Learn-
ing, Recurrent Neural Network, Deep Learning

1 Introduction

Semantic segmentation and depth estimation from single monocular images are
two challenging tasks in computer vision, due to lack of reliable cues of a scene,
large variations of scene types, cluttered backgrounds, pose changing and oc-
clusions of objects. Recently, driven by deep learning techniques, the study on
them has seen great progress and starts to benefit some potential applications
such as scene understanding [1], robotics [2], autonomous driving [3] and simul-
taneous localization and mapping (SLAM) system [4]. Despite the successes of
deep learning (especially CNNs) on monocular depth estimation [5] [6] [7] [8] [9]
and semantic segmentation [10] [11] [12] [13], most of these methods emphasize
to learn robust regression yet scarcely consider the interactions between them.

⋆ Corresponding authors: Zhen Cui and Jian Yang.
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Fig. 1. Illustration of our main idea. The two tasks (i.e., depth estimation and semantic
segmentation) are progressively refined to form a task alternate state sequence. At
time slice t, we denote the task states as Dt and St respectively. Previous task-related
experiences and information of the other task are adaptively propagate into the next
new state (Dt) via a designed task-interactive module called Task-Attentional Module
(TAM). The evolution-alternate process of the dual tasks is finally framed into the
proposed task-recursive learning.

Actually, the two tasks have some common characteristics, which can be utilized
for each other. For example, semantic segmentation and depth of a scene can
both reveal the layout and object shapes/boundaries. The recent work in the
literature [14] also indicated that leveraging the depth information from RGB-
D data may facilitate the semantic segmentation. Therefore, a joint learning of
both tasks should be considered to reciprocally promote for each other.

Existing joint learning of two tasks falls into the category of multi-task learn-
ing, which has been extensively studied in the past few decades [15]. It involves
many cross tasks, such as detection and classification [16] [17], depth estimation
and image decomposition [18], image segmentation and classification [19], and
also depth estimation and semantic segmentation [20] [21] [22], etc. But such
existing joint learning methods mainly belong to the shallow task-level inter-
action. For example, a shared deep network is utilized to extract the common
features for both tasks, and bifurcates from a high-level layer to perform the
two tasks individually [16] [17] [22] [19] [21] [18]. As such, in these methods, less
interaction is taken due to the relative independency between tasks. However,
it is well known that human learning system benefits from an iterative/looping
interactive process between different tasks [23]. Taking a simplest commonsense
case, alternately reading and writing can promptly improve human capability in
the both aspects. Therefore, we argue whether task-alternate learning (such as
cross segmentation and depth estimation) can go deeper with the breakthrough
of deep learning.

To address such problem, in this paper, we propose a novel joint Task-
Recursive Learning (TRL) framework to closely-loop semantic segmentation and
depth estimation on indoor scenes. The interactions between both tasks are se-
rialized as a newly-created time axis, as shown in Fig. 1. Along the time dimen-
sion, the two tasks {D,S} are mutually collaborate to boost the performance for
each other. In each interaction, the historical experiences of previous states (i.e.,
features of the previous time steps of the two tasks) will be selectively propa-
gated and help to estimate the new state, as ploted by the arc and horizontal
black arrows. To properly propagate the information stream, we design a Task-
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Attentional Module (TAM) to correlate the two tasks, where the useful common
information related to the current task will be enhanced while suppressing task-
irrelevant information. Thus the learning process of the two tasks can be easily
modularized into a sequence network called task-recursive learning network in
this paper. Besides, considering the difficulty of high-resolution pixel-level pre-
diction, we derive the recursive task learning on a sequence of coarse-to-fine
scales, which would progressively refine the details of the estimation results. Ex-
tensive experiments demonstrate that our proposed task-recursive learning can
benefit the two tasks for each other. In summary, the contributions of this paper
are three folds:

– Propose a novel joint Task-Recursive Learning (TRL) framework for seman-
tic segmentation and depth estimation. Serializing the problems as a task-
alternate time sequence, TRL can progressively refine and mutually boost
the two tasks through properly propagating the information stream.

