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Abstract. In this work, we study the 1-bit convolutional neural net-
works (CNNs), of which both the weights and activations are binary.
While being efficient, the classification accuracy of the current 1-bit
CNNs is much worse compared to their counterpart real-valued CNN
models on the large-scale dataset, like ImageNet. To minimize the per-
formance gap between the 1-bit and real-valued CNN models, we propose
a novel model, dubbed Bi-Real net, which connects the real activations
(after the 1-bit convolution and/or BatchNorm layer, before the sign
function) to activations of the consecutive block, through an identity
shortcut. Consequently, compared to the standard 1-bit CNN, the rep-
resentational capability of the Bi-Real net is significantly enhanced and
the additional cost on computation is negligible. Moreover, we develop
a specific training algorithm including three technical novelties for 1-
bit CNNs. Firstly, we derive a tight approximation to the derivative of
the non-differentiable sign function with respect to activation. Secondly,
we propose a magnitude-aware gradient with respect to the weight for
updating the weight parameters. Thirdly, we pre-train the real-valued
CNN model with a clip function, rather than the ReLU function, to bet-
ter initialize the Bi-Real net. Experiments on ImageNet show that the
Bi-Real net with the proposed training algorithm achieves 56.4% and
62.2% top-1 accuracy with 18 layers and 34 layers, respectively. Com-
pared to the state-of-the-arts (e.g., XNOR Net), Bi-Real net achieves
up to 10% higher top-1 accuracy with more memory saving and lower
computational cost.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have achieved substantial ad-
vances in a wide range of vision tasks, such as object detection and recognition
[12, 23, 25, 5, 3, 20], depth perception [2, 16], visual relation detection [29, 30], face
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tracking and alignment [24, 32, 34, 28, 27], object tracking [17], etc. However, the
superior performance of CNNs usually requires powerful hardware with abun-
dant computing and memory resources. For example, high-end Graphics Process-
ing Units (GPUs). Meanwhile, there are growing demands to run vision tasks,
such as augmented reality and intelligent navigation, on mobile hand-held de-
vices and small drones. Most mobile devices are not equipped with a powerful
GPU neither an adequate amount of memory to run and store the expensive
CNN model. Consequently, the high demand for computation and memory be-
comes the bottleneck of deploying the powerful CNNs on most mobile devices.
In general, there are three major approaches to alleviate this limitation. The
first is to reduce the number of weights, such as Sparse CNN [15]. The second
is to quantize the weights (e.g., QNN [8] and DoReFa Net [33]). The third is to
quantize both weights and activations, with the extreme case of both weights
and activations being binary.

In this work, we study the extreme case of the third approach, i.e., the binary
CNNs. It is also called 1-bit CNNs, as each weight parameter and activation can
be represented by 1-bit. As demonstrated in [19], up to 32× memory saving
and 58× speedup on CPUs have been achieved for a 1-bit convolution layer,
in which the computationally heavy matrix multiplication operations become
light-weighted bitwise XNOR operations and bit-count operations. The current
binarization method achieves comparable accuracy to real-valued networks on
small datasets (e.g., CIFAR-10 and MNIST). However on the large-scale datasets
(e.g., ImageNet), the binarization method based on AlexNet in [7] encounters
severe accuracy degradation, i.e., from 56.6% to 27.9% [19]. It reveals that the
capability of conventional 1-bit CNNs is not sufficient to cover great diversity in
large-scale datasets like ImageNet. Another binary network called XNOR-Net
[19] was proposed to enhance the performance of 1-bit CNNs, by utilizing the
absolute mean of weights and activations.

The objective of this study is to further improve 1-bit CNNs, as we believe its
potential has not been fully explored. One important observation is that during
the inference process, 1-bit convolution layer generates integer outputs, due to
the bit-count operations. The integer outputs will become real values if there is
a BatchNorm [10] layer. But these real-valued activations are then binarized to
−1 or +1 through the consecutive sign function, as shown in Fig. 1(a). Obvi-
ously, compared to binary activations, these integers or real activations contain
more information, which is lost in the conventional 1-bit CNNs [7]. Inspired by
this observation, we propose to keep these real activations via adding a simple
yet effective shortcut, dubbed Bi-Real net. As shown in Fig. 1(b), the shortcut
connects the real activations to an addition operator with the real-valued ac-
tivations of the next block. By doing so, the representational capability of the
proposed model is much higher than that of the original 1-bit CNNs, with only
a negligible computational cost incurred by the extra element-wise addition and
without any additional memory cost.

