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Abstract. Learned local descriptors based on Convolutional Neural Net-
works (CNNs) have achieved significant improvements on patch-based
benchmarks, whereas not having demonstrated strong generalization abil-
ity on recent benchmarks of image-based 3D reconstruction. In this pa-
per, we mitigate this limitation by proposing a novel local descriptor
learning approach that integrates geometry constraints from multi-view
reconstructions, which benefits the learning process in terms of data
generation, data sampling and loss computation. We refer to the pro-
posed descriptor as GeoDesc, and demonstrate its superior performance
on various large-scale benchmarks, and in particular show its great suc-
cess on challenging reconstruction tasks. Moreover, we provide guide-
lines towards practical integration of learned descriptors in Structure-
from-Motion (SfM) pipelines, showing the good trade-off that GeoDesc
delivers to 3D reconstruction tasks between accuracy and efficiency.
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1 Introduction

Computing local descriptors on interest regions serves as the subroutine of vari-
ous computer vision applications such as panorama stitching [12], wide baseline
matching [18], image retrieval [22], and Structure-from-Motion (SfM) [42, 26,
38, 41]. A powerful descriptor is expected to be invariant to both photomet-
ric and geometric changes, such as illumination, blur, rotation, scale and per-
spective changes. Due to the reliability, efficiency and portability, hand-crafted
descriptors such as SIFT [14] have been influentially dominating this field for
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more than a decade. Until recently, great efforts have been made on develop-
ing learned descriptors based on Convolutional Neural Networks (CNNs), which
have achieved surprising results on patch-based benchmarks such as HPatches
dataset [3]. However, on image-based datasets such as ETH local features bench-
mark [25], learned descriptors are found to underperform advanced variants of
hand-crafted descriptors. The contradictory findings raise the concern of inte-
grating those purportedly better descriptors in real applications, and show sig-
nificant room of improvement for developing more powerful descriptors that
generalize to a wider range of scenarios.

One possible cause of above contradictions, as demonstrated in [25], is the
lack of generalization ability as a consequence of data insufficiency. Although
previous research [4, 27, 28] discusses several effective sampling methods that
produce seemingly large amount of training data, the generalization ability is
still bounded to limited data sources, e.g., the widely-used Brown dataset [6]
with only 3 image sets. Hence, it is not surprising that resulting descriptors tend
to overfit to particular scenarios. To overcome it, research such as [29, 39] applies
extra regularization for compact feature learning. Meanwhile, LIFT [34] and [19]
seek to enhance data diversity and generate training data from reconstructions
of Internet tourism data. However, the existing limitation has not yet been fully
mitigated, while intermediate geometric information is overlooked in the learning
process despite the robust geometric property that local patch preserves, e.g.,
the well approximation of local deformations [20].

Besides, we lack guidelines for integrating learned descriptors in practical
pipelines such as SfM. In particular, the ratio criterion, as suggested in [14] and
justified in [10], has received almost no individual attention or was considered
inapplicable for learned descriptors [25], whereas it delivers excellent matching
efficiency and accuracy improvements, and serves as the necessity for pipelines
such as SfM to reject false matches and seed feasible initialization. A general
method to apply ratio criterion for learned descriptors is in need in practice.

In this paper, we tackle above issues by presenting a novel learning frame-
work that takes advantage of geometry constraints from multi-view reconstructed
data. In particular, we address the importance of data sampling for descrip-
tor learning and summarize our contributions threefold. i) We propose a novel
batch construction method that simulates the pair-wise matching and effectively
samples useful data for learning process. ii) Collaboratively, we propose a loss
formulation to reduce overfitting and improve the performance with geometry
constraints. iii) We provide guidelines about ratio criterion, compactness and
scalability towards practical portability of learned descriptors.

