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Abstract

We propose a method for reconstructing a 3D shape of

live plant roots submerged in a transparent cylindrical hy-

droponic tank from multiple-view images for root pheno-

typing. The proposed method does not assume special de-

vices and careful setups, but the geometry and material of

the tank are assumed known. First, we estimate the intrin-

sic and extrinsic camera parameters by the SfM algorithm,

and the scale and axis of the tank are estimated by cham-

fer matching. Second, we apply the ray tracing considering

the refraction for each view, the input images are mapped to

the voxels, and then multiview voxels at the same location

are robustly merged to reconstruct the 3D shape. Finally,

the root feature extracted from the voxel is binarized and

thinned by applying the 3D Canny operator. The proposed

method was applied to real a dataset, and the reconstruc-

tion results are presented.

1. Introduction

Plant phenotyping is a technology in agriculture to mea-

sure the effect of the environment to plant growth in con-

junction with the genome. In the structural plant phenotyp-

ing research, plant biologists measure various traits includ-

ing plant height, volumetric biomass, leaf length, and leaf

area. Recent computer/device improvement enables this

task fast and automatic, and high-throughput phenotyping

is the current trend.

A plant is composed of above- and below-ground parts

and the root phenotyping targets the latter. Since roots in

soil are not visible, there are difficulties compared to the

above-ground phenotyping. Direct 3D imaging systems like

CT and MRI are desirable because they are applicable to

live plants even planted in soil, but they have limitations of

object size, portability and equipment cost [1]. The root

shape in soil/water is not preserved when the plant is pulled

out, and lattice frames have been developed to preserve the

Figure 1. Input images and the extracted roots overlaid on an input

image.

shape in the air [2]. However, the frame system is not

perfect for keeping all details, and they are obstacles for

root growth and occlusion for measurement. If the roots

are grown on a thin sheet, the root system can be observed

quickly by capturing/scanning as a 2D image [3, 4], but this

is not a natural environment for root growth. A root phe-

notyping software that automatically generates root traits

from a single silhouette view was developed [5]. Liu and

Bucksch [6, 7] developed a system with a rotating arm with

ten synchronized cameras for reconstructing 3D root struc-



ture. The target plant is maize, whose roots are intertwined

very complexly, and they used 2800 images per plant. These

system requires roots unearthed and dried hard, and cannot

apply for measuring live plant roots.

Clark et al. [8] proposed a live 3D root phenotyping sys-

tem named RootReader3D, which is based on the shape-

from-silhouette method. There are several ingenious at-

tempts in capturing images:

• The target plant is grown in a cylinder filled with trans-

parent polymer gel. The roots are fixed static.

• For capturing images, they submerge the growth cylin-

der in water in a rectangular optical correction tank,

which reduces the effect of refraction.

• The images are captured using a telephoto lens 2m
apart from the target, which reduces the effect of per-

spective, lens distortion, and refraction, and the or-

thogonal projection can be assumed.

• The submerged growth cylinder is rotated by a mag-

netically interfaced and computer-controlled rotation

table. The rotation angles are reliable.

• Behind the scene, there is a lightbox, which makes sil-

houette extraction easy.

These settings are well organized, but it requires ample

space, specialized purpose devices, and tedious work of

submerging the cylinder in the optical correction tank.

Zheng et al. [9] proposed a method for 3D plant root

shape reconstruction. Their settings are similar to those of

Clark et al.’s [8], and their improvements are background

modeling with a harmonic function for better silhouette ex-

traction, adding a regularization term to the visual hull for

robustness, and repairing connectivity concerning the con-

sistency.

These works both assume the orthogonal projection and

canceled refraction to make the problem simpler. There are

several attempts to make underwater 3D reconstruction pos-

sible even in the environment with refraction. Yano et al.

[10] proposed a shape-from-silhouette method of underwa-

ter objects from images captured from outside of the tank

along with the simple calibration method for it. Peder-

sen et al. [11] proposed a camera calibration method for

underwater 3D reconstruction considering refraction. For

reconstructing underwater objects’ 3D shapes using under-

water cameras, the refraction at the interfaces of housing

glass with the air and water needs to be taken into account

[12, 13]. Other than these passive methods, Yamashita et

al. [14] proposed a laser range finder system for underwater

objects in a cylindrical glass tank.