– Design a Task-Attentional Module (TAM) to enclose the interaction of the
two tasks, which thus can be used in those conventional networks as a general
layer or module.

– Validate the effectiveness of the deeply task-alternate mechanism, and achieve
some new state-of-the-art results of for the dual tasks of depth estimation
and semantic segmentation on NYU Depth V2 and SUN RGBD datasets.

2 Related Work

Depth Estimation: Many works have been proposed for monocular depth esti-
mation. Eigen et al. [5, 24] proposed a multi-stage CNN to resolve the monocular
depth prediction. Liu et al. [25] and Li et al. [26] utilized CRF models to capture
local image texture and guide the network learning process. Recently, Laina et

al. [7] proposed a fully convolutional network with up-projection to achieve an
efficient upsampling process. Xu et al. [6] employed multi-scale continuous CRFs
as a deep sequential network. In contrast to these methods, our approach focuses
on the dual-task learning, and attempts to utilize segmentation cues to promote
depth prediction.

Semantic Segmentation: Most methods [10, 11, 27–29] conducted seman-
tic segmentation from single RGB image. As the large RGBD dataset was re-
leased, some approaches [30, 31] attempted to fuse depth information for better
segmentation. Recently, Cheng et al. [32] computed the affinity matrices from
RGB images and HHA depth images for better upsampling important locations.
Different from these RGBD based methods, our method does not directly use
ground truth of depth, but the estimated depth for semantic segmentation, which
thus essentially falls into the category of RGB image segmentation.

Multi-task Learning: The generic multi-task learning problem [15] has
been studied for a long history, and numerous methods were developed in d-
ifferent research areas such as representation learning [33–35], transfer learn-
ing [36, 37], computer vision [38, 16, 19, 39, 17, 40]. Here the most related works
are those multi-task learning methods of computer vision. For examples, the
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literatures [21, 22] utilized CNN with hierarchical CRFs and multi-decoder to
obtain depth estimation and semantic segmentation. In the literature [19], a
cross-stitch unit was proposed to better interact two tasks. The recent proposed
Ubernet [40] attempted to give a solution for various tasks on diverse datasets
with limited memory. Different from these previous works, our proposed TR-
L takes multi-task learning as a deep manner of task interactions. Specifically,
depth estimation and semantic segmentation are mutually boosted and refined
in a general recursive architecture.

3 Approach

3.1 Motivation

Here we focus on the interactive learning problem of two tasks including depth
estimation and semantic segmentation from a monocular RGB image. Our mo-
tivation mainly comes from two folds: i) human learning benefits from an iter-
ative/looping interactive process between tasks [23]; ii) Such a couple of tasks
are complementary to some extent besides sharing some common information.
Therefore, our aim is to make the task-level alternate interaction go deeper, so as
to let the two tasks mutually boosted. The main idea is illustrated in Fig. 1. We
define the task-alternate learning processes as a series of state transformation
along the time axis. Formally, we denote the states of depth estimation and se-
mantic segmentation tasks as Dp and Sp at time step p respectively, and the cor-
responding responses as fp

D and fp
S . Suppose the previous obtained experiences

as Fp−1:p−k
D = {fp−1

D , fp−2
D , . . . , fp−k

D } and Fp−1:p−k
S = {fp−1

S , fp−2
S , . . . , fp−k

S },
then we formulate the dual-task learning at the time clip p as

{
Dp =Φp

D(T (Fp−1:p−k
D ,Fp−1:p−k

S ), Θp
D)

Sp =Φp
S(T (Fp:p−k+1

D , Fp−1:p−k
S ), Θp

S)
, (1)

where T is the interactive function (designed as task-attentional module below),
Φp
D and Φp

S are transformation functions to predict the next state with the pa-
rameters Θp

D and Θp
S to be learnt. As the time slice p, the depth estimation

Dp is on the conditions of previous k-order experiences Fp−1:p−k
D and Fp−1:p−k

S ,

and the segmentation St is dependent on Fp:p−k+1
D and Fp−1:p−k

S . In this way,
those historical experiences from both tasks will be propagated along the time
sequences by using TAM. That means, the dual-task interactions will go deeper
along the sequence of states. As a general idea, the framework can be adapted
to other dual-task applications and even multi-task learning. We give the for-
mulation of multi-task learning in the supplemental materials. In this paper we
simply set k = 1 in Eqn. 1, i.e., a short-term dependency.