We evaluate the proposed descriptor, referred to as GeoDesc, on traditional
[9] and recent two large-scale datasets [3, 25]. Superior performance is shown
over the state-of-the-art hand-crafted and learned descriptors. We mitigate pre-
vious limitations by showing consistent improvements on both patch-based and
image-based datasets, and further demonstrate its success on challenging 3D
reconstructions.
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2 Related Works

Networks design. Due to weak semantics and efficiency requirements, exist-
ing descriptor learning often relies on shallow and thin networks, e.g., three-
layer networks in DDesc [27] with 128-dimensional output features. Moreover,
although widely-used in high-level computer vision tasks, max pooling is found
to be unsuitable for descriptor learning, which is then replaced by L2 pooling in
DDesc [27] or even removed in L2-Net [29]. To further incorporate scale infor-
mation, DeepCompare [36] and L2-Net [29] use a two-stream central-surround
structure which delivers consistent improvements at extra computational cost.
To improve the rotational invariance, an orientation estimator is proposed in [35].
Besides of feature learning, previous efforts are also made on joint metric learn-
ing as in [36, 8, 7], whereas comparison in Euclidean space is more preferable by
recent works [4, 27, 29, 34, 5] in order to guarantee its efficiency.

Loss formulation Various of loss formulations have been explored for effec-
tive descriptor learning. Initially, networks with a learned metric use softmax
loss [36, 8] and cast the descriptor learning to a binary classification problem
(similar/dissimilar). With weakly annotated data, [15] formulates the loss on
keypoint bags. More generally, pair-wise loss [27, 34] and triplet loss [4, 7, 5] are
used by networks without a learned metric. Both loss formulations encourage
matching patches to be close whereas non-matching patches to be far-away in
some measure space. In particular, triplet loss delivers better results [4, 7] as it
suffers less overfitting [13]. For effective training, recent L2-Net [29] and Hard-
Net [17] use the structured loss for data sampling which drastically improves
the performance. To further boost the performance, extra regularizations are
introduced for learning compact representation in [29, 39].

Evaluation protocol Previous works often evaluate on datasets such as [16,
31, 9]. However, those datasets either are small, or lack diversity to generalize
well to various applications of descriptors. As a result, the evaluation results
are commonly inconsistent or even contradictory to each other as pointed out
in [3], which limits the application of learned descriptors. Two novel benchmarks,
HPatches [3] and ETH local descriptor benchmark [25] have been recently in-
troduced with clearly defined protocols and better generalization properties.
However, inconsistency still exists in the two benchmarks, where HPatches [3]
benchmark demonstrates the significant outperformance from learned descrip-
tors over the handcrafted, whereas the ETH local descriptor benchmark [25]
finds that the advanced variants of the traditional descriptor are at least on
par with the learning-based. The inconclusive results indicate that there is still
significant room for improvement to learn more powerful feature descriptors.

3 Method

3.1 Network architecture

We borrow the network in L2-Net [29], where the feature tower is constructed by
eschewing pooling layers and using strided convolutional layers for in-network
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downsampling. Each convolutional layer except the last one is followed by a
batch normalization (BN) layer whose weighting and bias parameters are fixed
to 1 and 0. The L2-normalization layer after the last convolution produces the
final 128-dimensional feature vector.

3.2 Training data generation

Acquiring high quality training data is important in learning tasks. In this sec-
tion, we discuss a practical pipeline that automatically produces well-annotated
data suitable for descriptor learning.

2D correspondence generation. Similar to LIFT [34], we rely on successful
3D reconstructions to generate ground truth 2D correspondences in an auto-
matic manner. First, sparse reconstructions are obtained from standard SfM
pipeline [24]. Then, 2D correspondences are generated by projecting 3D point
clouds. In general, SfM is used to filter out most mismatches among images.

Although verified by SfM, the generated correspondences are still outlier-
contaminated from image noise and wrongly registered cameras. It happens
particularly often on Internet tourism datasets such as [30, 23] (illustrated in
Fig. 1(a)), and usually not likely to be filtered by simply limiting reprojection
error. To improve data quality, we take one step further than LIFT by com-
puting the visibility check based on 3D Delaunay triangulation [11] which is
widely-used for outlier filtering in dense stereo. Empirically, 30% of 3D points
will be discarded after the filtering while only points with high precision are kept
for ground truth generation. Fig. 1(b) gives an example to illustrate its effect.

Fig. 1: (a) Outlier matches after SfM verification (by COLMAP [24]) on Gendarmen-
markt dataset [30]. The reprojection error (next to the image) cannot be used to
identify false matches. (b) Reconstructed sparse point cloud (top), where points in red
(bottom) indicate being filtered by Delaunay triangulation and only reliable points in
green are kept. The number of points decreases from 75k to 53k after the filtering.

