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Abstract

We describe a method that predicts, from a single RGB

image, a depth map that describes the scene when a masked

object is removed – we call this “counterfactual depth” that

models hidden scene geometry together with the observa-

tions. Our method works for the same reason that scene

completion works: the spatial structure of objects is sim-

ple. But we offer a much higher resolution representation of

space than current scene completion methods, as we oper-

ate at pixel-level precision and do not rely on a voxel repre-

sentation. Furthermore, we do not require RGBD inputs.

Our method uses a standard encoder-decoder architec-

ture, and with a decoder modified to accept an object mask.

We describe a small evaluation dataset that we have col-

lected, which allows inference about what factors affect re-

construction most strongly. Using this dataset, we show that

our depth predictions for masked objects are better than

other baselines.

1. Introduction

People regularly reason about free space they cannot see.

For example, you might reach to grasp a cup, and your fin-

gers will fold around the back of the cup, confident that

there is room. As another example, you might put a mug

down on your desk behind the laptop, even though you can-

not see there. While your model of this invisible space

might not be precise, you have it and use it every day. When

you do so, you are using “counterfactual depth” — the depth

you would see if an object had been removed. This paper

shows how to predict counterfactual depth from images.

This ability to “see behind” is reproduced in scene com-

pletion methods, which seek to complete voxel maps to

account for the back of objects, and to infer invisible free

space. But these methods produce limited resolution mod-

els of space, and require depth measurements to do so on an-

other hand. Besides, stereo pairs provide less help to infer

scene geometry behind objects, since the larger unknown

depth region can’t be fully observed by small changes in

camera position. While there are excellent methods for in-
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Figure 1. Illustration. Given an image of a scene (left), our goal

is to predict the depth map for that scene with the object removed

(right): e.g. the image depth without the microwave (outlined in

green). Our system predicts depth directly from a single RGB

image, offering a representation of the free space behind an object,

even though it cannot see what lies there. These predictions are

possible because indoor depth maps have quite strongly correlated

spatial structure. Best viewed in color.

ferring depth from a single image, the resulting depth maps

represent only the free space to the nearest object.

In this paper, we describe a system that can accept an

image and an object mask, and produce a depth map for

the scene where the masked object has been removed (Fig-

ure 1): e.g. if you mask a cup in an image of a cup on a

table, our system will show you the depth behind the cup.

Our method works for the same reason that scene comple-

tion works. Indoor scenes are very highly structured, and it

is quite easy to come up with very good estimates of depth

in unknown regions. However, image details are impor-

tant: we show that our method easily outperforms Poisson

smoothing of the depth map. Furthermore, our method eas-

ily outperforms the natural baseline of inpainting the image

and recovering depth from the result, because inpainting of-

ten produces unnatural pixel fields.

Our approach is closely related to scene completion [41,

13], and works for the same reason that scene completion

works. Scene geometries have quite simple spatially con-

sistent structure. However, our method differs in important

ways. We do not require additional depth information, and

predict on RGB image only. Our system learns from im-

ages and depth maps (which are easy to acquire at a large

scale), rather than from polyhedral 3D models of scenes.



Rather than actively reconstructing the entire scene at lim-

ited resolution (voxels), our method is passive: with no ob-

ject mask, our method reports a depth map for the image;

provided with a mask, it reconstructs the depth map of the

image with that object removed. This deferred computation

allows us to produce representations with smoothed output

and much higher resolution than voxels can support. Our

approach differs from the layered scene decomposition [26]

and depth hole filling [1, 28] which all rely largely on the

quality of input depth to perceive the hidden geometry.

Our contributions: 1) We describe a system that learns,

from data, to reconstruct the depth that would be observed if

an object or multiple objects were removed from a scene. 2)

For images where an object is removed, quantitative evalu-

ations demonstrate that our method outperforms strong nat-

ural baselines (depth hole filling, image inpainting and then

depth prediction). 3) We introduce a carefully designed test

set taken from real scenes that allows experiments inves-

tigating what scene and object properties tend to result in

accurate reconstructions.

2. Related Work

Single image depth estimation is now well estab-

lished. Early approaches use biased models (e.g. boxes

for rooms [16]) or aggressive smoothing (e.g. [19]).