3.2 Network Architecture

Overview The entire network architecture is shown in Fig. 2. We use the so-
phisticated ResNet [41] to encode the input image. The gray cubes from Res-2
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Fig. 2. The overview of our Task-Recursive Learning (TRL) network. The TRL net-
work is an encoder-decoder architecture, which is composed of a series of residual
blocks, upsampling blocks and Task-attentional Modules. The input RGB image is
firstly fed into a ResNet to encode multi-level features, and then these features are fed
into the task-recursive decoding process to estimate depth and semantic segmentation.
In the decoder, the two tasks are alternately processed by adaptively evolving previous
experiences of both tasks (i.e., the previous features of depth and segmentation), so as
to boost and benefit for each other during the learning process. To estimate the current
task state, the previous features of the two tasks are fed into a TAM to enhance the
common information. To better refine the predicted details, we progressively execute
the two tasks in a coarse-to-fine scale space.

to Res-5 are multi-scale response maps extracted from ResNet. The next de-
coding process is designed to solve the dual tasks based on the task-recursive
idea. The decoder is composed of upsampling blocks, task-attentional modules
and residual-blocks. The upsampling blocks upscale the convolutional features
to required scales for pixel-level prediction. The detailed architecture will be
introduced in the following subsection. For the pixel-level prediction, we intro-
duce residual-blocks (blue cubes) to decode the previous features, which are the
mirror type of the corresponding ones in the encoder but only have two bottle-
necks in each residual block. The Res-d1, Res-d3, Res-d5 and Res-d7 focus on
depth estimation, while the rest ones focus on semantic segmentation. The TAM
is designed to perform the interaction of two tasks. During the interaction, the
previous information will be selectively enhanced to adapt to the current task.
For example, the TAM before Res-d5 receives inputs from two sources: one is
the features upsampled from Res-d4 with segmentation information, and the
other is the features upsampled from Res-d3 with depth information. During
the interaction, the information of two inputs will be selectively enhanced to
propagate to the next task. As the interaction times increase, the results of the
two tasks are progressively refined in a mutual-boosting scheme. Another import
strategy is taking a coarse-to-fine process to progressively reconstruct details and
produce fine-grained predictions of high resolution. Concretely, we concatenate
the different-scale features of encoder to the corresponding residual block, as
indicated by the green arrows. The upsampling block and the task-attentional
module will be described in the following subsections.
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Fig. 3. The overview of our Upsampling-block and Task-attentional module.

Task-attentional module As discussed in the Section 1, semantic segmenta-
tion and depth estimation results of a scene have many common patterns, e.g.,
they can both reveal the object edges, boundaries or layouts. To better mine and
utilize the common information, we design a task-attentional module to enhance
the correlated information of the two tasks. As illustrated in Fig. 2, the TAM is
used before each residual block and takes depth/segmentation features from pre-
vious residual blocks as inputs. The designed TAM are presented in Fig 3(a). The
input depth/segmentation features are firstly fed into a balance unit to balance
the contribution of the features of two sources. If we use fd and fs ∈ RH×W×C

to denote the received depth and segmentation features respectively, the balance
unit can be formulated as:

B = Sigmoid(Ψ1(concat(fd, fs), Θ1)),

fb = Ψ2(concat(B · fd, (1−B) · fs), Θ2), (2)

where Ψ1 and Ψ2 are two convolutional layers with parameters Θ1 and Θ2, respec-
tively. B ∈ RH×W×C is the learnt balancing tensor, and fb ∈ RH×W×C is the
balanced output of the balance unit. In this way, fb combines the balanced infor-
mation from the two sources. Next, the balanced output will be fed into a series
of conv-deconvolutional layers, as illustrated by the yellow cubs in Fig 3(a). Such
a mechanism is designed to get different spatial attentions by using the receptive
field variation, as demonstrated in the residual attention [42]. After a Sigmoid
transformation, we get an attentional map M ∈ RH×W×C , which is expected to
have higher responses on the common patterns. Finally, the attentional tensor
M is used to generate the gated depth/segmentation features, formally,

fg
d = (1 +M) · fd,

fg
s = (1 +M) · fs. (3)