In this paper, we propose a 3D root shape reconstruction

method of a live plant which is grown in a transparent cylin-

drical hydroponic tank in a more in-the-wild way (Fig. 1).

We observe the roots from multiple viewpoints on the side

of the tank and reconstruct the 3D root shape in the robust

voxel-coloring method [15] considering refraction. Because

the roots are submerged in water and the lens is not limited

to telephoto, we cannot neglect the effect of refraction and

perspective projection, and conventional 3D shape recon-

struction algorithms based on the pin-hole camera model

cannot be applied. Also, there are no distinct feature points

on the roots, and feature-matching based method cannot be

applied. We assume that the tank geometry and materials

are known, but not the precise viewpoints and usage of spe-

cialized devices.

2. 3D Root Shape Reconstruction from Multi-

view Images

In this section, we explain how to reconstruct 3D root

shape reconstruction from multiview images. In Sec. 2.1,

we explain how the input images are captured. In Sec. 2.2,

the intrinsic and extrinsic camera parameters are estimated

by the structure-from-motion algorithm, and the tank-

centered world coordinate system is estimated by chamfer

matching. In Sec. 2.3, the input images are projected on

to the voxels, and they are merged in Sec. 2.4. Finally, the

roots are extracted to be visualized in Sec. 2.5.

2.1. Setup

The plant is grown in a transparent cylindrical hydro-

ponic tank filled with water. The tank is placed on a ro-

tation table, which is controlled manually. The camera is

fixed to look at the tank from the side of it. The camera

is not necessary to be placed far away from the tank, and

we need to consider the perspective projection. After each

image is captured, the table is rotated by an equal amount

of angle by manual control. An image capturing sequence

finishes when the total rotation angle reaches 360 degrees.

As a result, we obtain a set of N multiview images of the

tank. We assume that the geometry and material of the tank

are known.

2.2. Estimation of Geometry

2.2.1 Structure from Motion

Since the camera position relative to the tank is not known,

and the rotation angle is not precisely controlled, we apply

the structure from motion (SfM) algorithm to estimate them.

To make the SfM easier, belt-shaped markers with the

random pattern were attached at the top and the bottom of

the exterior of the tank. The parts between the markers are

masked out because submerged parts confuse the SfM al-

gorithm to produce wrong results with longer computation

time.

As the result of the SfM algorithm, we obtain the in-

trinsic parameters of the camera (f : focal length in pix-



els; cx, cy: optical center; k1, k2, p1, p2, k3: distortion pa-

rameters), the extrinsic parameters of the views M l =
[Rl|tl] (1 ≤ l ≤ N) , sparse point clouds and the undis-

torted input images I l (1 ≤ l ≤ N).

2.2.2 Ray Tracing – Intersection with the Tank

Assume that the lens distortion is calibrated beforehand,

and the camera projection is described by a projection ma-

trix

P =

⎡

⎣

f 0 cx
0 f cy
0 0 1

⎤

⎦ .

For each pixel at (u, v), the ray vector that points the

pixel from the optical center is represented by v(u, v) =
(u − cx, v − cy, f). We assume that the extrinsic camera

parameters are given by [R|t], where R and t represent

the pose and position of the camera in the world coordi-

nate system, respectively. The ray vector and camera posi-

tion in the world coordinate system is give by v0(u, v) =
R · v(u, v)/||v(u, v)|| and p0 = t respectively. The equa-

tion of the ray emitted from the camera center passing

through the pixel (u, v) is given by p0 + tv0(u, v).

We lay the tank coordinate system so that the origin is

at the center of the top disc of the cylindrical tank and the

z-axis pointing to the bottom. When a ray p+ tv intersects

the cylinder of radius r whose axis is passing through the

origin along the z-axis, the parameter t̃ at the intersection is

given by

a = v2x + v2y

b = 2(pxvx + pyvy)

c = p2x + p2y − r2

d = b2 − 4ac

t̃ =

{

(−b+ s
√
d)/2a if d ≥ 0,

NaN otherwise,

where s signifies which of the frontal (s = −1) and back-

ward (s = +1) surface of the cylinder to the camera inter-

sects the ray. The first intersection of the ray with the tank’s

exterior is determined by p + ((−b −
√
d)/2a)v, and its

z-axis coordinate is limited between 0 and the depth h.