Markov random field (MRF) [37] and Conditional ran-

dom field (CRF) [30] can be applied to regress image

depth against monocular images. More recent approaches

use deep neural networks with multi-scale predictions [11,

12], large-scale datasets [25, 2] and user interactions [36].

Stereo provides strong cues for unsupervised learning [14,

45] or semi-supervised learning with LiDAR [23]. Other

approaches use sparse depth samples [31] or variational

models [20]. Laina et al. [24] propose a fully convolu-

tion approach with an encoder-decoder structure, and utilize

per-pixel reverse Huber loss for better predictions. Chen et

al. [9] propose to learn from pixel pairs of relative depth,

which is further improved with supervisions of surface nor-

mal [10]. Our approach regresses on both depth and surface

normal predictions. Different from Chen et al., we prepro-

cess the ground truth surface normal with weighted quan-

tized vectorization to ensure a smooth prediction. More-

over, we show in experiment that, in our task, angular-based

surface normal loss can help improve performance (while

Chen et al. found that this is less effective).

Depth completion helps predict the 3D layout of a scene

and the objects in a novel view. The completion can be per-

formed on point clouds [8], RGBD sensors [42, 38, 6, 44,

29], raw depth scans [34, 13, 41] or semantic segmenta-

tions [1]. The predictions can be represented as dense depth

maps [44, 29, 6], 3D meshes [34, 8], or voxels [13, 41].

Our “conterfactual depth prediction” task is challenging,

because we only condition on a single RGB input and a 2D

object mask only, and predict the dense depth map of the

scene with the object removed – we predict the depth that

can be seen and the depth that we cannot see.

We also investigate the natural baseline of removing ob-

jects from the scene – image inpainting. We can apply

existing single image depth estimation approaches on the

inpainted images, and obtain the predicted depth map with

the objects removed. Image inpainting can be achieved by

smoothing from unmasked neighbors [35, 7, 4], patch-based

approaches [5, 15], planar structure guidance [17] or convo-

lution neural networks [18, 43, 27, 33]. We use the method

by Iizuka et al. [18], which is one of the state-of-the-art for

high resolution predictions with source code available, as

our image inpainting baseline.

3. Approach

Assume a single RGB image I is given. Now, for any

object mask Mobject that identifies an object in the scene,

write M for the set of pixels lying on the object. We would

like to predict the depth for the scene with that object re-

moved (Figure 2). We write d for the depth field; dbehind for

the depth predicted for pixels in M (i.e. the depth behind

the object in the mask); and dobserve for the depth predicted

for pixels out of M. For example, if the scene had a cup

on a desk, and the mask lay on the cup, then dbehind would

be the desk behind the cup, dobserve would be the rest of the

desk, and dbehind should be predictable because of the spatial

coherence of objects.

3.1. Network architecture

Figure 2 gives an overview of our network. We choose

to modify the depth predictor by Laina et al. [24], because it

is fully convolutional, and can model the dense spatial rela-

tionship between dbehind and dobserve. The encoder-decoder

strategy of that method allows coarse-to-fine corrections of

dbehind. Our network’s input RGB image size is 228×304×3
(height × width × dimension) and the output depth map is

128×160×1. The encoder is based on Resnet-50, with the

fully-connected layers and the top pooling layers removed.

The bottleneck feature space is 8× 10× 1024. The decoder

consists four up-projection blocks and a 3 × 3 convolution

layer afterwards. We use the object mask Mobject to guide

the prediction by concatenating Mobject to each of the in-

put feature layers of the up-projection block. Mobject is 0
for pixels on the object to be removed and is otherwise 1
for non-removed area. The bottleneck forces the decoder

to capture long scale order in depth fields; the mask then

informs the decoder where it should ignore image features

and extrapolate depth. Extrapolation is helped by having an

image feature encoded, because the features give some in-

formation about the likely depth behavior at the boundary

of the mask, so the decoder can extrapolate into the masked

region using both depth prior statistics and feature infor-



Figure 2. Network architecture. Our network takes as input a single RGB image and a 2D object mask. The network follows an encoder

and decoder strategy. The final output is the predicted depth of the scene with the object removed: we predict the depth of layouts behind

the chair, and the depth of other non-removed objects, e.g. the small table in front of the chair. We also show the surface normal derived

from our predicted depth for better illustration. Best viewed in color.

mation to guide the extrapolation. This comes at the cost

of training difficulty. The decoder has a strictly more dif-

ficult task than Laina et al.’s decoder, because it must be

willing to extrapolate into any masked region supplied at

run time. We also experienced with concatenating the ob-

ject mask with the input RGB image as input, but observed

performance degrades.