Thus the feature fd and fs may be enhanced through the learned attentional
map M. The gated features fg

d and fg
s are further fused by concatenation followed
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by one convolutional layer. The output of TAM is denoted as fTAM ∈ RH×W×C .
The task-attentional module can benefit our task-recursive learning method as
experimentally analysed in Section 4.2.

Upsampling blocks The upsampling blocks are designed to match the scale
variations during the task-recursive learning. The architecture of upsampling
block is shown in Fig. 3(b). The features with size of H ×W × C are firstly
fed into four parallel convolutional layers with different receptive fields (i.e.,
conv-1 to conv-4 in Fig. 3). These four convolutional layers are designed to
capture different local structures. Then the responses produced from the four
convolutional layers are concatenated to a tensor feature with size of H ×W ×
2C. Finally, the sub-pixel operation in [43] is applied to spatially upscale the
feature. Formally, given a tensor feature T and a coordinate [h,w, c], the sub-
pixel operator can be defined as:

P(Th,w,c) = T⌊h/r⌋,⌊w/r⌋,c·r·mod(w,r)+c·mod(h,r), (4)

where r is the scale factor. After such sub-pixel operation, the output of one
upsampling block is the feature of size 2H × 2W ×C/2, when we set r = 2. The
upsampling blocks are more effective than the general deconvolution, as verified
in the experiments in Section 4.2.

3.3 Training Loss

We impose the supervised loss constraint on each scale to obtain multi-scale
predictions. For depth estimation, we use inverse Huber loss defined in [7] as the
loss function, which can be formulated as:

LD(di) =

{
|di|, |di| ≤ c,
d2

i
+c2

2c , |di| > c,
(5)

where di is the difference between prediction and ground truth at each pixel
i, and c is a threshold with c = 1

5 max(di) as default. Such a loss function can
provide more obvious gradients at the locations where the depth difference is low,
and thus can help to better train the network. The loss function for semantic
segmentation is a cross-entropy loss, denoted as LS . For a better optimization of
our proposed dual-task network, we use the strategy proposed in [22] to balance
the two tasks. Suppose the network predicts N pairs (w.r.t. N scales) of depth
maps and semantic segmentation maps, the total loss function can be defined
as:

L(Θ, σ1, σ2) =
1

σ2
1

N∑

n=1

LD
n +

1

σ2
2

N∑

n=1

LS
n + log(σ2

1) + log(σ2
2), (6)

where Θ is the parameter of network, σ1 and σ2 are the balancing weights to
the two tasks. Please note that the balancing weights are also optimized as
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parameters during training. In practice, to avoid a potential division by zero, we
redefine δ = log σ2. Thus the total loss can be rewritten as:

L(W, δ1, δ2) = exp(−δ1)
N∑

n=1

LD
n + exp(−δ2)

N∑

n=1

LS
n + δ1 + δ2. (7)

4 Experiments

4.1 Experimental Settings

Dataset: We evaluate the effectiveness of our proposed method on NYU Depth
V2 [1] and SUN RGBD [44] datasets. The NYU Depth v2 dataset [1] consists of
RGB-D images of 464 indoor scenes. There are 1449 images with semantic labels,
795 of them are used for training and the remaning 654 images for testing. We
randomly select 4k images of the raw data from official training scenes. These
4k images have the corresponding depth maps but no semantic labels. Before
training our network, we first train a ResNet-50 based DeconvNet [11] for 40-class
semantic segmentation using the given 795 images. Then we use the predictions
of the trained DeconvNet on the 4k images as coarse semantic labels to train
our network. Finally we fine-tune the network on the 795 images of standard
training split. The SUN RGBD dataset [44] contains 10355 RGB-D images with
semantic labels of which 5285 for training and 5050 for testing. We use the 5285
images with depth and semantic labels to train our network, and the 5050 images
for evaluation. The semantic labels are divided into 37 classes. Following the
settings in [7, 24, 6, 32], we use the same data augmentation strategies including
cropping, scaling, flipping and rotating, to increase the diversity of data. As the
largest outputs are half size of the input images, we upsample the predicted
segmentation results and depth maps to the original size for comparison.

