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Abstract

Existing methods for stereo work on narrow baseline im-

age pairs giving limited performance between wide base-

line views. This paper proposes a framework to learn and

estimate dense stereo for people from wide baseline image

pairs. A synthetic people stereo patch dataset (S2P2) is

introduced to learn wide baseline dense stereo matching

for people. The proposed framework not only learns hu-

man specific features from synthetic data but also exploits

pooling layer and data augmentation to adapt to real data.

The network learns from the human specific stereo patches

from the proposed dataset for wide-baseline stereo estima-

tion. In addition to patch match learning, a stereo con-

straint is introduced in the framework to solve wide baseline

stereo reconstruction of humans. Quantitative and qualita-

tive performance evaluation against state-of-the-art meth-

ods of proposed method demonstrates improved wide base-

line stereo reconstruction on challenging datasets. We show

that it is possible to learn stereo matching from synthetic

people dataset and improve performance on real datasets

for stereo reconstruction of people from narrow and wide

baseline stereo data.

1. Introduction

Recent developments in augmented reality/virtual reality

and autonomous driving has led to a need for high-quality

3D content, especially for humans. However, existing scan-

ning technologies require advanced camera setups, and con-

trolled studio capture environments, which are complex and

costly solutions. To address the need for democratization

of high-quality 3D content, we propose dense stereo recon-

struction for humans from wide baseline image pairs

Existing dense stereo reconstruction methods are

broadly divided in two groups; narrow baseline and wide

baseline stereo. For narrow baseline stereo, it is possible

to estimate pixel matches by using conventional [11, 32]

or learning based methods [36, 37, 14, 7]. Recently learn-

Figure 1. This figure shows the wide baseline stereo input and

depth map estimation of our method with state of the art patch

based stereo disparity estimation MC-CNN [37] compared to

ground truth depth map.

ing based methods have gained attention by outperforming

conventional methods, as illustrated in the benchmark [21].

However, for wide baseline stereo, the research has focused

on conventional methods [34, 12], and data driven learn-

ing based approaches are still an open research question be-

cause of the lack of training data. Results from [15, 28, 24]

demonstrate that conventional wide baseline stereo meth-

ods have limitation on finding accurate matching for the hu-

man body surface. Inspired by the narrow-baseline learning

based approaches and need for human specific wide base-

line stereo matching, we propose a framework to estimate

wide baseline dense stereo matching for people. We ex-

ploit a Siamese architecture [6] and fully connected net-

work to learn stereo matching (Section 3.1). However ex-

isting datasets for learning stereo matching are designed for

narrow baseline images with fixed relative camera locations

[20, 21, 10]. In this work we introduce a synthetic human

specific wide baseline stereo dataset to overcome the lim-



itations of existing datasets. To refine the stereo matching

performance we also propose the use of constrained stereo

search using a semantic mask which is demonstrated to fur-

ther refine the stereo matching performance.

Recently, the Mannequin Challenge dataset [17] has

been introduced to learn monocular depth estimation for

humans from a dataset of frozen people in the scene. How-

ever, this dataset does not address the problem of learning

stereo matching from pairs of images. Hence, there is a

need for a new dataset to perform stereo correspondence

with significant change in appearance between views due to

the high surcease shape of humans which includes dynamic

non-rigid motion and loose clothing. Capturing a high-

frequency human body with accurate ground-truth shape re-

quires advanced scanning system which is expensive and is

not easily accessible. Hence, we propose to generate stereo

patch dataset for people (S2P2) from synthetic 3D human

models with realistic textures. This dataset is used to train

the stereo matching network to learn features to compare

stereo image patches on the human body surface. Com-

monly networks trained with synthetic data do not perform

well on real datasets due to the problem of domain shift

[20]. Methods have tried to address this problem in the liter-

ature for different applications such as semantic segmenta-

tion [31], stereo reconstruction and optical flow estimation

[20] and scene understanding [30]. These methods increase

the variation in dataset by augmentation of training data

with random spatial operations [5] or by creating realistic

data. We have exploited these ideas by using realistic tex-

tures and applying augmentation to generated patches (Sec-

tion 3.2). Another problem introduced by the domain gap

is scale diversity. The scale of objects such as people in the

image is unknown and potentially limiting the performance

of a model trained on synthetic dataset. [25] proposes to use

stereo pairs in various sizes to generalise training for scale

diversity. Inspired by this work we extract features at differ-

ent scales and combine them to get the final matching cost.