Moreover, we further propose a novel training algorithm for 1-bit CNNs in-
cluding three technical novelties:
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Fig. 1. Network with intermediate feature visualization, yellow lines denote value prop-
agated inside the path being real while blue lines denote binary values. (a) 1-bit CNN
without shortcut (b) proposed Bi-Real net with shortcut propagating the real-valued
features.

– Approximation to the derivative of the sign function with re-

spect to activations. As the sign function binarizing the activation is
non-differentiable, we propose to approximate its derivative by a piecewise
linear function in the backward pass, derived from the piecewise polyno-
mial function that is a second-order approximation of the sign function. In
contrast, the approximated derivative using a step function (i.e., 1|x|<1) pro-
posed in [7] is derived from the clip function (i.e., clip(-1,x,1)), which is also
an approximation to the sign function. We show that the piecewise polyno-
mial function is a closer approximation to the sign function than the clip
function. Hence, its derivative is more effective than the derivative of the
clip function.

– Magnitude-aware gradient with respect to weights. As the gradient
of loss with respect to the binary weight is not large enough to change the
sign of the binary weight, the binary weight cannot be directly updated using
the standard gradient descent algorithm. In BinaryNet [7], the real-valued
weight is first updated using gradient descent, and the new binary weight is
then obtained through taking the sign of the updated real weight. However,
we find that the gradient with respect to the real weight is only related to
the sign of the current real weight, while independent of its magnitude. To
derive a more effective gradient, we propose to use a magnitude-aware sign
function during training, then the gradient with respect to the real weight
depends on both the sign and the magnitude of the current real weight. After
convergence, the binary weight (i.e., -1 or +1) is obtained through the sign
function of the final real weight for inference.

– Initialization. As a highly non-convex optimization problem, the training
of 1-bit CNNs is likely to be sensitive to initialization. In [17], the 1-bit
CNN model is initialized using the real-valued CNN model with the ReLU
function pre-trained on ImageNet. We propose to replace ReLU by the clip
function in pre-training, as the activation of the clip function is closer to the
binary activation than that of ReLU.
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Experiments on ImageNet show that the above three ideas are useful to
train 1-bit CNNs, including both Bi-Real net and other network structures.
Specifically, their respective contributions to the improvements of top-1 accuracy
are up to 12%, 23% and 13% for a 18-layer Bi-Real net. With the dedicatedly-
designed shortcut and the proposed optimization techniques, our Bi-Real net,
with only binary weights and activations inside each 1-bit convolution layer,
achieves 56.4% and 62.2% top-1 accuracy with 18-layer and 34-layer structures,
respectively, with up to 16.0× memory saving and 19.0× computational cost
reduction compared to the full-precision CNN. Comparing to the state-of-the-
art model (e.g., XNOR-Net), Bi-Real net achieves 10% higher top-1 accuracy on
the 18-layer network.

2 Related Work

Reducing the number of parameters. Several methods have been proposed
to compress neural networks by reducing the number of parameters and neural
connections. For instance, He et al. [5] proposed a bottleneck structure which
consists of three convolution layers of filter size 1×1, 3×3 and 1×1 with a short-
cut connection as a preliminary building block to reduce the number of param-
eters and to speed up training. In SqueezeNet [9], some 3×3 convolutions are
replaced with 1×1 convolutions, resulting in a 50× reduction in the number of
parameters. FitNets [21] imitates the soft output of a large teacher network us-
ing a thin and deep student network, and in turn yields 10.4× fewer parameters
and similar accuracy to a large teacher network on the CIFAR-10 dataset. In
Sparse CNN [15], a sparse matrix multiplication operation is employed to zero
out more than 90% of parameters to accelerate the learning process. Motivated
by the Sparse CNN, Han et al. proposed Deep Compression [4] which employs
connection pruning, quantization with retraining and Huffman coding to reduce
the number of neural connections, thus, in turn, reduces the memory usage.
Parameter quantization. The previous study [13] demonstrated that real-
valued deep neural networks such as AlexNet [12], GoogLeNet [25] and VGG-16
[23] only encounter marginal accuracy degradation when quantizing 32-bit pa-
rameters to 8-bit. In Incremental Network Quantization, Zhou et al. [31] quan-
tize the parameter incrementally and show that it is even possible to further
reduce the weight precision to 2-5 bits with slightly higher accuracy than a full-
precision network on the ImageNet dataset. In BinaryConnect [1], Courbariaux
et al. employ 1-bit precision weights (1 and -1) while maintaining sufficiently
high accuracy on the MNIST, CIFAR10 and SVHN datasets.