In summary, given the intrinsic parameters P , extrinsic

parameters [R|t], tank geometry (radius r and height h),

for each pixel, we obtain the coordinates of the intersection

of the ray with the tank. For the pixels whose rays do not

intersect the tank is filled with the NaN (not a number). This

procedure is described by the intersection function p′ =
X(p,v, r, h, s).

Figure 2. The chamfer loss function for the scale and axis estima-

tion.

2.2.3 Scale and Axis Estimation

The result of the SfM in Sec. 2.2.1 does not reflect the actual

object size, and its coordinate system is not tank-centered.

As mentioned beforehand, the tank coordinate system is

laid so that the origin is at the center of the top and the

z-axis is pointing to the bottom (Fig. 4). We need to esti-

mate the relative scaled Euclidean transform from the SfM

coordinate system to the tank coordinate system.

Suppose we estimate the transform M0 = [s0R0|t0],
which is a scaled rigid transform between the SfM coordi-

nate system to the tank coordinate system. For the l-th view

(1 ≤ l ≤ N), the viewpoint and the ray vector in the tank

coordinate system are represented by M0tl and R0Rlv re-

spectively. By using the intersection function defined in the

previous section, we can generate the silhouette of the tank

by judging whether the ray intersects the tank or not for

each pixel. We formulate the problem to find the optimal

M0 that match the generated tank silhouette to the undis-

torted image for all views.

The loss function is derived from chamfer matching

(Fig. 2). For each candidate M0, we generate the distance

map D (M0,M l) from the contour of the tank silhouette.

For each undistorted input image, we apply the graph-cut al-

gorithm [16] initialized by the foreground and background

regions to extract the tank region. On the contour pixels of

the extracted region T (I l), the distance map D (M0,M l)
is summarized. The optimization is described by

M̃0 = argmin
M0

N
∑

l=1

ρ (D (M0,M l)T (I l)) ,

where ρ is the M-estimator to eliminate the outliers since

the extracted tank contour T (I l) is not perfect.

In the implementation, for fast computation, the undis-

torted input images are downsampled to 1/4 of the original.



Figure 3. The ray emitted at p
0

proceeds in the air in the ray vector

v0. It intersects the exterior of the tank at p
1
, and it is refracted

to the ray vector v1 within the tank wall. Then, it intersects the

interior of the tank at p
2
. After refraction, it penetrates the water

in the ray vector v2, and finally intersect the interior of the tank at

p
3
. The rays that cause the folds of p

3
are eliminated as irregular.

Instead of using all views, for N = 36, we started by us-

ing only the first image with the manually given initial state,

then gradually increase the number of views using the con-

verged result as the initial state like as; with 3 of every 12

views with ρ (x) = 2
(√

1 + x2 − 1
)

(Soft-L1); 6 of ev-

ery 6 views with ρ (x) = ln
(

1 + x2
)

(Caucy); 12 of every

3 views with Caucy, etc. The minimization algorithm is

Powell, and the rotation is parameterized by the angle-axis

representation.

Once the scale and axis of the tank is estimated, the ex-

trinsic parameters of the views are obtained by

M̃ l = M̃0M l, 1 ≤ l ≤ N.

2.3. Voxel Rendering

2.3.1 Ray Tracing in the Tank

In the world coordinate system, the tank is represented by

a cylinder whose radius is r, both ends are at z = 0 or h,

and its wall thickness is τ . The ray intersection to the tank

surface is modeled by the intersection function X defined

in Sec. 2.2.2.