We demonstrate the accuracy of the proposed stereo recon-

struction on cluttered real world dataset of people in the ex-

periments. A comprehensive performance evaluation is per-

formed to evaluate our method with ground-truth 3D recon-

struction of dynamic shape from state-of-the-art from mul-

tiple views studio performance capture. Comparison of our

method with baseline methods for stereo matching shows

the superior performance of features learned from the S2P2

synthetic human dataset on wide baseline dense dynamic

human stereo reconstruction. Our contributions are:

• Introduction of the first learning based framework to

estimate dense wide baseline stereo for people.

• A large scale, synthetic stereo patch dataset for people

with realistic textures for both narrow and wide camera

baseline stereo.

• Augmentation of data and matching across multiple

scales to make proposed method robust to problem of

domain shift and scale.

• Refinement of learnt human stereo matching using a

semantic human mask for improved stereo reconstruc-

tion.

2. Related Work

Dynamic Human Stereo Reconstruction: Existing

methods for stereo reconstruction of dynamic scenes

estimate correspondences between image pairs to obtain

accurate surface reconstruction [28, 15] for wide baseline

images. Daisy [34] and Normalized Cross Correlation

(NCC) [12] uses gradient of local patch’s around pixels

to compute descriptor or pixel colour distribution of local

patch [12] to measure patch correlation for dense wide

baseline matching. In previous approaches, computation

of a patch similarity measure is used as a photo-metric

loss term in the objective function of optimization schema

which exploits other priors, such as optical flow, edges or

foreground/background segmentation [24, 28, 15]. In other

words, dynamic wide baseline stereo reconstruction has not

been considered as an individual solution.

Recently, learning based approaches for stereo matching

have gained attention [36, 37, 14, 7] for stereo disparity es-

timation. However, these are trained on general scenes and

are limited to narrow baseline stereo matching. To the best

of our knowledge, human specific wide baseline stereo has

not been addressed with learning based approaches before.

Previous work [16] trains a multi-view patch similarity net-

work for performance capture using the DTU general object

dataset [3]. This paper addresses this gap in the literature,

by proposing dense stereo reconstruction from wide base-

line image pairs and learning to perform stereo matching

using a new synthetic people stereo patch dataset (S2P2).
Learning Depth from Synthetic Data Recently, usage of

synthetic data to train neural networks for depth estimation

has gained attention. One of the first synthetic data-set pro-

posed is [20]. This data is used to train a network for narrow

baseline stereo disparity and optical flow estimation. An-

other work from [10] generates the virtual version of Kitti

data-set [21]. Virtual Kitti includes additional annotations

like segmentation, depth estimation and 3D object tracking.

They demonstrate that training on synthetic data and using

learned model on real data is possible. Varol et al. [35]

proposed a synthetic human dataset for monocular model

based human segmentation and depth estimation. However,

synthetic data trained models suffer from limitations on real

world images in high-frequency depth estimation of the hu-

man body [29]. [13] introduced another synthetic human

dataset to train multi-view surface estimation network. We

propose a large scale stereo patch dataset (S2P2) for people

to train a network for wide baseline dense stereo matching

across difference scales. To the best of our knowledge, the



proposed (S2P2) dataset is the first to learn stereo matching

for people. This dataset can be used for both narrow and

wide baseline stereo estimation.