Implementation Details: We implement the proposed model using Py-
torch on a single Nvidia P40 GPU. We build our network based on ResNet-18,
ResNet-50 and ResNet-101, and each model is pre-trained on the ImageNet clas-
sification task [45]. ReLU activating function and Batch normalization are ap-
plied behind every convolutional layers, except for the final convolutional layers
before the predictions. In the upsampling blocks, we set conv-1, conv-2, conv-3
and conv-4 with 1×1, 3×3, 5×5 and 7×7 kernel sizes, respectively. Note that we
use 3×3 convolution with dilation=2 to efficiently get a 7×7 receptive field. For
the parameters of training loss, we simply use initial values of δ1 = δ2 = 0.5 of
Eqn. 7 for all scenes, and find that different initial values have no large effects
on the performance. Initial learning rate is set to 10−5 for the pre-trained convo-
lution layers and 0.01 for the other layers. For NYU Depth v2 dataset, we train
our model on 4k unique images with coarse semantic labels and depth ground
truth in 40K batch iterations, and then fine-tune the model with a learning rate
of 0.001 on 795 images with depth and segmentation ground truth in 10K batch
iterations. For the SUN-RGBD dataset, we train our model with 50K batch it-
erations on the initial learning rates, and fine-tune the non-pretrained layers for
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30K batch iterations with a learning rate of 0.001. The momentum and weight
decay are set to 0.9 and 0.0005 respectively, and the network is trained using
SGD with batch size of 16. As there are many missing values in the depth ground
truth maps, following the literatures [7, 24], we mask out the pixels that have
missing depths both in the training and testing phases.

Metrics: Similar to the previous works [7, 24, 6], we evaluate our depth pre-
diction results with the following metrics:

– average relative error (rel): 1
n

∑
i
|x̃i−xi|

xi

;

– root mean squared error (rms):
√

1
n

∑
i(x̃i − xi)2;

– root mean squared error in log space (rms(log)):
√

1
n

∑
i(log x̃i − log xi)2;

– accuracy with threshold (δ): % of x̃i s.t. max( x̃i

xi

, xi

x̃i

)=δ δ = 1.25, 1.252, 1.253;

where x̃i is the predicted depth value at the pixel i, n is the number of valid
pixels and xi is the ground truth.

For the evaluation of semantic segmentation results, we follow the recent
works [32, 27, 46] and use the common metrics including pixel accuracy (pixel-
acc), mean accuracy (mean-acc) and mean intersection over union (mean-IoU).

4.2 Ablation Study

In this section, we conduct several experiments to evaluate the effectiveness
of our proposed method. The concrete ablation studies are introduced in the
following.

Analysis on tasks: We first analyse the benefit of jointly predicting depth
and segmentation of one image. The experiments use the same network archi-
tecture as our ResNet-18 based network and are trained on NYU Depth v2 and
SUN-RGBD datasets for depth estimation and segmentation respectively. As
illustrated in Table 1, our proposed TRL network obviously benefits for each
other under the joint learning of depth estimation and semantic segmentation.
For NYU Depth v2 dataset, compared to the gain on depth estimation, semantic
segmentation has a larger gain after the dual-task learning, i.e., the improvement
about 4.1% on mean class accuracy and 3.0% on IoU. One possible reason should
be more data of 4k depth images than semantic labels of 795 images. In con-
trast, for SUN-RGBD dataset, all training samples are with depth and semantic
ground truth, i.e., the training samples for both tasks are balanced. We can ob-
serve that the performance on both tasks can be promoted for each other under
the framework of proposed task-recursive learning.