At each interface of materials, the ray is refracted under

Snell’s law. In our environment, there are three materials:

air, tank, and water, whose refractive indices are n1, n2, and

n3. We represent the refraction at the interface of materials

n1 and n2 by v′ = K(p,v, n1, n2).
The path of the ray for the l-th view is traced as the fol-

lowings (Fig. 3):

1. The rays start at p0 = M̃ l (tl) in the ray vector v0 =
R̃0Rlv ;

2. intersect with the tank’s exterior: p1 =
X(p0,v0, r, h,−1);

Figure 4. The coordinate system of the voxel (left). The z-slices

of rendered voxels Iijkl (middle). The corresponding slices of the

merged voxel Vijk (right).

3. refract at the tank’s exterior from the air: v1 =
K(p1,v0, n1, n2);

4. intersect with the tank’s interior: p2 = X(p1,v1, r −
τ, h− τ,−1);

5. refract at the tank’s interior to the water: v2 =
K(p2,v1, n2, n3).

The ray started at p0 passed the pixel (u, v) with the ray

vector v0(u, v) finally passes through the water starting at

the point p2(u, v) on the tank’s interior surface in the direc-

tion v2(u, v).

2.3.2 Mapping Pixels on Voxels

In the previous section, we know for each pixel (u, v) the

ray passes through the line p2(u, v) + tv2(u, v) in the wa-

ter. For 3D reconstruction, we discretize the 3D space into

voxels at pijk = (iδ, jδ, kδ), and we need to know the in-

verse problem: for each voxel point pijk, from which pixel

(u, v) the ray comes. The closest ray from pijk is given by

C(pijk;p2,v2) = argmin
(u,v)

min
t

∥

∥p2(u, v) + tv2(u, v)− pijk

∥

∥

2
.

The direct computation of the function C for all pijk in

terms of all pixels (u, v) is slow, and we apply two-step ac-

celeration relying on the smoothness. 1) Instead of taking

all (u, v) at a time, we first split the image into equal-sized

square patches (e.g., 64×64) and compute the function only

at the center points of the patches, and then apply the func-

tion for all pixels in the patch that gives the minimum value.

2) Instead of computing at all p, we subsample the space

(e.g., in the 10-voxel interval) and apply the RBF interpola-

tion.

As a result, for the l-th view, for each voxel point pijk,

the corresponding pixel is given by C(pijk;p2,v2), and

the pixel value at C(pijk;p2,v2) of the input image Il is

mapped to the voxels which are described by Iijkl. In prac-

tice, for a specific l and k, we get a slice of the voxels as an

image representing how the ray from the input image passes

through the water.



2.3.3 Irregular Rays

The rays passing near the edge of the cylinder intercross the

other rays which cause the spurious mapping to the images

(Figs. 3 and 8). These irregular rays are detected by the fold

of the p3, which is the second intersection of the ray with

the tank’s interior. The regular region is detected by

det

[

∂p3

∂u

∣

∣

∣

∣

∂p3

∂v

∣

∣

∣

∣

N (p3)

]

≥ 0,

which is the determinant of the gradients of p3 in terms of

the pixel coordinate (u, v) and the surface normal at p3,

where

p3 = X(p2,v2, r − τ, h− τ,+1),

and the surface normal at a 3D point p on a

cylinder can easily be obtained by N (p) =
(

px/
(

p2x + p2y
)

, py/
(

p2x + p2y
)

, 0
)

. After the regular

rays are determined, the voxels whose distance to the

closest ray is within the distance δ is used for further

computation.

2.4. Merging Multiview Voxels

We merge the multiview voxels Iijkl to form a single

voxel Vijk. Conventional multiview reconstruction methods

take logical-and of the binarized silhouette to form a visual

hull, but this is not robust to noise like binarization failure,

calibration error, and slight deformation during multiview

capture.

A 3D point can be occluded by other roots and cannot

be seen from all views. Instead of the binary shape-from-

silhouette method, assuming that the multiview rays coin-

cide together at a 3D point with the same pixel values, we

used the geometric median that minimizes the sum of non-

squared l2-norm. This is an L1 estimator which is robust in

a sense in the sense that its breakdown point is 0.5, and it is

applicable to multi-dimensional values. In the undistorted

input images, each pixel has RGB values, and it is inherited

to the corresponding voxel in Iijkl. For each voxel coordi-

nates (i, j, k) ,we apply the geometric median:

Vijk = argmin
x

N
∑

l=0

‖x− Iijkl‖2 .