3. Method

The main motivation of this work is to estimate 3D re-

construction of humans in dynamic scenes from wide base-

line stereo camera pairs. Note that, the difference between

narrow ( θ <= 5◦ ) and wide baseline ( 15◦ < θ <

45◦ ) cameras is illustrated in Figure 2 - (a). We pro-

pose a supervised learning based framework which first

learns stereo matching from a new synthetic human specific

dataset S2P2 for wide-baseline cameras followed by stereo

reconstruction refinement using semantic human constraint,

an overview is illustrated in Figure 2 - (b). Variation of hu-

man body surface for example folded clothing, hair, face

details, makes it challenging to extract reliable stereo re-

construction from wide baseline image pairs. Given a wide

baseline stereo pair of images of a person, we aim to ob-

tain per-pixel dense correspondence for stereo reconstruc-

tion. The stereo pair of images are fed into a CNN module,

which is trained on a human specific dataset to obtain the

matching cost for each pixel. This generates a cost vol-

ume which is refined using a semantic stereo constraint to

obtain the final depth map. In the following sections, the

patch match learning architecture (Section 3.1), data gen-

eration pipeline (Section 3.2), the method to solve domain

shift from synthetic to real data (Section 3.2) and semantic

stereo constraint (Section 3.3) are explained in detail.

3.1. Learning Wide Baseline Stereo Matching

The overall CNN module for learning stereo matching

is illustrated in Figure 2 - (c). We use a Siamese network

architecture [6] as the backbone, which has received a lot

of attention lately for various applications including patch

based binary classification [37], and patch based tracking

[4]. Siamese network is suitable for the proposed applica-

tion because it allows training of stereo matching between a

pair of left and right image patches. Methods used Siamese

network as feature extraction module in patch based narrow

baseline stereo matching [19, 37]. The network consists of

four consecutive 2D convolution layers and RELU (Recti-

fied Linear Units) after each convolution layer. As illus-

trated in Figure 2 - (c), the computed feature vectors are fed

into a fully-connected network (FCN) to estimate the simi-

larity score between patches, i.e. classification module. The

details of CNN module is provided in the supplementary

file. Since we are solving a binary classification problem,

we use binary cross entropy loss [22] to train our network.

During the training stage, we use a balanced number of pos-

itive and negative patches extracted from the S2P2 dataset

(Sec. 3.2).

In the implementation stage, multi resolution patches are

extracted for each pixel followed by resizing the patches to

a fixed patch size that the network is trained with. Patches

are processed through the network, and matching cost is

computed for each patch. Individually generated cost vol-

umes are fed into the pooling stage as illustrated in Figure

2, where the resultant matching cost is computed from the

similarity scores for each pixel pairs. In the pooling stage,

the matching cost from different patch sizes are gathered

and the average value is assigned as a final cost. We eval-

uate the effect of pooling by comparing the results with or

without pooling in the Experiment section - Table 5.

We compute the cost volume for both left and right cam-

era views respectively and a winner takes all method is

applied to each of the views to compute the final dispar-

ity values. In contrast to the conventional stereo pipelines

[32, 37] which require heavy regularization steps for post-

processing like Semi-Global Matching [11] and Bilateral

filtering [32], we perform a simple post-processing to re-

move the occlusions on the estimated disparity maps to im-

prove stereo from wide baseline image pairs.

3.2. Synthetic People Stereo Patch Dataset

Existing datasets in the literature are limited to narrow-

baseline general scenes. We address this gap in the litera-

ture by proposing a data generation framework for super-

vised wide baseline stereo matching learning for people, il-

lustrated in Figure 2. We generate the dataset by using the

blender 3D modelling1. Parametric 3D SMPL [18] human

models are generated based on 3D pose estimation from

real humans with random shape parameters, CMU MoCap

Dataset [1]. Then realistic textures are rendered on the gen-

erated models. Up to this point, model generation is in-

spired by the Surreal dataset [35].

To add varied backgrounds to each image a 3D plane

is placed behind the person model and background scene

images are randomly selected from Places Database [38],

which consists of high variation of indoor and outdoor

places with different configurations. Camera locations and

orientations are replicated from real studio capture setups,

and the baseline between cameras is varied from narrow

( 5◦) to wide (up to 45◦ degrees). The generated scene is

then rendered into camera views with random lighting set-

tings. For training purposes, we generate patches from non-

occluded regions of the human body surface.

Proposed network structure requires positive and nega-

tive patches. Positive patches are generated from projection

of 3D points into stereo views and negative patches are ψ

pixels away from positive patches along the Epipolar line.

