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Abstract

Due to its capability to identify erroneous disparity as-

signments in dense stereo matching, confidence estimation

is beneficial for a wide range of applications, e.g. au-

tonomous driving, which needs a high degree of confidence

as mandatory prerequisite. Especially, the introduction of

deep learning based methods resulted in an increasing pop-

ularity of this field in recent years, caused by a signifi-

cantly improved accuracy. Despite this remarkable devel-

opment, most of these methods rely on features learned

from disparity maps only, not taking into account the corre-

sponding 3-dimensional cost volumes. However, it was al-

ready demonstrated that with conventional methods based

on hand-crafted features this additional information can be

used to further increase the accuracy. In order to combine

the advantages of deep learning and cost volume based fea-

tures, in this paper, we propose a novel Convolutional Neu-

ral Network (CNN) architecture to directly learn features

for confidence estimation from volumetric 3D data. An ex-

tensive evaluation on three datasets using three common

dense stereo matching techniques demonstrates the gener-

ality and state-of-the-art accuracy of the proposed method.

1. Introduction

The reconstruction of depth information from a stereo-

scopic image pair is a classical task in photogrammetry and

computer vision and the minimal case of the well-known

structure from motion problem. A special case of this task

is dense image matching. It not only determines depth for

significant feature points, but for every or at least a large

majority of pixels within an image pair. In principle, depth

reconstruction can be interpreted as inverse operation to a

perspective projection, which directly leads to the major dif-

ficulty of this task: Projecting the 3D scene to a 2D image

plane results in a dimensionality reduction. Consequently,

the inverse operation does not have a unique solution in

general, characterising it as ill-posed. To determine a so-

lution nevertheless, the identification of point correspon-
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Figure 1. Confidence estimation on an image of KITTI 2015

dataset [14]. (a) Reference image, (b) corresponding disparity

map computed with Census [36], (c) confidence map computed

with a CNN learned on disparity maps and (d) with the proposed

method. The red boxes highlight noisy and low-texture regions

where the proposed method outperforms the state-of-the-art.

dences within the two images of a pair is a prerequisite in

general. This raises the question about the reliability of such

a solution. Especially under challenging conditions, depth

reconstruction approaches might not be able to identify the

correct correspondences for all pixels. Thus, it is particu-

larly important to be able to identify cases in which high un-

certainty exists regarding the result. This task is referred to

as confidence estimation and has been the subject of many

investigations in recent times.



All of the proposed methods have in common that they

estimate the confidence pixel by pixel. This allows to filter

out local outliers from disparity maps and thus to subse-

quently adjust the ratio of density and reliability. The pro-

posed applications are diverse: Confidence maps are used

as weighting-schemes to combine multiple stereo matching

algorithms [16, 29], different cost functions [1, 7, 13] or to

fuse cost volumes [32] for multi-view stereo, in a reasonable

way. Confidence maps are furthermore used to improve the

process of depth reconstruction itself: They allow to modu-

late cost functions in order to adjust the influence of a spe-

cific disparity assignment on its neighbours during optimi-

sation [15, 28]. Finally, also Semiglobal Matching (SGM)

[6] can be improved by introducing a confidence-based ad-

justment of the penalties [32] or by applying a weighted ag-

gregation scheme for combining different paths within the

optimisation process [17].

Together with those applications, a variety of different

approaches were proposed to estimate confidence. In this

context, the introduction of deep learning based procedures

can be seen as a milestone, improving the accuracy signif-

icantly. But at the same time, the diversity of the utilised

information has decreased. While many hand-crafted fea-

tures were designed based on a variety of different 2D and

3D cues, nowadays features are mainly learned on disparity

maps and corresponding reference images only. Neverthe-

less, the usage of hand-crafted features has already proven

that especially the information contained in 3-dimensional

cost volumes resulting from the cost computation step of

dense image matching can be beneficial. These cost vol-

umes provide the cost distribution over the whole disparity

range instead of just the supposedly optimal value.

Consequently, in this paper we present an approach

which operates directly on those 3-dimensional cost vol-

umes. Contrary to the assumptions made in [9] and [25], we

demonstrate the advantages of using raw cost volumes as in-

put to a confidence estimation network (cf. Fig. 1). Thus,

the main contributions of this work are:

• A CNN-based approach for estimating the confidence

of a disparity assignment based on the cost curves of a

pixel and its neighbours. For this purpose, an architec-

ture is presented which allows to learn features directly

from the volumetric 3D cost volume.

• An extension to the commonly used Area Under the

Curve (AUC) evaluation approach, which minimises

the error introduced by discretisation.