In this computation, irregular voxels detected in Sec. 2.3.3

are excluded.

2.5. Root Extraction

In the merged voxels, the roots should have string shape

with equal pixel values. To extract the roots from the

merged voxel, we used the features that were used to ex-

tract vessels from CT or MRI images proposed by Sato et al.

[17]. This algorithm computes the eigenvalues (λ1 ≥ λ2 ≥

Figure 5. SfM result

λ3) of the Hessian of the voxel values to generate feature

values, and use the fact that λ1 ≈ 0 and λ2 ≈ λ3 ≪ 0 stand

for brighter vessel-like objects in the darker background.

We use the gray-scale value of each voxel for adopting this

algorithm, and we call the generated feature as rootness.

For thinning the rootness, we extended Canny edge de-

tector [18] for 3D voxels. Instead of using 2D image edge

operator for edge orientation estimation, we use the eigen-

vector corresponding to the eigenvalue λ1 as the orientation

of root. For non-maximum suppression, the orientation of

eigenvector is discretized so that its coordinates are in -1, 0,

+1, and 13 dilation masks of 3×3×3 are applied depending

on the discretized orientation. We inherit the double thresh-

olds for robust tracking of roots with hysteresis. The voxels

with rootness higher than the high threshold are categorized

as root voxels, and those higher than the low threshold are

considered as root voxels if they are connected to the root

voxels determined by the high threshold.

Finally, the extracted roots are segmented and remapped

on the input undistorted images for easy check of the ex-

traction results.

3. Experiments

The target plant of the experiment is licorice (Gly-

cyrrhiza) and the images are offered by Kajima Corpora-

tion. Each image was captured in every about 10 degrees

of rotation, and N = 36 images are used for the exper-

iment. The camera model is Sony DSLR-A100 with the

image resolution of 3872 × 2592, and the focal length of

the lens is 24mm. The camera was placed about 40 cm
apart from the tank. The tank is made of transparent

Poly(methyl methacrylate) (PMMA), whose radius, height

and wall thickness are r = 90.0mm, h = 246.6mm, and

τ = 5mm respectively. The refraction index of air, PMMA

and water are n1 = 1.000, n2 = 1.490, n3 = 1.333 respec-

tively. The lighting conditions and camera exposure were

fixed throughout capturing the total views.

As the SfM algorithm, we used Agisoft’s Metashape



Figure 6. The reconstruction results with various parameters. The left and right two columns are the results with and without irregular ray

exclusion, respectively. For each case, we tested two sets of parameters of γ23, γ12, and α for Sato’s feature [17]. Each line corresponds to

pairs of low and high thresholds for Canny operator [18] which we extended for 3D.

[19] (Fig. 5). Belt-shaped markers with random patterns

were attached at both edges of the sidewall of the tank to

help the SfM. The rectangular region between these mark-

ers were masked out not to confuse the SfM by non-pinhole

projection due to refraction. The RMS reprojection er-

ror was 0.822 pixels. From the output of the software,

we used the intrinsic (f, cx, cy) and extrinsic parameters

M l(1 ≤ l ≤ N) of the camera and the undistorted input

images I l, (1 ≤ l ≤ N) for further procedures.

As mentioned in Sec. 2.2.3, the number of views were

increased step-by-step in the optimization for the scale and

axis estimation. We considered this process converged

when using 12 in every 3 images, and top four digits of

the estimated parameters were stabilized while increment-

ing the number of views.

The voxels were sampled with the interval δ = 1mm,

which is the resolution of reconstruction, and we sampled

up to the depth of z = 180mm. The inner diameter of the

tank is 2(r − τ) = 170mm, and from the N = 36 views,

we generated the voxels Iijkl of size 171× 171× 180× 36.



Figure 7. The extracted roots overlaid on the input images. The images are in the row-major order.

They are merged to the voxel Vijk of size 171× 171× 180.