Quantizing weights properly can achieve considerable memory savings with
little accuracy degradation. However, acceleration via weight quantization is
limited due to the real-valued activations (i.e., the input to convolution layers).

Several recent studies have been conducted to explore new network struc-
tures and/or training techniques for quantizing both weights and activations
while minimizing accuracy degradation. Successful attempts include DoReFa-
Net [33] and QNN [8], which explore neural networks trained with 1-bit weights
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Fig. 2. The mechanism of xnor operation and bit-counting inside the 1-bit CNNs pre-
sented in [19].

and 2-bit activations, and the accuracy drops by 6.1% and 4.9% respectively on
the ImageNet dataset compared to the real-valued AlexNet. Additionally, Bina-
ryNet [7] uses only 1-bit weights and 1-bit activations in a neural network and
achieves comparable accuracy as full-precision neural networks on the MNIST
and CIFAR-10 datasets. In XNOR-Net [19], Rastegari et al. further improve
BinaryNet by multiplying the absolute mean of the weight filter and activation
with the 1-bit weight and activation to improve the accuracy. ABC-Net [14]
proposes to enhance the accuracy by using more weight bases and activation
bases. The results of these studies are encouraging, but admittedly, due to the
loss of precision in weights and activations, the number of filters in the network
(thus the algorithm complexity) grows in order to maintain high accuracy, which
offsets the memory saving and speedup of binarizing the network.

In this study, we aim to design 1-bit CNNs aided with a real-valued shortcut
to compensate for the accuracy loss of binarization. Optimization strategies for
overcoming the gradient dismatch problem and discrete optimization difficulties
in 1-bit CNNs, along with a customized initialization method, are proposed to
fully explore the potential of 1-bit CNNs with its limited resolution.

3 Methodology

3.1 Standard 1-bit CNNs and Its Representational Capability

1-bit convolutional neural networks (CNNs) refer to the CNN models with bi-
nary weight parameters and binary activations in intermediate convolution lay-
ers. Specifically, the binary activation and weight are obtained through a sign
function,

ab = Sign(ar) =

{

−1 if ar < 0
+1 otherwise

, wb = Sign(wr) =

{

−1 if wr < 0
+1 otherwise

, (1)

where ar and wr indicate the real activation and the real weight, respectively.
ar exists in both training and inference process of the 1-bit CNN, due to the
convolution and batch normalization (if used). As shown in Fig. 2, given a binary
activation map and a binary 3× 3 weight kernel, the output activation could be
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Fig. 3. The representational capability (R) of each layer in (a) 1-bit CNNs without
shortcut (b) 1-bit CNNs with shortcut. Al

b indicates the output of the Sign function;
Al

m denotes the output of the 1-bit convolution layer; Al+1
r represents the output of

the BatchNorm layer; The superscript l indicates the block index.

any odd integer from −9 to 9. If a batch normalization is followed, as shown in
Fig. 3, then the integer activation will be transformed into real values. The real
weight will be used to update the binary weights in the training process, which
will be introduced later.

Compared to the real-valued CNN model with the 32-bit weight parameter,
the 1-bit CNNs obtains up to 32× memory saving. Moreover, as the activation
is also binary, then the convolution operation could be implemented by the
bitwise XNOR operation and a bit-count operation[19]. One simple example of
the bitwise operation is shown in Fig. 2. In contrast, the convolution operation
in real-valued CNNs is implemented by the expensive real value multiplication.
Consequently, the 1-bit CNNs could obtain up to 64× computation saving.

However, it has been demonstrated in [7] that the classification performance
of the 1-bit CNNs is much worse than that of the real-valued CNN models on
large-scale datasets like ImageNet. We believe that the poor performance of 1-
bit CNNs is caused by its low representational capacity. We denote R(x) as the
representational capability of x, i.e., the number of all possible configurations
of x, where x could be a scalar, vector, matrix or tensor. For example, the
representational capability of 32 channels of a binary 14× 14 feature map A is
R(A) = 214×14×32 = 26272. Given a 3 × 3 × 32 binary weight kernel W, each
entry of A⊗W (i.e., the bitwise convolution output) can choose the even values
from (-288 to 288), as shown in Fig 3. Thus, R(A ⊗ W) = 2896272. Note that
since the BatchNorm layer is a unique mapping, it will not increase the number of
different choices but scale the (-288,288) to a particular value. If adding the 1-bit
convolution layer behind the output, each entry in the feature map is binarized,
and the representational capability shrinks to 26272 again.