• An extensive evaluation showing the accuracy and

generality of our approach. For this purpose, the

performance is examined on three well-established

datasets regarding three popular stereo matching meth-

ods and compared against the state-of-the-art.

2. Related Work

2.1. Confidence Estimation

With growing popularity in recent years, the approaches

to estimate confidence of disparity assignments became as

diverse as their applications, but can in principle be divided

into 3 groups: The first group is based on individual, hand-

crafted features. For this purpose, e.g. the properties of a

cost curve, the consistency between disparity estimations in

the left and right image and the distinctiveness of a pixel

in its local neighbourhood are used. It is noteworthy that

in particular methods which are based on the characteris-

tics of cost curves show convincing results. This statement

is supported by the high accuracy of a recently published

approach, where ambiguous solutions are penalised based

on the position and distinctiveness of the global minimum

compared to local ones [34]. A good overview of the com-

monly used features is given in [7].

The approaches of the second group combine certain of

those features to form more accurate and robust measures.

Beside linear aggregation [32], random forest based combi-

nations are especially popular [1, 5, 15, 17, 29]. The transi-

tion to the third group is accomplished by utilising neuronal

networks to carry out the combination task [20, 25].

Finally, the approaches within the third group map the

whole confidence estimation process to convolutional neu-

ral networks. For this purpose, [18] (CCNN) as well as

[16, 19] utilise square patches extracted from disparity maps

and centred on a pixel of interest to determine its confi-

dence. [25] in addition, proposes to stack two of those

patches, one from the left, one from the right image, in or-

der to introduce the idea of left-right-consistency. On the

other hand, [2] suggests to combine patches from disparity

maps and the RGB reference image to increase the avail-

able amount of information (LFN). Lately, [33] presented

an approach (LGC-Net) utilising not only information from

a local neighbourhood, but also from global context. For

this purpose, a two-part network architecture is proposed,

which uses a local component [2, 18] to detect high fre-

quency changes and an encoder-decoder based module to

enlarge the receptive field.

Analysing the advantages of the different approaches,

two main points are noticeable: On the one hand, features

from cost volumes demonstrate superior performance. On

the other hand, learned features outperform hand-crafted

ones. [9] and [26] combine those assumptions and take a

first step towards learning features on cost volumes. While

they propose different approaches, both contain a prepro-

cessing step to extract subsets of data, which are provided as

input to their networks. They state that such a preprocessing

is necessary since the cost distributions of raw cost volumes

do not allow to distinguish between correct and incorrect

estimations in general. However, the proposed preprocess-



ing steps limit the information provided to the confidence

estimation step. This prevents the method from exploiting

the full potential of learning features on cost volumes.

Since the methods CCNN, LFN and LGC-Net, discussed

in this section, represent the state-of-the-art by estimating

confidence with the highest accuracy, in Section 4 they are

used for comparison with our method.

2.2. Deep Learning on Volumetric Data

Confidence estimation based on a cost volume can be in-

terpreted as a regression task on volumetric 3D data, since

it is the prediction of real numbers within the unit interval.

In the literature, mainly two types of methods exist for pro-

cessing volumetric 3D data: projection-based approaches

[8, 27, 31] and voxel-based processing [12, 35]. The former

is based on the idea to project 3D data to one or multiple

2D images and apply classification in 2D, using well estab-

lished network architectures. Benefiting from the extensive

research on 2D image classification, those methods demon-

strated superior performance compared to voxel-based ap-

proaches for many applications. However, they mainly clas-

sify samples based on an object shape and surface. For the

present task of evaluating cost volumes, this is not reason-

able, since these volumes always have the same shape and

only the values within the individual voxels vary.

The performance gap to voxel-based methods was

mainly caused by the higher complexity and increased

memory consumption of learning features from 3D directly.

In recent years, multiple approaches were published to over-

come this gap. In [22] a hybrid method is proposed, com-

bining projection- and voxel-based ideas: On the one hand,

auxiliary losses are introduced by additionally classifying

subvolumes. On the other hand, the 3D volume is reduced

to a 2D image by applying convolutional layers similar

to X-ray scanning, subsequently allowing the application

of conventional image-based CNNs. On the contrary, the

methods in [11] and [23] benefit from the sparsity of 3D

data transferred to a volumetric representation.

However, those approaches are not applicable to cost

volumes, since they assume a completely different type of

data. Cost volumes are dense voxel grids and in general,

their subvolumes have limited expressiveness. Along their

depth axis, they consist of a single cost curve, potentially

leading to different results if only sections are examined.