During training data generation, patch size is fixed to 9x9,

and ψ value is randomly selected from interval [4, 11]. Ref-

erence patch with positive and negative pairs are augmented

[5] in spatial and spectral domains which includes random

1https://www.blender.org



Figure 2. (a) Definition of camera baseline angle, θ and difference between narrow and wide camera baselines.(b) The proposed stereo

reconstruction method.(c) CNN module used for patch match learning part of the proposed method.

Figure 3. Data Generation Pipeline: SMPL human model

[18] is generated with random shape, texture and given 3D

pose parameters. Cameras are placed according to real studio

calibration in different baseline configuration. [Left] Rendering of

human models onto camera planes with different background and

3D pose. [Right] Positive and negative patches are generated from

these images. For details, please refer to text.

cropping, flipping, transformation, and contrast variation.

This dataset along with the data generation framework is

available for public use 2 and further details of the dataset

are given in supplementary material.

Data Augmentation and Scale Invariance: Learning

from the synthetic dataset and testing on real images has

recently gained attention in the literature for different ap-

plications [20, 10, 35, 27]. The common problem is domain

adaptation which directly affects the learning from synthetic

to real imagery. In our work, we generate S2P2 dataset from

a wide variety of camera positions and realistically textured

human models. We add patch augmentation, explained pre-

viously, to increase the robustness of stereo correspondence

2https://akcalakcal.github.io/Learning-Dense-Wide-Baseline-Stereo-

Matching-for-People/

for real data. However real data can be observed with dif-

ferent input scale than synthetic data, which results in stereo

correspondence defects, called scale diversity [25]. Since

the scale of real data is unknown, we look for the consis-

tency of accurate matches for different patch sizes before

computation of the final cost volume in the pooling stage,

illustrated in Figure 2 - (b). To address this, we take the

average of matching cost values that are computed with the

trained network for every pixel. This multi-scale patch size

approach is analyzed for real data and Table 5 shows the

performance improvement in the reconstruction accuracy.

Figure 4. Semantic mask based stereo constraint for wide baseline

stereo on Acting dataset [2].

3.3. Semantic Stereo Constraints

To further refine the learnt stereo matching we intro-

duce a semantic stereo constraint for stereo matching on

people leveraging recent advances in semantic segmenta-

tion. Stereo matching requires reliable per-pixel correspon-



dences in between image pairs. With a given calibration,

patch match methods rectify the images to find correspon-

dences along the epipolar line by comparing the pixel simi-

larities. However due to drastic view variation in wide base-

line stereo pairs, patch match methods fail to find reliable

correspondences. Previous studies on wide baseline hu-

man performance capture methods [24, 33] either use initial

sparse reconstruction or visual hulls generated from multi

cameras to limit the stereo search space. Other methods for

wide baseline semantic reconstruction exploit semantic seg-

mentation constraints to improve the multi-view stereo [23].

In this study, we propose to exploit semantic masking in the

stereo matching framework to limit the search region along

the Epipolar line to decrease the number of wrong matches

from only two camera views. However errors in semantic

segmentation do not adversely affect the accuracy of the re-

construction, unlike previous method.

We use DeepLabv3+ [8] to obtain the semantic masks.

The correspondence search algorithm for two stereo recti-

fied images and corresponding semantic masks is illustrated

in Figure 4. Without constraint, a pixel in the left image is

compared with all the pixels in the corresponding right im-

age. However, with the semantic constraint we search for

the corresponding pixel within the semantic region along

the Epipolar line reducing the ambiguity and run-time com-

plexity. The cost volume in Figure 4 is processed with the

semantic constraint such that for pixels in the masked re-

gion, the cost value is weighted by a coefficient, σ = 10.

This suppress other pixels for matching.

4. Experiments

We answer the following questions in experiments:
• Does learning wide baseline stereo matching from

people dataset result in better matching for image pairs

of people that existing approaches which learn from

non-human stereo dataset and conventional methods?

• Does the proposed solution to domain shift with patch

augmentation and scale diversity, improve the recon-

struction results for real datasets with humans?