3.2 Bi-Real Net Model and Its Representational Capability

We propose to preserve the real activations before the sign function to increase
the representational capability of the 1-bit CNN, through a simple shortcut.
Specifically, as shown in Fig. 3(b), one block indicates the structure that “Sign
→ 1-bit convolution → batch normalization → addition operator”. The shortcut
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Fig. 4. A graphical illustration of the training process of the 1-bit CNNs, with A being
the activation, W being the weight, and the superscript l denoting the lth block consist-
ing with Sign, 1-bit Convolution, and BatchNorm. The subscript r denotes real value,
b denotes binary value, and m denotes the intermediate output before the BatchNorm
layer.

connects the input activations to the sign function in the current block to the
output activations after the batch normalization in the same block, and these
two activations are added through an addition operator, and then the combined
activations are inputted to the sign function in the next block. The representa-
tional capability of each entry in the added activations is 2892. Consequently,
the representational capability of each block in the 1-bit CNN with the above
shortcut becomes (2892)6272. As both real and binary activations are kept, we
call the proposed model as Bi-Real net.

The representational capability of each block in the 1-bit CNN is significantly
enhanced due to the simple identity shortcut. The only additional cost of compu-
tation is the addition operation of two real activations, as these real activations
already exist in the standard 1-bit CNN (i.e., without shortcuts). Moreover, as
the activations are computed on the fly, no additional memory is needed.

3.3 Training Bi-Real Net

As both activations and weight parameters are binary, the continuous opti-
mization method, i.e., the stochastic gradient descent(SGD), cannot be directly
adopted to train the 1-bit CNN. There are two major challenges. One is how
to compute the gradient of the sign function on activations, which is non-
differentiable. The other is that the gradient of the loss with respect to the
binary weight is too small to change the weight’s sign. The authors of [7] pro-
posed to adjust the standard SGD algorithm to approximately train the 1-bit
CNN. Specifically, the gradient of the sign function on activations is approxi-
mated by the gradient of the piecewise linear function, as shown in Fig. 5(b). To
tackle the second challenge, the method proposed in [7] updates the real-valued
weights by the gradient computed with regard to the binary weight and obtains
the binary weight by taking the sign of the real weights. As the identity shortcut
will not add difficulty for training, the training algorithm proposed in [7] can also
be adopted to train the Bi-Real net model. However, we propose a novel training
algorithm to tackle the above two major challenges, which is more suitable for
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Fig. 5. (a) Sign function and its derivative, (b) Clip function and its derivative for
approximating the derivative of the sign function, proposed in [7], (c) Proposed differ-
entiable piecewise polynomial function and its triangle-shaped derivative for approxi-
mating the derivative of the sign function in gradients computation.

the Bi-Real net model as well as other 1-bit CNNs. Besides, we also propose a
novel initialization method.

We present a graphical illustration of the training of Bi-Real net in Fig. 4.
The identity shortcut is omitted in the graph for clarity, as it will not change
the main part of the training algorithm.

Approximation to the derivative of the sign function with respect to

activations. As shown in Fig. 5(a), the derivative of the sign function is an
impulse function, which cannot be utilized in training.

∂L

∂A
l,t
r

=
∂L

∂A
l,t
b

∂A
l,t
b

∂A
l,t
r

=
∂L

∂A
l,t
b

∂Sign(Al,t
r )

∂A
l,t
r

≈
∂L

∂A
l,t
r

∂F (Al,t
r )

∂A
l,t
r

, (2)

where F (Al,t
r ) is a differentiable approximation of the non-differentiable Sign(Al,t

r ).
In [7], F (Al,t

r ) is set as the clip function, leading to the derivative as a step-
function (see 5(b)). In this work, we utilize a piecewise polynomial function (see
5(c)) as the approximation function, as Eq. (3) left.