3.2. Network loss

Given a predicted image depth d̂, and a ground truth

depth d, the overall network loss for each image I is:

L(d, d̂) =w1Lsurface(d, d̂) + w2Lavg(d, d̂)

+ w3berHu(d, d̂) (1)

L(d, d̂) is the weighted summation of the surface normal

loss Lsurface, the average image depth difference Lavg and

the pixel-wise reverse Huber (berHu) loss [32].

Surface normal loss with weighted smoothed ground

truth. Much of the world is made of large polygons [8, 17],

so that we can expect strong spatial correlations in surface

normal. One can obtain small depth errors with large sur-

face normal errors, which suggests controlling surface nor-

mal error directly. We use a loss that encourages normals

derived from the predicted depth to be accurate:

Lsurface(d, d̂) = −

∑

p∈I cp log
(

N(dp) ·N
′(d̂p)

)

Q
(2)

Lsurface penalizes the average pixel-wise negative log likeli-

hood of the angular distance between the predicted surface

normal and the ground truth. p denotes a pixel in I posi-

tioned at (x, y). Q denotes the total number of pixels in I ,

and cp is the pixel-wise weight that we will explain later.

N ′(·) denotes the surface normal computation which is the

first-order derivatives of predicted depth.

However, computing ground truth normals N(·) requires

care. For two adjacent pixels with only a few millime-

ters apart, a small error in measurement can still produce

a steep change in normal direction. We apply a window-

based gradient smoothing method, given known camera fo-

cal length fx and fy in x and y dimension respectively, com-

puting gradients np = (npx
, npy

, npz
) at pixel p based on

the neighboring pixels: npx
= fx

1
8

∑

i
d(x+i,y)−d(x−i,y)

2i ,

i ∈ {1, 2, . . . , 8}. We compute npy
in the same way, set

npz
= 1 and normalize np to unit 1.

We then smooth the normal spatially, using a procedure

to retain sharp normal discontinuities. We quantize each

ground truth normal into discrete bins. We divide the hemi-

sphere of the normal space (assuming all pointing towards

the viewpoint) into equally spanned bins of 16 latitudes

and 4 azimuths. Then, we score the confidence of each

bin belonging to the pixel’s normal based on the weighted

average angular distance to the pixel’s 8 × 8 neighbors:

cb =
1
64

∑

q (max (nq · nb, 0))
β . q denotes a pixel in neigh-

borhood, nb denotes candidate bin b’s normal. We set β = 8
to model a smooth decrease of the angle between two nor-

mal vectors going further apart. Finally, we assign the high-

est score to cp and its normal to np. The advantage of the

weighting strategy is that for a flat ground truth region, most

of the processed ground truth normal will be in the same

bin, so we will recover a constant plane. Similarly, at a nor-

mal discontinuity (e.g. a ridge), one normal will dominate

on one side and the other will dominate on the other, so

the ridge will not be smoothed (see Figure 3). We show

in experiments (Sec. 5.2) that training with Lsurface helps

boost our performance. It’s worth noting that our approach

is faster than plane fitting [39], and is more accurate than

simple partial derivatives (please find more detailed com-

parison in supplemental material). This is crucial since we

need to re-compute surface normal for each training sample

as required by the data augmentation in Sec. 3.3.

Depth prediction loss. We penalize the average ℓ2
depth difference compared to the ground truth: Lavg =
(∑

p
dp−

∑
p
d̂P

Q

)2

. We use reverse Huber loss berHu(d, d̂)

to penalize the per-pixel prediction error, which has shown



Figure 3. Surface normal derived from depth v.s. our weighted

quantized smoothed normal. We show: RGB image (top left)

and the ground truth depth (bottom left), ground truth surface

normal which is the first-order derivatives of the ground truth

depth (middle top) and our weighted quantized smooth ground

truth normal (middel down). Top right is the normal direction field.