Matching patch generation. Next, the interest region of a 2D projection is
cropped similar to LIFT, which is formulated by an similarity transformation
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are keypoint parameters (x, y coordinates, scale and orientation) from SIFT de-
tector. The constant k is set to 12 as in LIFT, resulting in 12σ × 12σ patches.

Due to the robust estimation of scale (σ) and orientation (θ) parameters of
SIFT even in extreme cases [40], the resulting patches are mostly free of scale
and rotation differences, thus suitable for training. In later experiments of image
matching or SfM, we rely on the same cropping method to achieve scale and
rotation invariance for learned descriptors.

3.3 Geometric similarity estimation

Geometries at a 3D point are robust and provide rich information. Inspired by
the MVS (Multi-View Stereo) accuracy measurement in [37], we define two types
of geometric similarity: patch similarity and image similarity, which will facilitate
later data sampling and loss formulation.

Patch similarity. We define patch similarity Spatch to measure the difficulty
to have a patch pair matched with respect to perspective changes. Formally,
given a patch pair, we relate it to its corresponding 3D track P which is seen
by cameras centering at Ci and Cj . Next, we compute the vertex normal Pn at
P from the surface model. The geometric relationship is illustrated in Fig. 2(a).
Finally, we formulate Spatch as

Spatch = s1s2 = g(∠CiPCj , σ1)g(∠CiPPn − ∠CjPPn, σ2), (2)

where s1 measures the intersection angle between two viewing rays from the 3D
track (∠CiPCj), while s2 measures the difference of incidence angles between a
viewing ray and the vertex normal from the 3D track (∠CiPPn,∠CjPPn). The

angle metric is defined as g(α, σ) = exp(− α2

2σ2 ). As an interpretation, s1 and
s2 measure the perspective change regarding a 3D point and local 3D surface,
respectively. The effect of Spatch is illustrated in Fig. 2(b).

The accuracy of s1 and s2 depends on sparse and mesh reconstructions,
respectively, and is generally sufficient for its use as shown in [37]. The similarity
does not consider scale and rotation changes as already resolved from Equation 1.
Empirically, we choose σ1 = 15 and σ2 = 20 (in degree).

Image similarity. Based on the patch similarity, we define the image similarity
Simage as the average patch similarity of the correspondences between an image
pair. The image similarity measures the difficulty to match an image pair and
can be interpreted as a measurement of perspective change. Examples are given
in Fig. 2(c). The image similarity will be beneficial for data sampling in Sec. 3.4.

3.4 Batch construction

For descriptor learning, most existing frameworks take patch pairs (matching/non-
matching) or patch triplets (reference, matching and non-matching) as input. As
in previous studies, the convergence rate is highly dependent on being able to see
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Fig. 2: (a) The patch similarity relies on the geometric relationship between cameras,
tracks and surface normal. (b) The effect of patch similarity, which measures the dif-
ficulty to have a patch pair matched with respect to the perspective change. (c) The
effect of image similarity, which measures the perspective change between an image
pairs. (d) Batch data constructed by L2-Net [29] and HardNet [17] (top), whose in-
batch patch pairs are often distinctive to each other and thus contribute nothing to the
loss in the late learning (e.g., the margin-based loss). However, the batch data from
the proposed batch construction method (bottom) consists of similar patch pairs due
to the spatially close keypoints or repetitive patterns, which are considered harder to
distinguish and thus raise greater challenges for learning

useful data [21]. Here, “useful” data often refers to patch pairs/triplets that pro-
duce meaningful loss for learning. However, the effective sampling of such data
is generally challenging due to the intractably large number of patch pair/triplet
combination in the database. Hence, on one hand, sampling strategies such as
hard negative mining [27] and anchor swap [4] are proposed, while on the other
hand, effective batch construction is used in [29, 7, 17] to compare the reference
patch against all the in-batch samples in the loss computation.

Inspired by previous works, we propose a novel batch construction method
that effectively samples “useful” data by relying on geometry constraints from
SfM, including the image matching results and image similarity Simage, to sim-
ulate the pair-wise image matching and sample data. Formally, given one image
pair, we extract a match set X = {(x1, x

+
1 ), (x2, x

+
2 ), ..., (xN1

, x+
N1

)}, where N1 is

the set size and (xi, x
+
i ) is a matching patch pair surviving the SfM verification.