F (ar) =















−1 if ar < −1
2ar + a2r if − 1 6 ar < 0
2ar − a2r if 0 6 ar < 1
1 otherwise

,
∂F (ar)

∂ar
=







2 + 2ar if − 1 6 ar < 0
2− 2ar if 0 6 ar < 1
0 otherwise

,

(3)

As shown Fig. 5, the shaded areas with blue slashes can reflect the difference
between the sign function and its approximation. The shaded area corresponding
to the clip function is 1, while that corresponding to Eq. (3) left is 2

3 . We conclude
that Eq. (3) left is a closer approximation to the sign function than the clip
function. Consequently, the derivative of Eq. (3) left is formulated as Eq. (3)
right, which is a piecewise linear function.

Magnitude-aware gradient with respect to weights. Here we present how
to update the binary weight parameter in the lth block, i.e., Wl

b ∈ {−1,+1}.
For clarity, we assume that there is only one weight kernel, i.e., Wl

b is a matrix.
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The standard gradient descent algorithm cannot be directly applied as the
gradient is not large enough to change the binary weights. To tackle this prob-
lem, the method of [7] introduced a real weight Wl

r and a sign function during
training. Hence the binary weight parameter can be seen as the output to the
sign function, i.e., Wl

b = Sign(Wl
r), as shown in the upper sub-figure in Fig. 4.

Consequently, Wl
r is updated using gradient descent in the backward pass, as

follows

Wl,t+1
r = Wl,t

r − η
∂L

∂W
l,t
r

= Wl,t
r − η

∂L

∂W
l,t
b

∂W
l,t
b

∂W
l,t
r

. (4)

Note that
∂W

l,t

b

∂W
l,t
r

indicates the element-wise derivative. In [7],
∂W

l,t

b
(i,j)

∂W
l,t
r (i,j)

is set to

1 if Wl,t
r (i, j) ∈ [−1, 1], otherwise 0. The derivative ∂L

∂W
l,t

b

is derived from the

chain rule, as follows

∂L

∂W
l,t
b

=
∂L

∂A
l+1,t
r

∂Al+1,t
r

∂A
l,t
m

∂Al,t
m

∂W
l,t
b

=
∂L

∂A
l+1,t
r

θl,tAl
b, (5)

where θl,t =
∂Al+1,t

r

∂A
l,t
m

denotes the derivative of the BatchNorm layer (see Fig. 4)

and has a negative correlation to W
l,t
b . As Wl,t

b ∈ {−1,+1}, the gradient ∂L

∂W
l,t
r

is only related to the sign of Wl,t
r , while is independent of its magnitude.

Based on this observation, we propose to replace the above sign function by
a magnitude-aware function, as follows:

W
l,t

b =
‖ Wl,t

r ‖1,1

|Wl,t
r |

Sign(Wl,t
r ), (6)

where |Wl,t
r | denotes the number of entries in Wl,t

r . Consequently, the update
of Wl

r becomes

Wl,t+1
r = Wl,t

r − η
∂L

∂W
l,t

b

∂W
l,t

b

∂W
l,t
r

= Wl,t
r − η

∂L

∂A
l+1,t
r

θ
l,t
Al

b

∂W
l,t

b

∂W
l,t
r

, (7)

where
∂W

l,t

b

∂W
l,t
r

≈
‖Wl,t

r ‖1,1

|Wl,t
r |

·
∂Sign(Wl,t

r )

∂W
l,t
r

≈
‖Wl,t

r ‖1,1

|Wl,t
r |

·1|Wl,t
r |<1 and θ

l,t
is associated

with the magnitude of Wl,t
r . Thus, the gradient ∂L

∂W
l,t
r

is related to both the sign

and magnitude of Wl,t
r . After training for convergence, we still use Sign(Wl

r)

to obtain the binary weight Wl
b (i.e., -1 or +1), and use θl to absorb

‖Wl
r‖1,1

|Wl
r|

and to associate with the magnitude of Wl
b used for inference.

Initialization. In [14], the initial weights of the 1-bit CNNs are derived from
the corresponding real-valued CNN model pre-trained on ImageNet. However,
the activation of ReLU is non-negative, while that of Sign is −1 or +1. Due
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to this difference, the real CNNs with ReLU may not provide a suitable initial
point for training the 1-bit CNNs. Instead, we propose to replace ReLU with
clip(−1, x, 1) to pre-train the real-valued CNN model, as the activation of the
clip function is closer to the sign function than ReLU. The efficacy of this new
initialization will be evaluated in experiments.