Figure 6 shows 3D shape reconstruction results with var-

ious parameter settings. We tested two sets of parameters

γ23 = 0.5, γ12 = 0.5, α = 0.25 and γ23 = 1, γ12 = 1, α =
0.25 of Sato’s feature which are most commonly used in

their paper [17] and four pairs of low and high thresholds

for 3D Canny operator (Sec. 2.5). Comparing these results,

the results with γ23 = 0.5, γ12 = 0.5, α = 0.25 contains

more roots than those with γ23 = 1, γ12 = 1, α = 0.25
for the same pair of thresholds. Unfortunately, we can-

not evaluate these results with the ground truth quantitively,

but we chose the setting with the irregular ray exclusion,

γ23 = 0.5, γ12 = 0.5, α = 0.25 and [0.01, 0.02].

Figure 7 shows the extracted roots overlaid on the in-

put images. The region out of the estimated tank region is

darkened, which shows that the scale and axis estimation in

Sec. 2.2.3 worked fine. One can see there are many illusory

roots caused by reflection at the inner surface of the tank

in the input images, and the extraction was successful with-

out affected by these reflections because their appearance

changes by viewpoint change differ to those of the actual

roots. In the first 6 images, a reconstructed root (yellow in

the figure) is not matched to the real one in the images. This

is possibly due to the movement of the root caused by the

Figure 8. Effect of irregular ray exclusion and the coverage of in-

cluded views at z = 120mm. Red dots in Vijk signify the ex-

tracted root positions in the slice.

tank rotation during the measurement, and it was success-

fully overcome by robust merging. There are some artifacts

caused by the water surface which can be removed in post-

processing.

In Sec. 2.3.3, irregular rays are excluded in merging,

which is for better extraction of the roots near the tank wall

in a precise comparison of the merging results with/without

this exclusion (Fig. 8 left). Although the coverage of the

non-excluded views is reduced nearly to N/2 near the tank



Figure 9. Comparison of the L1 and L2 estimator for voxel merg-

ing.

wall (Fig. 8 right), implicit exclusion of irregular regions

give better reconstruction near the tank wall due to robust

merging method whose breakdown point is 50% (Sec. 2.4).

Figure 9 shows the comparison of the L1 and L2 esti-

mator for multiview voxel merging. The L1 and L2 esti-

mators minimize the non-squared and squared sum of the

pixel value differences, respectively. The merged voxels of

L2 estimator look more blurred than those of the L1 esti-

mator, and the result of L2 estimator contains less extracted

roots than that of the L1 estimator. As for the color differ-

ence metric, we also tested the CIE L*a*b* in addition to

the RGB, but there was not such evident difference between

them.

The most time-consuming part was the voxel render-

ing in Sec. 2.3, and it took about 12min per view of

171×171×180 voxels on 3.1GHz CPU, which was accel-

erated by the multi-threading technique. The subsampling

parameters (64 × 64, 10-voxel interval) in Sec. 2.3.2 were

determined empirically balancing the computation cost and

interpolation error.

4. Conclusion

In this paper, we propose a method for 3D shape re-

construction of plant roots grown in a transparent cylindri-

cal hydroponic tank from images observed from multiple

viewpoints around it. We do not assume particular types

of equipment and careful setups but assume knowledge of

the tank geometry and material. The camera parameters

are estimated by the SfM algorithm followed by chamfer

matching of the tank silhouette, and we do not need to con-

trol the viewpoint precisely. Instead of applying binariza-

tion and the shape-from-silhouette algorithm, the input mul-

tiview images are directly mapped on the voxels aligned

on the tank coordinate system, and the mapped voxels at

the same location with similar pixel values are merged ro-

bustly. From the merged voxel values, we determine the

rootness, and it is binarized and thinned by applying the

3D-extended Canny operator. The method overcomes the

problems caused by irregular rays, voxel interpolation er-

ror, and root movement.

Future works should include computation acceleration,

e.g. with GPU, more precise reconstruction, capabilities for

more difficult/complex roots, tolerance to the tank variance,

more sophisticated markers for more straightforward view

estimation, and learning and evaluation with simulation and

the ground truth.
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