• Does the proposed semantic human stereo constraint

improve the stereo reconstruction results?

Implementation and Training Details The network ar-

chitecture is implemented in PyTorch [26] framework on a

single NVIDIA GeForce 1080 Ti GPU with 12 GB mem-

ory. As described in Section 3.1, we train our model from

scratch. The learning rate is initialized at 3 × 10−3 with a

10 times decrease at every 10 epochs. Training is performed

for 15 epochs, and momentum and weight decay are set to

0.9 and 0.0001, respectively. The entire network is learned

with stochastic gradient descent optimization with binary

cross entropy loss function. The network weights are ran-

domly initialized with balanced number of positive and neg-

Figure 5. Variation of loss during training.

ative patches with a total of 14 million patches. Variation of

training loss versus epochs is illustrated in Figure 5.

4.1. Results and Comparisons

The proposed method is evaluated on a variety of

real datasets with people in different environments, clut-

tered/controlled scene background, occlusions, camera set-

tings and baselines: Acting, TV-Presenter, Dancing and

Juggler [2]. The details of datasets are provided in Table 1.

These datasets consist of different dynamic human models

and each scene is captured with number of cameras given in

the Table. In these datasets, we use pseudo ground truth of

3D human reconstructions that are generated by using ad-

vanced multi-view camera capture system. For each cam-

era view, ground-truth depth maps are rendered and then

estimated 3D stereo reconstructions are evaluated against

these rendered depth maps. Synthetic datasets for testing

are different from training datasets and are generated using

the framework explained in Section 3.2.

The proposed method is evaluated against baseline patch

matching methods, namely NCC [12], Daisy [34] and MC-

CNN [37] since we propose a patch similarity based wide

baseline stereo reconstruction method. MC-CNN is a state-

of-the-art baseline method for stereo matching. MC-CNN

is built on a Siamese network architecture and this network

is trained on the Kitti [21] dataset of narrow baseline stereo

street images taken from top of the car with sparse ground-

truth obtained by lidar scanner.

We adopt the following error metrics [9] to quantita-

tively evaluate the performance of our stereo reconstruction

Dataset Camera Baseline # of Cameras Length of Sequence

(# of Frames)

Acting {24◦,36◦,48◦} 15 3420

TV Presenter {22◦,44◦,66◦} 16 3600

Dancing {22◦,44◦,66◦} 16 420

Juggler {22◦,44◦,66◦} 8 800

Table 1. Real World of People Datasets.



Camera Baseline ≈ 20
◦ Camera Baseline ≈ 40

◦

Method Abs Rel Squ Rel RMSE RMSElog Abs Rel Squ Rel RMSE RMSElog
Dataset:Acting

NCC [12] 3.40 3.18 44.3 7.89 5.21 3.52 46.6 8.10

Daisy [34] 1.77 0.92 24.0 3.53 2.05 0.95 24.1 3.70

MC-CNN [37] 1.27 0.11 8.56 1.36 1.42 0.43 16.1 2.57

Ours 0.70 0.04 5.30 0.86 1.03 0.26 12.6 1.99

Dataset:Dancing

NCC [12] 6.78 4.89 49.9 10.6 6.08 2.51 35.3 7.29

Daisy [34] 1.83 0.75 19.4 3.74 2.55 0.88 20.6 3.89

MC-CNN [37] 1.12 0.38 13.8 2.52 1.76 0.39 17.3 3.41

Ours 0.84 0.16 8.69 1.68 1.71 0.33 15.3 3.01

Table 2. Depth estimation error results for 2 datasets against four compared methods are listed in the table. For details of experiment and

error metrics, please refer to text.error metrics, please refer to text.