4 Experiments

In this section, we firstly introduce the dataset for experiments and implementa-
tion details in Sec 4.1. Then we conduct ablation study in Sec. 4.2 to investigate
the effectiveness of the proposed techniques. This part is followed by comparing
our Bi-Real net with other state-of-the-art binary networks regarding accuracy
in Sec 4.3. Sec. 4.4 reports memory usage and computation cost in comparison
with other networks.

4.1 Dataset and Implementation Details

The experiments are carried out on the ILSVRC12 ImageNet classification dataset
[22]. ImageNet is a large-scale dataset with 1000 classes and 1.2 million training
images and 50k validation images. Compared to other datasets like CIFAR-10
[11] or MNIST [18], ImageNet is more challenging due to its large scale and great
diversity. The study on this dataset will validate the superiority of the proposed
Bi-Real network structure and the effectiveness of three training methods for
1-bit CNNs. In our comparison, we report both the top-1 and top-5 accuracies.

For each image in the ImageNet dataset, the smaller dimension of the image
is rescaled to 256 while keeping the aspect ratio intact. For training, a random
crop of size 224 × 224 is selected. Note that, in contrast to XNOR-Net and the
full-precision ResNet, we do not use the operation of random resize, which might
improve the performance further. For inference, we employ the 224 × 224 center
crop from images.
Training: We train two instances of the Bi-Real net, including an 18-layer Bi-

Real net and a 34-layer Bi-Real net. The training of them consists of two steps:
training the 1-bit convolution layer and retraining the BatchNorm. In the first
step, the weights in the 1-bit convolution layer are binarized to the sign of real-
valued weights multiplying the absolute mean of each kernel. We use the SGD
solver with the momentum of 0.9 and set the weight-decay to 0, which means
we no longer encourage the weights to be close to 0. For the 18-layer Bi-Real
net, we run the training algorithm for 20 epochs with a batch size of 128. The
learning rate starts from 0.01 and is decayed twice by multiplying 0.1 at the 10th
and the 15th epoch. For the 34-layer Bi-Real net, the training process includes
40 epochs and the batch size is set to 1024. The learning rate starts from 0.08
and is multiplied by 0.1 at the 20th and the 30th epoch, respectively. In the
second step, we constraint the weights to -1 and 1, and set the learning rate
in all convolution layers to 0 and retrain the BatchNorm layer for 1 epoch to
absorb the scaling factor.
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Fig. 6. Three different networks differ in the shortcut design of connecting the blocks
shown in (a) conjoint layers of Sign, 1-bit Convolution, and the BatchNorm. (b) Bi-
Real net with shortcut bypassing every block (c) Res-Net with shortcut bypassing two
blocks, which corresponds to the ReLU-only pre-activation proposed in [6] and (d)
Plain-Net without the shortcut. These three structures shown in (b), (c) and (d) have
the same number of weights.

Inference: we use the trained model with binary weights and binary activations
in the 1-bit convolution layers for inference.

4.2 Ablation Study

Three building blocks. The shortcut in our Bi-Real net transfers real-valued
representation without additional memory cost, which plays an important role in
improving its capability. To verify its importance, we implemented a Plain-Net
structure without shortcut as shown in Fig. 6 (d) for comparison. At the same
time, as our network structure employs the same number of weight filters and
layers as the standard ResNet, we also make a comparison with the standard
ResNet shown in Fig. 6 (c). For a fair comparison, we adopt the ReLU-only
pre-activation ResNet structure in [6], which differs from Bi-Real net only in
the structure of two layers per block instead of one layer per block. The layer
order and shortcut design in Fig. 6 (c) are also applicable for 1-bit CNN. The
comparison can justify the benefit of implementing our Bi-Real net by specifically
replacing the 2-conv-layer-per-block Res-Net structure with two 1-conv-layer-
per-block Bi-Real structure.

As discussed in Sec. 3, we proposed to overcome the optimization challenges
induced by discrete weights and activations by 1) approximation to the deriva-
tive of the sign function with respect to activations, 2) magnitude-aware gradient
with respect to weights and 3) clip initialization. To study how these proposals
benefit the 1-bit CNNs individually and collectively, we train the 18-layer struc-
ture and the 34-layer structure with a combination of these techniques on the
ImageNet dataset. Thus we derive 2× 3× 2× 2× 2 = 48 pairs of values of top-1
and top-5 accuracy, which are presented in Table 1.

Based on Table 1, we can evaluate each technique’s individual contribution
and collective contribution of each unique combination of these techniques to-
wards the final accuracy.