Note that lighter pixel indicates that the surface normal is pointing

closer to the z direction that points towards us. Bottom right is the

confidence map that encourages higher confidence (lighter pixel)

for planes than boundaries. Best viewed in color.

superiority in single image depth estimation [24]. We set

the cut-off rate c = 0.2maxp(|dp − d̂p|) for each batch.

3.3. Implementation details

In inference, for each input image I and the object mask

Mobject, we first perform the largest center crop with the

same aspect ratio as the network input size, then resize I

to fit the network input size. The output depth map is then

resized back to the same scale as the original cropped image

by bilinear interpolation.

Mask dropout. Initial experiments indicated that depth

regressions against images tend to have quite localized sup-

port, likely because very high spatial correlations in real

images mean that large-scale support is superfluous. But

a network that predicts depth in locations where there are

no known pixel values needs to have spatial support on

very long scales (so that a location where pixel values

aren’t known can draw from locations where the pixels are

known). To achieve this, we randomly flip each pixel value

in the object mask with a chance of 10%, meaning a mask

dropout rate of 0.1. This forces the network to be able to

use nearby pixels to predict depths. We mask out the flipped

pixels when computing the loss to avoid error backpropaga-

tion. We show in experiments (Sec. 5.2) that training with

mask dropout helps stabilize our performance.

Data Augmentation. During training, we perform ran-

dom cropping instead of center cropping to increase the

training samples. The window size varies between the frac-

tion α = [ 23 , 1] of the size of the largest center crop. We per-

form the same cropping for the ground truth depth map d.

Note that a smaller cropping is equivalent to a closer view of

the object, resulting in a smaller distance to the camera. We

thus divide each pixel value d with α in order to preserve the

depth scales across different crops of the same image. We

also update each crop’s normal given the re-scaled depth,

using the weighted quantized smoothed normal computa-

tion as described in Sec. 3.2. Moreover, we perform random

rotation on the image plane ranges in [−5, 5] degrees, ran-

dom horizontal flipping and image color changes with each

of the RGB channel being multiplied by the weight ranges

in [0.8, 1.2] independently. Each augmentation parameter is

uniformly and randomly sampled from the defined range.

4. Dataset

4.1. Training

To train our method, we need triples of ground truth:

RGB image, object mask, depth with masked object be-

ing removed. Such datasets do not exist, and are difficult

to make on a large scale. Instead, we make the ground

truth tuples by rendering a synthetic dataset. However, a

rendered dataset may not properly represent texture or il-

lumination. We thus combine the data with the standard

NYUd v2 [39] real dataset (where we have only empty ob-

ject masks). Training samples are selected uniformly across

each training set (synthetic or real), with a 50% probability

of choosing one or another. We apply mask dropout on all

object masks.

Synthetic: AI2-THOR [22] is an indoor virtual envi-

ronment that supports physical simulation of objects in the

scene. We modified the default simulation setting to be able

to remove every object in the scene, rather than pickupable

objects only. AI2-THOR has 120 predefined scenes from

four categories of rooms: kitchen, living room, bedroom

and bathroom. In each scene, we place an agent at a ran-

dom location for 100 times. The height of agent is sampled

under the normal distribution with mean of 1.0m and a stan-

dard derivation (std) of 0.1m. The agent looks at the scene

with a randomly sampled altitude, which is normally dis-

tributed with a mean of 0o (looking at horizon) and a std of

10o. At each view, we generate the ground truth depth map

with one of the objects removed. For each type of room,

we use 27 scenes for training and withhold three scenes for

testing. This creates 47k 640 × 480 image-depth pairs of

synthetic samples. Each rendered depth map ranges up to 5

meters.

Real: NYUd v2 [39] is one of the widely used RGBD

dataset with real indoor scenes. We use the official train and

test split in our experiment.

4.2. Testing

Synthetic. We use the test split of AI2-THOR to com-

pare with other baselines. We obtain 1162 test samples with

depth changes of least 0.25m per pixel after the object is re-

moved. Slight changes in depth can hardly be examined the

performance.



NYUd v2 AI2-THOR Ours

Figure 4. Image samples from the dataset we use. Left to right:

NYUd v2 [39] (real dataset), AI2-THOR [22] (synthetic dataset),

our collected dataset (real dataset). AI2-THOR and our collected

dataset has ground truth depth with object removed. Best viewed

in color.