A training batch is then constructed on N2 match sets. Hence, the learning ob-
jective becomes to improve the matching quality for each match set. In Sec. 3.5,
we will discuss the loss computation on each match set and batch data.

Compared with L2-Net [29] and HardNet [17] whose training batches are
random sampled from the whole database, the proposed method produces harder
samples and thus raises greater challenges for learning. As an example shown
in Fig. 2(d), the training batch constructed by the proposed method consists of
many similar patterns, due to the spatially close keypoints or repetitive textures.
In general, such training batch has two major advantages for descriptor learning:
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– It reflects the in-practice complexity. In real applications, image patches are
often extracted between image pairs for matching. The proposed method sim-
ulates this scenario so that training and testing become more consistent.

– It generates hard samples for training. As observed in [4, 27, 17, 21], hard sam-
ples are critical to fast convergence and performance improvement for descrip-
tor learning. The proposed method effectively generates batch data that is
sufficiently hard, while not being overfitting as constructed on real matching
results instead of model inference results [27].

To further boost the training efficiency, we exclude image pairs that are too
similar to contribute to the learning. Those pairs are effectively identified by the
image similarity defined in Sec. 3.3. In practice, we discard image pairs whose
Simage are larger than 0.85 (e.g., the toppest pair in Fig. 2(c)), which results in
a 30% shrink of training samples.

3.5 Loss formulation

We formulate the loss with two terms: structured loss and geometric loss.

Structured loss. The structured loss used in L2-Net [29] and HardNet [17] is
essentially suitable to consume the batch samples constructed in Sec. 3.4. In
particular, the formulation in HardNet based on the “hardest-in-batch” strategy
and a distance margin shows to be more effective than the log-likelihood formu-
lation in L2-Net. However, we observe successive overfitting when applying the
HardNet loss to our batch data, which we ascribe to the too strong constraint
of “hardest-in-batch” strategy. In this strategy, the loss is computed on the data
sample that produces the largest loss, and a margin with a large value (1.0 in
HardNet) is set to push the non-matching pairs away from matching pairs. In
our batch data, we already effectively sample the “hard” data which is often vi-
sually similar, thus forcing a large margin is inapplicable and stalls the learning.
One simple solution is to decrease the margin value, whereas the performance
drops significantly in our experiments.

To avoid above limitation and better take advantage of our batch data, we
propose the loss formulation as follows. First, we compute the structured loss for
one match set. Given normalized features F1,F2 ∈ R

N1×128 computed on match
set X for all (xi, x

+
i ), the cosine similarity matrix is derived by S = F1F

T
2 . Next,

we compute L = S− αdiag(S) and formulate the loss as

E1 =
1

N1(N1 − 1)

∑

i,j

(max(0, li,j − li,i) + max(0, li,j − lj,j)), (3)

where li,j is the element in L, and α ∈ (0, 1) is the distance ratio mimicking the
behavior of ratio test [14] and pushing away non-matching pairs from matching
pairs. Finally, we take the average of the loss on each match set to derive the
final loss for one training batch.

The proposed formulation is distinctive from HardNet in three aspects. First,
we compute the cosine similarity instead of Euclidean distance for computational
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efficiency. Second, we apply a distance ratio margin instead of a fixed distance
margin as an adaptive margin to reduce overfitting. Finally, we compute the
mean value of each loss element instead of the maximum (“hardest-in-batch”)
in order to cooperate the proposed batch construction.

Geometric loss. Although E1 ensures matching patch pairs to be distant from
the non-matching, it does not explicitly encourage matching pairs to be close
in its measure space. One simple solution is to apply a typical pair-wise loss
in [27], whereas taking a risk of positive collapse and overfitting as observed
in [13]. To overcome it, we adaptively set up the margin regarding the patch
similarity defined in Sec. 3.3, serving as a soft constraint for maximizing the
positive similarity. We refer to this term as geometric loss and formulate it as

E2 =
∑

i

max(0, β − si,i), β =











0.7 spatch ≥ 0.5

0.5 0.2 ≤ spatch < 0.5

0.2 otherwise

(4)

where β is the adaptive margin, si,i is the element in S, namely, the cosine
similarity of patch pair (xi, x

+
i ), while spatch is the patch similarity for (xi, x

+
i ).

We use E1 + λE2 as the final loss, and empirically set α and λ to 0.4 and 0.2.