1) Comparing the 4th − 7th columns with the 8th − 9th columns, both the
proposed Bi-Real net and the binarized standard ResNet outperform their plain
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Table 1. Top-1 and top-5 accuracies (in percentage) of different combinations of the
three proposed techniques on three different network structures, Bi-Real net, ResNet
and Plain Net, shown in Fig.6.

Initiali- Weight Activation Bi-Real-18 Res-18 Plain-18 Bi-Real-34 Res-34 Plain-34
zation update backward top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

ReLU

Original
Original 32.9 56.7 27.8 50.5 3.3 9.5 53.1 76.9 27.5 49.9 1.4 4.8

Proposed 36.8 60.8 32.2 56.0 4.7 13.7 58.0 81.0 33.9 57.9 1.6 5.3

Proposed
Original 40.5 65.1 33.9 58.1 4.3 12.2 59.9 82.0 33.6 57.9 1.8 6.1

Proposed 47.5 71.9 41.6 66.4 8.5 21.5 61.4 83.3 47.5 72.0 2.1 6.8

Real-valued Net 68.5 88.3 67.8 87.8 67.5 87.5 70.4 89.3 69.1 88.3 66.8 86.8

Clip

Original
Original 37.4 62.4 32.8 56.7 3.2 9.4 55.9 79.1 35.0 59.2 2.2 6.9

Proposed 38.1 62.7 34.3 58.4 4.9 14.3 58.1 81.0 38.2 62.6 2.3 7.5

Proposed
Original 53.6 77.5 42.4 67.3 6.7 17.1 60.8 82.9 43.9 68.7 2.5 7.9

Proposed 56.4 79.5 45.7 70.3 12.1 27.7 62.2 83.9 49.0 73.6 2.6 8.3

Real-valued Net 68.0 88.1 67.5 87.6 64.2 85.3 69.7 89.1 67.9 87.8 57.1 79.9

Full-precision original ResNet[5] 69.3 89.2 73.3 91.3

counterparts with a significant margin, which validates the effectiveness of short-
cut and the disadvantage of directly concatenating the 1-bit convolution layers.
As Plain-18 has a thin and deep structure, which has the same weight filters but
no shortcut, binarizing it results in very limited network representational capac-
ity in the last convolution layer, and thus can hardly achieve good accuracy.

2) Comparing the 4th − 5th and 6th − 7th columns, the 18-layer Bi-Real
net structure improves the accuracy of the binarized standard ResNet-18 by
about 18%. This validates the conjecture that the Bi-Real net structure with
more shortcuts further enhances the network capacity compared to the stan-
dard ResNet structure. Replacing the 2-conv-layer-per-block structure employed
in Res-Net with two 1-conv-layer-per-block structure, adopted by Bi-Real net,
could even benefit a real-valued network.

3) All proposed techniques for initialization, weight update and activation
backward improve the accuracy at various degrees. For the 18-layer Bi-Real net
structure, the improvement from the weight (about 23%, by comparing the 2nd

and 4th rows) is greater than the improvement from the activation (about 12%,
by comparing the 2nd and 4th rows) and the improvement from replacing ReLU
with Clip for initialization (about 13%, by comparing the 2nd and 7th rows).
These three proposed training mechanisms are independent and can function
collaboratively towards enhancing the final accuracy.

4) The proposed training methods can improve the final accuracy for all three
networks in comparison with the original training method, which implies these
proposed three training methods are universally suitable for various networks.

5) The two implemented Bi-Real nets (i.e. the 18-layer and 34-layer struc-
tures) together with the proposed training methods, achieve approximately 83%
and 89% of the accuracy level of their corresponding full-precision networks, but
with a huge amount of speedup and computation cost saving.
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Table 2. This table compares both the top-1 and top-5 accuracies of our Bi-real
net with other state-of-the-art binarization methods: BinaryNet [7] , XNOR-Net [19],
ABC-Net [14] on both the Res-18 and Res-34 [5]. The Bi-Real net outperforms other
methods by a considerable margin.

Bi-Real net BinaryNet ABC-Net XNOR-Net Full-precision

18-layer
Top-1 56.4% 42.2% 42.7% 51.2% 69.3%
Top-5 79.5% 67.1% 67.6% 73.2% 89.2%

34-layer
Top-1 62.2% – 52.4% – 73.3%
Top-5 83.9% – 76.5% – 91.3%

In short, the shortcut enhances the network representational capability, and
the proposed training methods help the network to approach the accuracy upper
bound.