Architectures and baselines: We conduct experiments to analyse the ef-
fect of different network architectures. We set the baseline network with the same
encoder but two parallel decoders. Each decoder corresponds to one task, which
contains four residual blocks using the same type to the original TRL network
decoder. To softly share the parameters and interact the two tasks, similar to
the method in [19], we use the cross-stitch unit to fuse features at each scale.
To evaluate the effectiveness of the task-attentional module, further, we perform
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Table 1. Joint task learning v.s. single task learning on NYU Depth V2 and SUN-
RGBD datasets.

NYU-D SUN-RGBD

Metric rms rel mean-acc IoU rms rel mean-acc IoU

Depth only 0.547 0.172 - - 0.517 0.163 - -
Segmentation only - - 51.2 42.0 - - 54.1 43.5
TRL-jointly 0.510 0.156 55.3 45.0 0.468 0.140 56.3 46.3

Table 2. Comparisons of different network architectures and baselines on NYU Depth
v2 dataset.

Method rms rel mean-acc IoU

Baseline-I 0.545 0.171 53.5 43.2
TRL w/o TAM 0.526 0.153 54.0 43.6
TRL w/o exp-TAM 0.540 0.167 52.5 42.2
TRL w/o gate unit 0.515 0.160 55.0 44.7
TRL scale-1 0.597 0.202 50.1 40.3
TRL scale-2 0.572 0.198 51.9 41.0
TRL scale-3 0.541 0.166 53.2 43.8
TRL-ResNet18 0.510 0.156 55.3 45.0
TRL-ResNet50 0.501 0.144 56.3 46.4
TRL-ResNet101 0.492 0.138 56.9 46.8

(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 4. Visual exhibition of the learned attentional maps. (a) input image; (b) segmen-
tation ground truth; (c) depth ground truth; (d) learned attentional map. We can find
that the attentional maps give high attention to objects, edges and boundaries which
are very salient in both ground truth maps, i.e., more attention to the useful common
information.

an experiment without TAMs. To verify the importance of historical experience
at previous stages, we also train a TRL network without any earlier experience
(i.e., not considering the TAMs and the features from previous residual blocks).
Besides, we also evaluate the prediction ability of other three scales (from scale-1
to scale-3) to show the effectiveness of the coarse-to-fine mechanism. All these
experimental models take ResNet-18 as infrastructure. Externally, we also train
ResNet-50 and ResNet-101 based TRL networks to analyse the effect of deeper
encoding networks.

As reported in Table 2, our proposed TRL network signaficantly performs
better than the baseline on both tasks. Compared with the TRL network with-
out TAMs, TRL can obtain a superior performance on both tasks. It indicates
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 5. Visual comparisons between TRL and baselines on NYU Depth V2 and SUN
RGBD. (a) input image; (b) ground truth; (c) results of baseline; (d) results of TRL
w/o TAMs; (e) results of the TRL network. It can be observed that the predictions
results of our proposed TRL contain less errors and suffer less class ambiguity.

that TAMs can potentially take some common patterns of the two tasks to pro-
mote the performance. For this, we also visually exhibit the learned attentional
map M from the TAMs. As observed in Fig. 4, the attentional maps have higher
attention to objects, edges and boundaries, which are very obvious according
to both ground truth maps. These features commonly exist in the two tasks,
and thus can make TAMs capture such common information to promote both
tasks. For the case without the historical experience mechanism, i.e., TRL w/o
exp-TAMs, the original TRL can obtain an accumulative gain of 21.4% on the
two tasks, which demonstrates that the experience mechanism is also crucial
for the task-recursive learning process. In the cast that TAM has no gate unit,
i.e., TRL w/o gate unit, the resulting accuracies are slightly decreased. When
the scale increases, i.e., the coarse-to-fine manner, the performances are grad-
ually improved on both tasks. An obvious reason is that details can be better
reconstructed in those fine scale space. Further, when more sophisticated and
deeper encoders are employed, ResNet-50 and ResNet-101, the proposed TRL
network can improve the performance, which can be easily understood as the
same observations in other literatures.