3.6 Training

We use image sets [30] as in LIFT [34], the SfM data in [23], and further collect
several image sets to form the training database. Based on COLMAP [24], we
run 3D reconstructions to establish necessary geometry constraints. Image sets
that are overlapping with the benchmark data are manually excluded. We train
the networks from scratch using Adam with a base learning rate of 0.001 and
weight decay of 0.0001. The learning rate decays by 0.9 every 10, 000 steps. Data
augmentation includes randomly flipping, 90 degrees rotation and brightness and
contrast adjustment. The match set size N1 and batch size N2 are 64 and 12,
respectively. Input patches are standardized to have zero mean and unit norm.

4 Experiments

We evaluate the proposed descriptor on three datasets: the patch-based HPatches [3]
benchmark, the image-based Heinly benchmark [9] and ETH local features bench-
mark [25]. We further demonstrate on challenging SfM examples.

4.1 HPatches benchmark

HPatches benchmark [3] defines three complementary tasks: patch verification,
patch matching, and patch retrieval. Different levels of geometrical perturbations
are imposed to form EASY, HARD and TOUGH patch groups. In the task of ver-
ification, two subtasks are defined based on whether negative pairs are sampled
from images within the same (SAMESEQ) or different sequences (DIFFSEQ).
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In the task of matching, two subtasks are defined based on whether the principle
variance is viewpoint (VIEW) or illumination (ILLUM). Following [3], we use
mean average precision (mAP) to measure the performance for all three tasks
on HPatches split ‘full’.

We select five descriptors to compare: SIFT as the baseline, RSIFT [2] and
DDesc [27] as the best-performing hand-crafted and learned descriptors con-
cluded in [3]. Moreoever, we experiment with recent learned descriptors L2-
Net [29] and HardNet [17]. The proposed descriptor is referred to as GeoDesc.

Fig. 3: Left to right: Verification, matching and retrieval results on HPatches dataset,
split ‘full’. Results on different patch groups are colorized, while DIFFSEQ/SAMESEQ
and ILLUM/VIEW denote the subtasks of verification and matching, respectively

As shown in Fig. 3, GeoDesc surpasses all the other descriptors on all three
tasks by a large margin. In particular, the performance on TOUGH patch group
is significantly improved, which indicates the superior invariance to large image
changes of GeoDesc. Interestingly, comparing GeoDesc with HardNet, we observe
some performance drop on EASY groups especially for illumination changes,
which can be ascribed to the data bias for SfM data. Though applying ran-
domness such as illumination during the training, we cannot fully mitigate this
limitation which asks more diverse real data in descriptor learning.

In addition, we evaluate different configurations of GeoDesc on HPatches as
shown in Tab. 1 to demonstrate the effect of each part of our method.

– Config. 1 : the HardNet framework as the baseline.
– Config. 2 : trained with the SfM data in Sec. 3.2. Compared with Config. 1,

it is shown that crowd-sourced training data essentially improves the gener-
alization ability. Meanwhile, on the other hand, Config. 2 can be regarded as
an extension of LIFT [34] with more advanced loss formulation.

– Config. 3 : equipped with the proposed batch construction in Sec. 3.4. As dis-
cussed in Sec. 3.5, the “hardest-in-batch” strategy in HardNet is inapplicable
to hard batch data and thus leads to performance drop compared with Con-
fig. 2. In practice, we need to adjust the margin value from 1.0 in HardNet
to 0.6, otherwise the training will not even converge. Though trainable, the
smaller margin value harms the final performance.

– Config. 4 : equipped with the modified structured loss in Sec. 3.5. Notable
performance improvements are achieved over Config. 2 due to the collabora-
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tive use of proposed methods, showing the effectiveness of simulating pair-wise
matching and sampling hard data. Besides, replacing the distance margin with
distance ratio can improve the training efficiency, as shown in Fig. 4.

– Config. 5 : equipped with the geometric loss in Sec. 3.5. Further improvements
are obtained over Config. 4 as E2 constrains the solution space and enhances
the training efficiency.

To sum up, the “hardest-in-batch” strategy is beneficial when no other sam-
pling is applied and most in-batch samples do not contribute to the loss. However,
with harder batch data effectively constructed, it is advantageous to replace the
“hardest-in-batch” and further boost the descriptor performance.