Factor variables

shape complexity simple (e.g. box), complex (e.g. chair)

shape rarity common (e.g. box), rare (e.g. doll)

number of objects close by 0, 1, 2

object behind wall, empty space, other objects

distance to the camera 1.5m, 2.0m

Table 1. Factors and variables used to construct our dataset.

Real. We have collected a small but carefully structured

RGBD dataset for evaluation using Kinect v2, as shown

in Figure 4. Our dataset contains both RGB images and

the depth maps before and after the removal of objects.

For each image, we carefully label a 2D tight object mask

around the object to be removed. Our images are collected

so as to investigate five factors that might affect the predic-

tion error (Table 1): (1) the complexity of the object; (2) the

rarity of the object in the training set; (3) number of other

non-removed objects close by with similar depth; (4) the

object location; (5) the distance between the object and the

camera. The first two factors focus on the object itself and

the latter three focus on the spatial relationship between the

object and the scene. This results in 2× 2× 3× 3× 2 = 72
testing cases. Please find more detailed dataset configura-

tions in supplemental material.

5. Experiments

Experimental setup. We implement our network using

MatConvNet and train it on a single NVIDIA Titan X GPU.

We use the weights of pretrained ResNet-50 on ImageNet

to initialize the the encoder, then train the whole network

end-to-end. We use ADAM [21] to update network param-

eters with a batch size of 32 and an initial learning rate of

0.01. The learning rate is then halved after every 5 epochs

and the whole training procedure takes around 20 epochs

to converge. In our experiment, we set the term weights in

Eq. 1 as: w1 = 1, w2 = 0.5, w3 = 1 .

Baselines. To demonstrate the effectiveness of our ap-

proach, we compare with three classes of natural baselines:

(1) “Do nothing”. We simply ignore the mask and apply

our approach to estimate image depth. In this case we’re

predicting image depth with the object. (2) Depth inpaint-

ing. We use the object mask to remove the object from our

predicted depth map, then fill in the hole using three differ-

ent methods. For the first method, we apply Poisson edit-

ing [35] to interpolate the missing depth based on neighbor-

ing depth values. For the second method, we apply a vanilla

auto-encoder. The auto-encoder gets as input the concate-

nation of the depth map and the object mask, and predicts

the scene depth with the object removed. The encoder (de-

coder) consists five convolution layers with kernel size of

3 × 3, with max pooling (scale factor 2) and ReLU in be-

tween, resulting in the same 8 × 10 bottleneck feature size

as ours. We train the auto-encoder with the same setting

as our approach. For the third method, we compare to the

state-of-the-art depth hole filling approach DepthComp by

Atapour et al. [1]. DepthComp requires additional input of

semantic segmentation maps. We use the outputs from Seg-

Net [3] trained on SUNRGBD [40] to run the experiment.

(3) Image inpainting. Given the object mask, we inpaint

the RGB image using the method by Iizuka et al. [18], then

predict depth from the inpainted one using our approach.

For fair comparison, we use our network with no ob-

ject mask to produce the initial depth map for all baselines.

We evaluate the performance of our approach and all the

baselines using the following standard single image depth

estimation evaluation metrics:

• rms: root mean squared error:

√

1
Q

∑

p (dp − d̂p)2

• mae: mean absolute error: 1
Q

∑

p |dp − d̂p|

• rel: mean absolute relative error: 1
Q

∑

p

|dp−d̂p|

d̂p

• δi: percentage of pixels where the ratio (or

its reciprocal) between the prediction and the la-

bel is within a threshold, 1.25, to the power i:
1
Q

∑

p 1[max (
dp

d̂p

,
d̂p

dp
) < 1.25i]. We set i = {1, 2, 3}.

Note that rms, mae, and rel are error metrics (the lower

the better) and δi measures accuracy (the higher the better).

For detailed analysis, we calculate the average pixel perfor-

mance using the metrics on the entire image (all pixels), the

region inside the mask (interior), and the region outside the

mask (exterior). Performance on the entire image naturally

shows the ability of predicting image depth with an object

removed; performance on the interior region demonstrates

the ability to predict the scene depth behind the object; and

performance on the exterior region demonstrates the ability

of predicting the depth of non-removed area.

