Deep Closed-Form Subspace Clustering
Junghoon Seo, Jamyoung Koo, Taegyun Jeon; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 0-0
Abstract
We propose Deep Closed-Form Subspace Clustering (DCFSC), a new embarrassingly simple model for subspace clustering with learning non-linear mapping. Compared with the previous deep subspace clustering (DSC) techniques, our DCFSC does not have any parameters at all for the self-expressive layer. Instead, DCFSC utilizes the implicit data-driven self-expressive layer derived from closed-form shallow auto-encoder. Moreover, DCFSC also has no complicated optimization scheme, unlike the other subspace clustering methods. With its extreme simplicity, DCFSC has significant memory-related benefits over the existing DSC method, especially on the large dataset. Several experiments showed that our DCFSC model had enough potential to be a new reference model for subspace clustering on large-scale high-dimensional dataset.
Related Material
[pdf]
[
bibtex]
@InProceedings{Seo_2019_ICCV,
author = {Seo, Junghoon and Koo, Jamyoung and Jeon, Taegyun},
title = {Deep Closed-Form Subspace Clustering},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
month = {Oct},
year = {2019}
}