Table 1: Evaluation of different configurations of GeoDesc
on HPatches. Modules are enabled if marked with “Y”
otherwise with “-”. SfM Data denotes the training with
our SfM data, Batch Construct. denotes the equipment
of proposed batch construction, while E1 and E2 denote
the use of proposed structured loss and geometric loss,
respectively. The last configuration (Config. 5 ) is our best
model with GeoDesc

GeoDesc Configuration HPathces Benchmark Tasks

No. SfM Data Batch Construct. E1 E2 Verification Matching Retrieval

1 - - - - 88.4 52.8 69.8
2 Y - - - 90.1 57.0 73.2
3 Y Y - - 89.9 50.2 70.4
4 Y Y Y - 90.9 58.5 74.5
5 Y Y Y Y 91.1 59.1 74.9

Fig. 4: Effect of taking dis-
tance ratio in loss compu-
tation. The metric is the
validation accuracy of patch
triplets with a margin of 0.5
by cosine similarity.

4.2 Heinly benchmark

Different from HPatches which experiments on image patches, the benchmark
by Heinly et al. [9] evaluates pair-wise image matching regarding different types
of photometric or geometric changes, targeting to provide practical insights for
strengths and weaknesses of descriptors. We use two standard metrics as in [9]
to quantify the matching quality. First, the Matching Score = #Inlier Matches
/ #Features. Second, the Recall = #Inlier Matches / #True Matches. Four
descriptor are selected to compare: SIFT, the baseline hand-crafted descrip-
tor; DSP-SIFT, the best hand-crafted descriptor even superior to the previous
learning-based as evaluated in [25]; L2-Net and HardNet, the recent advanced
learned descriptors. For fairness comparison, no ratio test and only cross check
(mutual test) is applied for all descriptors.

Evaluation results are shown in Tab. 2. Compared with DSP-SIFT, GeoDesc
performs comparably regarding image quality changes (compression, blur), while
notably better for illumination and geometric changes (rotation, scale, view-
point). On the other hand, GeoDesc delivers significant improvements on L2-Net
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Table 2: Evaluation results on pair-wise image matching on benchmark by Heinly et
al. [9] with respect to different types of image changes

Matching Score in % Recall in %

SIFT DSP-SIFT L2-Net HardNet GeoDesc SIFT DSP-SIFT L2-Net HardNet GeoDesc

JPEG 31.9 35.1 25.7 27.0 34.7 60.7 66.9 49.0 51.5 66.1
Blur 12.4 14.3 9.1 11.3 14.4 41.0 47.3 30.1 37.4 47.7

Exposure 32.9 34.8 33.9 34.9 36.3 78.2 82.6 80.4 82.8 86.4

Day-Night 5.6 5.7 6.8 7.4 7.5 29.2 29.7 35.6 38.9 39.6

Scale 35.8 34.7 32.6 34.8 37.8 81.2 78.8 73.6 79.0 85.8

Rotation 56.3 49.1 55.9 57.4 59.8 82.4 71.8 81.9 84.0 87.6

Scale-rotation 12.6 12.0 10.7 12.1 14.3 29.6 28.1 25.0 28.5 33.7

Planar 23.8 24.8 25.6 27.4 29.1 48.2 50.4 51.9 55.6 59.1

and HardNet and particularly narrows the gap in terms of photometric changes,
which makes GeoDesc applicable to different scenarios in real applications.

4.3 ETH local features benchmark

The ETH local features benchmark [25] focuses on image-based 3D reconstruc-
tion tasks. We compare GeoDesc with SIFT, DSP-SIFT and L2-Net, and follow
the same protocols in [25] to quantify the SfM quality, including the number of
registered images (# Registered), reconstructed sparse points (# Sparse Points),
image observations (# Observations), mean track length (Track Length) and
mean reprojection error (Reproj. Error). For fairness comparison, we apply no
distance ratio test for descriptor matching and extract features at the same
keypoints as in [25].

As observed in Tab. 3, first, GeoDesc performs best on # Registered, which is
generally considered as the most important SfM metric that directly quantifies
the reconstruction completeness. Second, GeoDesc achieves best results on #
Sparse Points and# Observations, which indicates the superior matching quality
in the early step of SfM. However, GeoDesc fails to get best statistics about Track
Length and Reproj. Error as GeoDesc computes the two metrics on significantly
larger # Sparse Points. In terms of datasets whose scale is small and have similar
track number (Fountain, Herzjesu), GeoDesc gives the longest Track Length.