Figure 6. Comparison of estimated depth maps with ground-truth. Result depth maps of four methods, namely NCC [12], Daisy [34] and

MC-CNN [37], including proposed one are illustrated. Camera baseline between stereo pairs are 24
◦.

method. Established error metrics consider global statis-

tics between a predicted depth map d and its ground-truth

depth image d∗ with N depth pixels. Specifically, we con-

sider: (i) absolute relative error:
1

N

∑

i

|di − di
∗|

di
∗

; (ii)

Lower is better

Method Abs Rel Squ Rel RMSE RMSElog

Dataset:Acting

MC-CNN [37] 1.27 0.11 8.56 1.36

MC-CNN [37] w/ constraint 0.76 0.08 7.30 1.16

Ours 0.70 0.04 5.30 0.86

Dataset:Dancing

MC-CNN [37] 1.12 0.38 13.8 2.52

MC-CNN [37] w/ constraint 0.98 0.31 12.3 2.41

Ours 0.84 0.16 8.69 1.68

Table 3. Depth map evaluation with and without stereo constraint.

squared relative error:
1

N

∑

i

||di − di
∗||

2

di
∗

; (iii) root mean

square error:

√

1

N

∑

i(di − di
∗)2; (iv) logarithmic root

mean square error:

√

1

N

∑

i(log di − log di
∗)2.

Table 2 shows depth error metrics for two different

datasets with two different wide baselines. For this ex-

periment, baseline between stereo pairs is 24◦ and 36◦ for

Acting, 22◦ and 44◦ for Dancing datasets. Corresponding

depth estimation results are illustrated with ground-truth

(GT) depth maps in Figure 6. As shown in Table 2, the pro-

posed method outperforms the baseline methods in terms

of depth map estimation errors for wide baseline datasets.

The proposed method gives approximately 25% RMSE er-



ror reduction for two camera baseline values compared to

MC-CNN, which is the state of the art patch based stereo re-

construction method. It should also be considered that MC-

CNN applies a series of expensive post processing steps,

like occlusion removal, Semi-Global-Matching (SGM) [11]

and Bilateral filtering, where as proposed method only ap-

plies occlusion removal and not any of smoothing opera-

tions to recover wrong disparity estimations. Considering

these post processing steps, for the same input stereo pairs

with resolution of 3840x2160 pixels, the run time for MC-

CNN is 210 seconds whereas the proposed method only

takes 135 seconds. Hence, the proposed method not only

outperforms MC-CNN in depth error metrics, but also it is

faster than MC-CNN by approximately 35%.

Figure 7 shows the point clouds and depth maps,

demonstrating a significant difference between the pro-

posed method and MC-CNN. Depth values in the GT depth

maps are defined in meters. Note that during the depth map

error computation, only the foreground pixels are evaluated,

and background pixels are discarded.

The proposed method also outperforms NCC [12] and

Daisy [34] in all depth estimation metrics. NCC [12] and

Daisy [34] generate local descriptors that are prone to fail

in ambiguities, like repetitive textures, lack of textures, or

lighting changes and large changes in shape. These failures

can be resolved during post processing stage in wide base-

line human stereo reconstruction methods [28, 15, 24].

The reconstruction results are shown in Figure 7 with

corresponding depth maps for MC-CNN and the proposed

method. In addition to depth error metrics, 3D point clouds

show the details in reconstruction. In Figure 7, dynamic

3D stereo reconstruction of human body is also illustrated

for different time frames. The generated point clouds are

rendered to virtual cameras in order to see the stereo re-

construction errors that might be difficult to see from depth

maps. The proposed method which learns from human spe-

cific features is able to capture details of clothing and hair

which are challenging to reconstruct in wide baseline stereo

setups. This answers the first question, that learning from a

human-specific dataset improves wide baseline stereo per-

formance.

Another contribution of our paper is to use seman-

tic segmentation based stereo limitation to improve stereo

matching performance or the reconstruction quality (Sec-

tion 3.3). This constraint can be applied to any stereo

matching method, so we evaluate the stereo matching per-

formance of state-of-the-art methods with this constraint.

During evaluation, only MC-CNN and the proposed stereo

matching method are considered, because remaining meth-

ods’ stereo reconstruction performance is not affected sig-

nificantly with the constraint. In Table 3, semantic con-

strained is applied to MC-CNN for different datasets. Al-

though semantic constraint increases the performance of

Figure 7. Point cloud stereo reconstruction results with depth map

estimations from various time frames are illustrated for virtual

camera views.