For a visual analysis, we show some prediction results of baselines and TRL
in Fig. 5. From the figure, we can observe that the segmentation results of
the two baselines suffer obvious classification error, especially as shown in the
white bounding boxes. In contrast, the prediction results of TRL suffer less class
ambiguity and are more reasonable visually. More ablation study and visual
results can be found in our supplementary material.

4.3 Comparisons with the state-of-the-art methods

In this section we compare our method with several state-of-the-art approaches
on both tasks. The experiments are conducted on NYU Depth V2 and SUN-
RGBD datasets, which will be discussed below.

Depth estimation:We compare our depth estimation performance on NYU
depth V2 dataset, and summarize the results in Table 3. As observed from this
table, our TRL network with ResNet-50 achieves the best performance on the



12 Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li, J. Yang

Table 3. Comparisons with the state-of-the-art depth estimation approaches on NYU
Depth V2 Dataset.

Method rms rel rms(log) δ1 δ2 δ3

Li [26] 0.821 0.232 - 0.621 0.886 0.968
Liu [25] 0.824 0.230 - 0.614 0.883 0.971
Wang [21] 0.745 0.220 0.262 0.605 0.890 0.970
Eigen [5] 0.877 0.214 0.285 0.611 0.887 0.971
Roy [47] 0.744 0.187 - - - -
Eigen [24] 0.641 0.158 0.214 0.769 0.950 0.988
Cao [48] 0.615 0.148 - 0.800 0.956 0.988
Xu-4.7k [6] 0.613 0.143 - 0.789 0.946 0.984
Xu-95k [6] 0.586 0.121 - 0.811 0.954 0.987
Laina [7] 0.573 0.127 0.194 0.811 0.953 0.988

TRL-ResNet18 0.510 0.156 0.187 0.804 0.951 0.990
TRL-ResNet50 0.501 0.144 0.181 0.815 0.962 0.992

rms, rms(log) and the δ-accuracy metrics, while this version with ResNet-18
also obtains satisfactory results. Compared with the recent method [7], our TRL
is slightly inferior in the rel metric, but significantly superior in other metrics,
where a total 7.67% relative gain is achieved. It is worth noting that the method
in literature [7] used a larger training set which contains 12k unique image and
depth pairs, but our model uses only 4k unique images (less than 12k) and still
gets a better performance. Compared with the method in [6], we have the same
observation that our TRL is slightly poor in rel metric but has obviously better
results in all other metrics. Please note that the method in [6] attempted to use
more training images (95k) to promote the performance of depth estimation.
Nevertheless, if the training data is reduced to 4.7k, the accuracies have an
obvious degradation for the method in [6]. In contrast, under the nearly equal
size of training data, our TRL can still achieve the best performance in most
metrics.

In addition, to provide a visual observation, we show some visual compari-
son examples in Fig. 6. The prediction results of the methods in [24, 6] usually
have much noise, especially at the object boundaries, curtains, sofa and bed. On
the contrary, our predictions have less noise and better match the geometry of
the scenes. Therefore, these experimental results can demonstrate that our pro-
posed approach is more effective than the state-of-the-art method by borrowing
semantic segmentation information.

RGBD Semantic segmentation: We compare our TRL method with the
state-of-the-art approaches on NYU Depth V2 and SUN RGBD datasets. For
NYU Depth V2 dataset, as summarized in Table 4, our TRL network with
ResNet-50 achieve the best pixel accuracies, but is slightly poor in mean class
accuracy metric than the method in [32] and mean IoU metric than the method
in [53]. It may be attributed to the imperfect depth predictions. Actually, the
methods in [32, 53] used the depth ground truth as the input, and carefully
designed some depth-RGB feature fusion strategies to make the segmentation
prediction better benefit from the depth ground truth. In contrast, our TRL
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 6. Qualitative comparison with some state-of-the-art approaches on NYU depth
v2 dataset. (a) input RGB image; (b) ground truth; (c) results of [24]; (d) results of [6];
(e) results of our TRL with ResNet-50. It can be easily observed that our predictions
contain more details and less noise than these compared methods.