4.3 Accuracy Comparison With State-of-The-Art

While the ablation study demonstrates the effectiveness of our 1-layer-per-block
structure and the proposed techniques for optimal training, it is also necessary
to compare with other state-of-the-art methods to evaluate Bi-Real net’s overall
performance. To this end, we carry out a comparative study with three methods:
BinaryNet [7], XNOR-Net [19] and ABC-Net [14]. These three networks are
representative methods of binarizing both weights and activations for CNNs and
achieve the state-of-the-art results. Note that, for a fair comparison, our Bi-Real
net contains the same amount of weight filters as the corresponding ResNet that
these methods attempt to binarize, differing only in the shortcut design.

Table 2 shows the results. The results of the three networks are quoted di-
rectly from the corresponding references, except that the result of BinaryNet is
quoted from ABC-Net [14]. The comparison clearly indicates that the proposed
Bi-Real net outperforms the three networks by a considerable margin in terms
of both the top-1 and top-5 accuracies. Specifically, the 18-layer Bi-Real net out-
performs its 18-layer counterparts BinaryNet and ABC-Net with relative 33%
advantage, and achieves a roughly 10% relative improvement over the XNOR-
Net. Similar improvements can be observed for 34-layer Bi-Real net. In short,
our Bi-Real net is more competitive than the state-of-the-art binary networks.

4.4 Efficiency and Memory Usage Analysis

In this section, we analyze the saving of memory usage and speedup in computa-
tion of Bi-Real net by comparing with the XNOR-Net [19] and the full-precision
network individually.

The memory usage is computed as the summation of 32 bit times the num-
ber of real-valued parameters and 1 bit times the number of binary parameters
in the network. For efficiency comparison, we use FLOPs to measure the total
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Table 3. Memory usage and FLOPs calculation in Bi-Real net.

Memory usage Memory saving FLOPs Speedup

18-layer
Bi-Real net 33.6 Mbit 11.14 × 1.63 ×108 11.06 ×
XNOR-Net 33.7 Mbit 11.10 × 1.67 ×108 10.86 ×

Full-precision Res-Net 374.1 Mbit – 1.81 ×109 –

34-layer
Bi-Real net 43.7 Mbit 15.97 × 1.93 ×108 18.99 ×
XNOR-Net 43.9 Mbit 15.88 × 1.98 ×108 18.47 ×

Full-precision Res-Net 697.3 Mbit – 3.66 ×109 –

real-valued multiplication computation in the Bi-Real net, following the calcu-
lation method in [5]. As the bitwise XNOR operation and bit-counting can be
performed in a parallel of 64 by the current generation of CPUs, the FLOPs is
calculated as the amount of real-valued floating point multiplication plus 1/64
of the amount of 1-bit multiplication.

We follow the suggestion in XNOR-Net [19], to keep the weights and activa-
tions in the first convolution and the last fully-connected layers to be real-valued.
We also adopt the same real-valued 1x1 convolution in Type B short-cut [5] as
implemented in XNOR-Net. Note that this 1x1 convolution is for the transition
between two stages of ResNet and thus all information should be preserved. As
the number of weights in those three kinds of layers accounts for only a very
small proportion of the total number of weights, the limited memory saving
for binarizing them does not justify the performance degradation caused by the
information loss.

For both the 18-layer and the 34-layer networks, the proposed Bi-Real net
reduces the memory usage by 11.1 times and 16.0 times individually, and achieves
computation reduction of about 11.1 times and 19.0 times, in comparison with
the full-precision network. Without using real-valued weights and activations for
scaling binary ones during inference time, our Bi-Real net requires fewer FLOPs
and uses less memory than XNOR-Net and is also much easier to implement.

5 Conclusion

In this work, we have proposed a novel 1-bit CNN model, dubbed Bi-Real net.
Compared with the standard 1-bit CNNs, Bi-Real net utilizes a simple short-cut
to significantly enhance the representational capability. Further, an advanced
training algorithm is specifically designed for training 1-bit CNNs (including
Bi-Real net), including a tighter approximation of the derivative of the sign
function with respect the activation, the magnitude-aware gradient with respect
to the weight, as well as a novel initialization. Extensive experimental results
demonstrate that the proposed Bi-Real net and the novel training algorithm
show superiority over the state-of-the-art methods. In future, we will explore
other advanced integer programming algorithms (e.g., Lp-Box ADMM [26]) to
train Bi-Real Net.
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