5.1. Qualitative results

Depth with an object removed. We show in Figure 5

our qualitative performance compared with other baselines

on NYUd v2 dataset. NYUd v2 does not have ground truth

depth with the object removed, so we could only compare

qualitatively. We use the ground truth 2D segmentation in

NYUd v2 as the input object mask. Our approach is able

to produce well-behaved depth behind the object and the

depth of non-removed area, along with a good normal esti-

mates for the hidden geometry. Note that depth predictions
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Figure 5. Qualitative results of depth estimation with the object removed on the NYUd v2 dataset [39]. We compare our approach to several

baselines. We show in the second row the ground truth scene depth with all the object non-removed. For image inpainting baseline we also

show the inpainted RGB image for analysis. The surface normal is derived from the predicted depth. Our method is able to estimate the

hidden geometry behind the cupboard when the printer is removed (column 1); the space on top of the bed when the pillow is removed

(column 2); and the space below the ream of paper when the shelves but not that paper are removed (column 3). Best viewed in color.

by the inpainting baseline are mangled by inpainting errors.

Poisson smoothing produces somewhat better estimates, but

fails in the obvious way when one side of the background

is closer than the other (first column). We show in Figure 6

more qualitative results on our collected real dataset and the

synthetic AI2-THOR dataset.
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Figure 6. Qualitative results of depth estimation with the object removed on our collected real dataset (column 1,2) and the synthetic

AI2-THOR testset (column 3). Both two datasets have the ground truth depth with the object removed shown in the third row. Note that

our method is able to predict the gap between the bin and the bag behind the center box is (column 1); the gap between the bin and the bag

behind the fluffy bear (column 2); and one of the table’s leg that occluded by the removed chair (column 3). Our method has no explicit

object model or semantics, and so is not puzzled by stuffed toys. Please refer to the supplemental material for comparisons with other

baselines on the two datasets. Best viewed in color.

All Pixels Interior Exterior

Method rms mae rel δ1 δ2 δ3 rms mae rel δ1 δ2 δ3 rms mae rel δ1 δ2 δ3
Do nothing .548 .364 .158 75.6 92.5 98.0 .667 .498 .158 68.6 92.3 98.8 .539 .357 .156 76.4 93.0 98.2

Poisson .548 .363 .158 75.9 92.6 97.9 .691 .492 .156 72.2 92.6 97.3 * * * * * *

DepthComp .546 .361 .158 76.0 92.7 98.1 .684 .490 .157 71.6 92.6 97.9 * * * * * *

Inpaint .582 .386 .165 73.8 91.3 97.6 .665 .479 .152 73.9 92.8 98.5 .577 .381 .164 74.2 91.5 97.8

Auto-encoder .578 .390 .163 73.6 91.6 98.0 .602 .441 .139 77.1 95.3 99.7 .577 .388 .163 73.7 91.7 98.0

Ours .542 .359 .157 76.3 92.9 98.2 .592 .423 .138 78.9 95.3 99.4 .539 .356 .156 76.4 93.0 98.2

Ours w/o mask dropout .542 .364 .162 75.0 93.5 97.8 .569 .407 .133 80.2 95.3 99.1 .540 .363 .162 75.1 93.7 97.8

Ours w/o norm .629 .430 .187 70.1 89.5 96.1 .678 .490 .158 73.9 92.4 97.4 .627 .428 .186 70.2 89.6 96.1

Table 2. Depth estimation performance with object removed compared with other baselines on the synthetic AI2-THOR test set. We

evaluate average pixel performance on all image pixels (All Pixels), pixels inside the object mask (Interior) and pixels outside the object

mask (Exterior). All baselines get initial depths (without object remove) from our method with the object masked out. The “*” in exterior

columns means that the method does not produce pixels in this region. We also show in the last two rows the ablation study of our network

without mask dropout and without our surface normal loss. Bold shows the best score in each column.

All Pixels Interior Exterior

Method rms mae rel δ1 δ2 δ3 rms mae rel δ1 δ2 δ3 rms mae rel δ1 δ2 δ3
Do Nothing .447 .368 .207 67.0 90.6 99.6 .600 .513 .267 35.8 67.6 97.0 .430 .355 .201 69.9 92.7 99.8

Poisson .427 .352 .198 69.6 92.8 99.8 .394 .320 .168 66.8 93.9 99.9 * * * * * *

DepthComp .438 .360 .203 68.0 91.6 99.7 .513 .424 .225 47.9 79.7 98.8 * * * * * *

Inpaint .538 .434 .258 60.2 86.4 98.9 .526 .445 .235 52.3 92.6 99.8 .539 .433 .260 60.9 85.9 98.8

Auto-encoder .431 .360 .192 66.0 95.0 100. .353 .290 .153 70.5 97.7 100. .437 .366 .196 65.5 94.7 100.