To sum up, GeoDesc surpasses both the previous best-performing DSP-SIFT
and recent advanced L2-Net by a notable margin. In addition, it is noted that
L2-Net also shows consistent improvements over DSP-SIFT, which demonstrates
the power of taking structured loss for learned descriptors.

4.4 Challenging 3D reconstructions

To further demonstrate the effect of the proposed descriptor in a context of 3D
reconstruction, we showcase selective image sets whose reconstructions fail or
are in low quality with a typical SIFT-based 3D reconstruction pipeline but get
significantly improved by integrating GeoDesc.
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Table 3: Evaluation results on ETH local features benchmark [25] for SfM tasks

# Images # Registered # Sparse Points # Observations Track Length Reproj. Error

Fountain SIFT 11 11 10,004 44K 4.49 0.30px

DSP-SIFT 11 14,785 71K 4.80 0.41px
L2-Net 11 16,119 78K 4.86 0.43px
GeoDesc 11 16,687 83K 4.99 0.46px

Herzjesu SIFT 8 8 4,916 19K 4.00 0.32px

DSP-SIFT 8 7,760 32K 4.19 0.45px
L2-Net 8 8,473 36K 4.27 0.47px
GeoDesc 8 8,720 38K 4.34 0.55px

South Building SIFT 128 128 62,780 353K 5.64 0.42px

DSP-SIFT 128 110,394 664K 6.02 0.57px
L2-Net 128 155,780 798K 5.13 0.58px
GeoDesc 128 170,306 887K 5.21 0.64px

Madrid Metropolis SIFT 1,344 440 62,729 416K 6.64 0.53px

DSP-SIFT 476 107,028 681K 6.36 0.64px
L2-Net 692 254,142 1,067K 4.20 0.69px
GeoDesc 809 306,976 1,200K 3.91 0.66px

Gendarmenmarkt SIFT 1,463 950 169,900 1,010K 5.95 0.64px

DSP-SIFT 975 321,846 1,732K 5.38 0.74px
L2-Net 1,168 667,392 2,611K 3.91 0.73px
GeoDesc 1,208 779,814 2,903K 3.72 0.74px

Tower of London SIFT 1,576 702 142,746 963K 6.75 0.53px

DSP-SIFT 755 236,598 1,761K 7.44 0.64px
L2-Net 1,049 558,673 2,617K 4.68 0.67px
GeoDesc 1,081 622,076 2,852K 4.58 0.69px

Alamo SIFT 2,915 743 120,713 1,384K 11.47 0.54px

DSP-SIFT 754 144,341 1,815K 12.58 0.66px
L2-Net 882 318,787 2,932K 9.17 0.76px
GeoDesc 893 353,329 3,159K 8.94 0.84px

Roman Forum SIFT 2,364 1,407 242,192 1,805K 7.45 0.61px

DSP-SIFT 1,583 372,573 2,879K 7.73 0.71px
L2-Net 1,537 708,794 4,530K 6.39 0.69px
GeoDesc 1,566 770,363 5,051K 6.56 0.73px

Cornell SIFT 6,514 4,999 1,010,544 6,317K 6.25 0.53px

DSP-SIFT 4,946 1,177,916 7,233K 6.14 0.67px
L2-Net 5,557 2,706,215 15,710K 5.81 0.72px
GeoDesc 5,823 3,076,476 17,550K 5.70 0.96px

Fig. 5: Testing cases of challenging image sets, where a traditional SIFT-based recon-
struction pipeline fails to apply but GeoDesc delivers significant improvement.

From examples shown in Fig. 5, it is clear to see the benefit of deploying
GeoDesc in a reconstruction pipeline. First, by robust matching resistant to
photometric and geometric changes, a complete sparse reconstruction registered
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with more cameras can be obtained. Second, due to more accurate camera pose
estimation, the final fined mesh reconstruction is then derived.

5 Practical Guidelines

In this section, we discuss several practical guidelines to complement the per-
formance evaluation and provide insights towards real applications. Following
experiments are conducted with 231 extra high-resolution image pairs, whose
keypoints are downsampled to ∼10k per image. We use a single NVIDIA GTX
1080 GPU with TensorFlow [1], and forward each batch with 256 patches.