Table 4. Comparisons the state-of-the-art semantic segmentation methods on NYU
Depth v2 dataset.

Method data pixel-acc mean-acc IoU

FCN [10] RGB 60.0 49.2 29.2
Context [49] RGB 70.0 53.6 40.6
Eigen et al. [24] RGB 65.6 45.1 34.1
B-SegNet [27] RGB 68.0 45.8 32.4
RefineNet-101 [46] RGB 72.8 57.8 44.9
Deng et al. [50] RGBD 63.8 - 31.5
He et al. [31] RGBD 70.1 53.8 40.1
LSTM [51] RGBD - 49.4 -
Cheng et al. [32] RGBD 71.9 60.7 45.9
3D-GNN [52] RGBD - 55.7 43.1
RDF-50 [53] RGBD 74.8 60.4 47.7

TRL-ResNet18 RGB 74.3 55.5 45.0
TRL-ResNet50 RGB 76.2 56.3 46.4

method uses only RGB images as the input and conduct semantic segmentation
based on estimated image depth, not depth ground truth. Although our TRL
itself can obtain impressive depth estimation results, the depth estimation is still
not as precise as ground truth, which usually results into more or less errors in
the segmentation prediction process. Meanwhile, as the number of samples with
semantic labels is limited in training for NYU Depth V2 dataset (795 images),
the performance may be affected for our method.

For SUN-RGBD dataset, as reported in Table 5, our TRL network with
ResNet-101 can reach the best performance in pixel-accuracy and mean IoU
metrics. It is worth noting that the number of training samples with semantic
labels is 5285 in SUN-RGBD, which is more than NYU Depth V2. Thus the
performances on the two tasks are totally better than those on NYU Depth V2
for most methods, including our TRL network. Compared with the method in
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Table 5. Comparison with the state-of-the-art semantic segmentation methods on
SUN-RGBD dataset.

Method data pixel-acc mean-acc IoU

Context [49] RGB 78.4 53.4 42.3
B-SegNet [27] RGB 71.2 45.9 30.7
RefineNet-101 [46] RGB 80.4 57.8 45.7
RefineNet-152 [46] RGB 80.6 58.5 45.9
LSTM [51] RGBD - 48.1 -
Cheng et al. [32] RGBD - 58.0 -
CFN [54] RGBD - - 48.1
3D-GNN [52] RGBD - 57.0 45.9
RDF-152 [53] RGBD 81.5 60.1 47.7

TRL-ResNet18 RGB 81.1 56.3 46.3
TRL-ResNet50 RGB 83.6 58.2 49.6
TRL-ResNet101 RGB 84.3 58.9 50.3

[53], our TRL with ResNet-50 has a total 2.1% gain for all metrics, while the
version with ResNet-101 obtains a total 4.3% gain. Note that, the method in
[53] used the stronger ResNet-152 and more precise depth (i.e., ground truth)
as inputs, while our TRL network uses only RGB images as the input. Overall,
our TRL outperforms the current state-of-the-art methods in most evaluation
metrics except the mean accuracy metric, in which ours is slightly poor but
comparable.

5 Conclusions

In this paper, a novel end-to-end task-recursive learning framework had been
proposed for jointly predicting depth map and semantic segmentation from one
RGB image. The task-recursive learning network alternately refined the two
tasks as a recursive sequence of time states. To better leverage the correlated and
common patterns of depth and semantic segmentation, we also designed a task-
attentional module. The module can adaptively mine the common information
of the two tasks, encourage both interactive learning, and finally benefit for each
other. Comprehensive benchmark evaluations demonstrated the superiority of
our task-recursive network on jointly dealing with depth estimation and semantic
segmentation. Meantime, we also reported some new state-of-the-art results on
NYU-Depth v2 and SUN RGB-D datasets. In future, we will generalize the
framework into the joint learning on more tasks.
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