MC-CNN by approximately 12% in RMSE, the proposed

method still outperforms MC-CNN with stereo constraint

in all error metrics, by average of %30 in RMSE.

To evaluate the importance of the new S2P2 dataset, we

evaluate performance of patch matching part of the pro-



Lower is better

Method Abs Rel Squ Rel RMSE RMSElog

Dataset:Acting

Our Method w/ Kitti Dataset 0.85 0.12 8.7 1.41

Our Method w/ (S2P2) no augmentation 0.67 0.09 7.8 1.25

Our Method w/ (S2P2) Dataset 0.63 0.07 6.93 1.07

Dataset:Dancing

Our Method w/ Kitti Dataset 1.60 0.38 13.7 2.67

Our Method w/ (S2P2) no augmentation 1.22 0.39 14.0 2.56

Our Method w/ (S2P2) Dataset 0.81 0.11 7.68 1.52

Table 4. Dataset and domain shift evaluation

posed framework with two different models one of which

is trained with S2P2 dataset, and other one is trained with

Kitti dataset, shown in Table 4. Our method using the S2P2

trained network outperforms the network trained on Kitti,

by approximately 30% in logarithmic RMSE. This basically

shows that learning stereo matching from wide baseline and

human specific data in our framework addresses more accu-

rate wide baseline stereo reconstruction for people, which is

the motivation of this paper. Table 4 also demonstrates that

data augmentation on stereo people dataset improves accu-

racy of depth maps and addresses the problem of domain

shift from training on synthetic data and testing on real data.

As a part of our solution to scale variance in our method,

we propose the pooling schema during inference stage of

stereo reconstruction. In the pooling, we use patch size val-

ues of [9,19,35] in order to increase the patch scale varia-

tion. In order to show the effectiveness of the pooling stage,

we evaluate proposed method with and without pooling and

compare the results with MC-CNN [37]. Since patch size

is chosen as 9x9 in [37], we use this patch size during

no-pooling evaluation. Depth estimation errors in Table 5

demonstrate that pooling stage in the pipeline increases ac-

curacy of stereo reconstruction by solving scale diversity

problem caused by domain shift.

To illustrate the performance of proposed method with

human in dynamic scene with cluttered background, point

cloud results are shown on Juggler dataset for consecutive

frames in Figure 8. Note that stereo input images of jug-

gler dataset are cropped for the visualization. The estimated

point clouds from both front and side views show signif-

icant reconstruction performance from the proposed wide

baseline stereo matching method with semantic human con-

straint. More stereo reconstruction results from both real

and synthetic datasets are provided in supplementary files

due to space constraint.

5. Limitations

The proposed method is developed for wide baseline

stereo reconstruction for people, and this is not applicable

Lower is better

Method Abs Rel Squ Rel RMSE RMSElog

Dataset:TV Presenter, Patch Size = (9x9)

MC-CNN [37] 0.67 0.07 6.18 1.13

Our method + No Pooling 0.61 0.06 5.94 1.08

Our Method + Pooling 0.60 0.05 5.33 0.98

Table 5. Scale Diversity Evaluation

Figure 8. This figure illustrates the wide baseline stereo recon-

struction of human in dynamic scene with cluttered background

and 22
◦ camera baseline angle.

to solve wide baseline stereo for generic scenes. However,

a supervised learning based method for generic scenes is

possible with provided training data and whole scene seg-

mentation.

6. Conclusion

In this paper we proposed a method to solve the chal-

lenging task of wide baseline dense stereo reconstruction

of humans. A framework to learn human specific features

for stereo reconstruction from synthetic people stereo patch

dataset is introduced. Multiple patch sizes are used to ex-

tract features and fused using pooling to address the prob-

lem of adapting the network from synthetic to real data.

Comparative performance evaluation demonstrates that the

learnt stereo matching outperforms state-of-the-art methods

in human reconstruction and is robust to wide baseline and

scale changes. To further refine the stereo reconstruction a

person specific semantic stereo matching constraint is intro-

duced. Extensive performance evaluation on real datasets

shows that the proposed method outperforms state-of-the-

art methods.
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