5.1 Ratio criterion

The ratio criterion [14] compares the distance between the first and the second
nearest neighbor, and establishes a match if the former is smaller than the latter
to some ratio. For SfM tasks, the ratio criterion improves overall matching qual-
ity, RANSAC efficiency, and seeds robust initialization. Despite those benefits,
the ratio criterion has received little attention, or even been considered inappli-
cable to learned descriptors in previous studies [25]. Here, we propose a general
method to determine the ratio that well cooperates with existing SfM pipelines.

The general idea is simple: the new ratio should function similarly as SIFT’s,
as most SfM pipelines are parameterized for SIFT. To quantify the effect of
the ratio criterion, we use the metric Precision = #Inlier Matches / #Putative
matches, and determine the ratio that achieves similar Precision as SIFT’s. As
an example in Fig. 6, we compute the Precision of SIFT and GeoDesc on our
experimental dataset, and find the best ratio for GeoDesc is 0.89 at which it gives
similar Precision (0.70) as SIFT (0.69). This ratio is applied to experiments in
Sec. 4.4 and shows robust results and compatibility in the practical SfM pipeline.

5.2 Compactness study

A compact feature representation generally indicates better performance with
respective to discriminativeness and scalability. To quantify the compactness,
we reply on the intermediate result in Principal Component Analysis (PCA).
First, we compute the explained variance vi which is stored in increasing order
for each feature dimension indexed by i. Then we estimate the compact di-
mensionality (denoted as Compact-Dim) by finding the minimal k that satisfies
∑k

i vi/
∑D

i vi >= t, where t is a given threshold and D is the original feature
dimensionality. In this experiment, we set t = 0.9, so that the Compact-Dim can
be interpreted as the minimal dimensionality required to convey more than 90%
information of the original feature. Obviously, larger Compact-Dim indicates less
redundancy, namely greater compactness.

As a result, the Compact-Dim estimated on 4 millions feature vectors for
SIFT, DSP-SIFT, L2-Net and GeoDesc is 56, 63, 75 and 100, respectively. The
ranking of Compact-Dim effectively responds to previous performance evalua-
tions, where descriptors with larger Compact-Dim yield better results.
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5.3 Scalability study

Computational cost. As evaluated in [3, 25], the efficiency of learned descrip-
tors is on par with traditional descriptors such as CPU-based SIFT. Here, we
further compare with GPU-based SIFT [32] to provide insights about practi-
cability. We evaluate the running time in three steps. First, keypoint detection
and canonical orientation estimation by SIFT-GPU. Next, patches cropping by
Equ. 1. Finally, feature inference of image patches. The computational cost and
memory demand are shown in Tab. 4, indicating that with GPU support, not
surprisingly, SIFT (0.20s) is still faster than the learned descriptor (0.31s), with
a narrow gap due to the parallel implementation. For applications heavily relying
on matching quality (e.g., 3D reconstruction), the proposed descriptor achieves
a good trade-off to replace SIFT.

Quantization. To conserve disk space, I/O and memory, we linearly map fea-
ture vectors of GeoDesc from [−1, 1] to [0, 255] and round each element to
unsigned-char value. The quantization does not affect the performance as eval-
uated on HPatches benchmark.

Fig. 6: Determine the ratio crite-
rion of GeoDesc so that it has the
same Precision as SIFT (at 0.89)

Table 4: Computational cost and memory demand of
feature extraction of GeoDesc in three steps: SIFT-
GPU extraction, patch cropping and feature infer-
ence. The total time cost is evaluated with three
steps implemented in a parallel fashion

SIFT Crop. Infer. Total

Device GPU CPU GPU -
Memory (GB) 3.3 2.7 0.3 -

Time (s) 0.20 0.28 0.31 0.31

6 Conclusions

In contrast to prior work, we have addressed the advantages of integrating ge-
ometry constraints for descriptor learning, which benefits the learning process
in terms of ground truth data generation, data sampling and loss computation.
Also, we have discussed several guidelines, in particular, the ratio criterion, to-
wards practical portability. Finally, we have demonstrated the superior perfor-
mance and generalization ability of the proposed descriptor, GeoDesc, on three
benchmark datasets in different scenarios, We have further shown the significant
improvement of GeoDesc on challenging reconstructions, and the good trade-off
between efficiency and accuracy to deploy GeoDesc in real applications.
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