Ours .425 .349 .198 70.6 93.0 99.8 .310 .247 .133 81.9 99.6 100. .435 .359 .204 69.5 92.4 99.8

Ours w/o mask dropout .762 .612 .272 38.9 71.3 90.1 .517 .416 .203 51.3 87.5 99.3 .781 .630 .279 37.7 69.7 89.3

Ours w/o norm .455 .364 .188 66.7 93.6 99.3 .393 .310 .160 68.8 96.0 99.8 .460 .369 .191 66.5 93.4 99.2

Table 3. Depth estimation performance with object removed compared with other baselines on our collected evaluation dataset. We

evaluate average pixel performance on all image pixels (All Pixels), pixels inside the object mask (Interior) and pixels outside the object

mask (Exterior). All baselines get initial depths (without object removed) from our method with the object masked out.



RGB GT Depth GT Normal

In
p

u
t

Mask Depth Normal

1
2

3
Mask Depth Normal

4
5

6
7

Figure 7. Qualitative results of depth estimation with multiple objects removed on the NYUd v2 dataset [39]. In the first row, we show

from left to right the inout RGB image, ground truth depth with all objects and the derived surface normal. In each following example we

show from left to right the input object mask, our predicted depth with the object(s) removed and the derived surface normal. We show

seven different input object masks as different combinations of three objects: a bookshelf, a ream of paper on the bookshelf, and the box

beside the bookshelf. Our network is able to remove object(s) within the supplied mask and retain other objects in the scene.

Depth with multiple objects removed. One important

benefit of using object mask as input is that we can arbitrar-

ily remove any number of objects from the scene and predict

the depth without these objects. Figure 7 demonstrates the

ability of our network to estimate scene depth with different

combinations of objects removed from the same scene. Our

approach is also able to produce consistent predictions for

non-removed area (e.g. layouts, counter) in the same scene.

5.2. Quantitative results

We show in Table 2 our quantitative comparison on the

test set of the synthetic AI2-THOR dataset. Table 3 reports

the performance on our collected real dataset. Poisson and

DepthComp do not perturb depth outside the object mask

region, hence, their exterior region is equal to “Do noth-

ing”. We report their error metrics in exterior as *. Our

method outperforms all baselines on most metrics. Inpaint-

ing method does not work; Poisson and DepthComp have

trouble removing an object. Auto-encoder and ours pro-

duce comparatively good interior (ours still slightly better)

depth, but Auto-encoder produces worse depth estimates of

exterior region. Note that for some measurements the depth

prediction performance inside the object masked could be

better than the prediction on the whole image scale. We be-

lieve that it’s uncommon that objects mask other clutter, so

the masked scene tends to be walls, floors, etc., where depth

has simpler statistics and is easier to predict.

Ablation study. We show in Table 2 and Table 3 the

performance gains by training with our smoothed ground

truth normal loss (ours v.s. ours w/o normal) and the mask

dropout data augmentation (ours v.s. ours w/o mask).

Factors that affect error. We investigate how proper-

ties of test data affect the error of the method, by regress-

ing error against the attributes of the test images (Sec. 4.2)

and looking for significant predictors. We use both individ-

ual terms and pairwise interactions, and apply an ANOVA.

Please find detailed analysis in supplemental material.

Single image depth with the object. For images where

no object is removed, our approach is able to predict scene

depth that is of comparable quality to that of state-of-the-art

single image depth estimation methods. Please find detailed

evaluations in supplemental material.

6. Conclusion

We have introduced a new task – estimating the hidden

geometry behind the object. Our method takes as input a

single RGB image and an object mask, and predicts a depth

map that describes the scene when the object is removed.

We show, both qualitatively and quantitatively, that our ap-

proach is able to predict depth behind objects better than

other baselines, and is flexible in removing multiple objects.

Our approach can be further utilized for applications like

object insertion and manipulation in a single RGB image.
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