3. CNN-based Cost Volume Analysis

The main idea of the approach presented in this work is

to assess the confidence of a disparity map pixel by pixel

based on the corresponding cost volume. In this context, a

cost volume is the result of the cost computation step of an

arbitrary stereo matching approach carried out on an epipo-

lar rectified image pair. The axes x and y of such a cost
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Figure 2. Exemplary cost curves demonstrating the relation be-

tween cost function and confidence. (a) An ideal curve, charac-

terised by a single minimum with zero cost and all other values

being one. (b) A more realistic curve with multiple minima, but

a reliably identifiable global minimum, still results in high confi-

dence. (c) No distinct global minimum is identifiable, making the

determination of the correct correspondence unreliable - a typical

behaviour in areas with repetitive patterns. (d) The occurrence of

a wide and flat minimum is a typical behaviour in non-textured

areas and leads to an inaccurate localisation of the correct corre-

spondence. The latter two cases result in low confidence.

volume correspond to the image coordinates, while the dis-

parity axis z represents the associated cost curves.

In general, typical characteristics can be observed on

cost curves, independent from their source: In the ideal

case, the cost curve contains a unique minimum with zero

cost, while all other values are at maximum (Fig. 2(a)).

In practice, however, cost curves usually have several lo-

cal minima, requiring the theoretical assumptions to be re-

laxed. A disparity assignment with high confidence is char-

acterised by a clearly identifiable and unambiguous global

minimum (Fig. 2(b)). In contrast, low confidence is usually

assigned if either no distinct global minimum can be iden-

tified (Fig. 2(c)) or if the global minimum is wide and flat,

making the localisation of the correct correspondence inac-

curate (Fig. 2(d)).

3.1. Cost Volume Normalisation

As stated in [9], cost curves highly depend on the utilised

stereo matching approach. Consequently, a unified data rep-

resentation is a prerequisite for learning to estimate con-

fidence directly from 3D cost volumes. For this purpose,

the theoretical boundaries of the matching approach’s result

space are used to normalise the cost volumes. The result is

a 3D tensor of real values in the range [0,1].
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Figure 3. Our confidence estimation network, CVA-Net (Cost Volume Analysis Network). Consisting of three main elements, the

network first fuses a cost volume extract into a single cost curve. This curve is then processed along the disparity axis by convolutions with

varying depth. The fully-connected layers at the end of the network perform the classification by estimating the confidence.

3.2. Architecture

To address the task of confidence estimation from nor-

malised 3D cost volumes, we introduce a novel CNN archi-

tecture referred to as Cost Volume Analysis Network (CVA-

Net). It follows the idea of a feedforward network and

consists of three main components: neighbourhood fusion,

depth processing and classification (c.f. Fig. 3). A detailed

layer-by-layer definition can be found in Tab. 1. As input,

the network takes cost volume extracts of size N ×N ×D.

The size of the perceptive field is set to N = 13 pixels, pro-

viding a good trade-off between the amount of information

available to the network and the degree of smoothing within

the resulting confidence map. In order to contain complete

cost curves, the depth D of an extract is chosen to be equal

to the depth of the cost volume. In the specific case, the

depth of a volume is set to 256 pixels according to the theo-

retical maximum disparity of the training samples.

The first part of the network, the neighbourhood fusion,

merges the information contained in an extract to a single

cost curve. The basic idea behind this procedure is equiv-

alent to that of most region-based matching approaches:

Including neighbourhood information increases the robust-

ness. Especially if the cost curve corresponding to the pixel

of interest is affected by noise or delivers an ambiguous so-

lution, neighbourhood information is beneficial. The depth

of the filters associated to this part of the network is set to 3
to handle minor shifts of the curves, e.g. caused by discreti-

sation errors during the cost computation step.

In the subsequent depth processing part, the merged cost

curve is further processed in order to derive high-level fea-

tures characterising the curve. It is noteworthy that the filter

depth d increases with the layer depth: Starting with d = 8
the value is doubled with every new layer until d = 64 is

reached. Our experiments have shown that this design per-

Table 1. Summary of the proposed CVA-Net architecture. Un-

less otherwise specified, each layer is followed by batch normali-

sation (BN) and a ReLU non-linearity.

Layer Description
Output Tensor

Dimensions

Input Cost Volume Extract 13×13×256

Neighbourhood Fusion

1 3D conv., 3×3×3, 32 filters 11×11×254

2 3D conv., 3×3×3, 32 filters 9×9×252

3 3D conv., 3×3×3, 32 filters 7×7×250

4 3D conv., 3×3×3, 32 filters 5×5×248

5 3D conv., 3×3×3, 32 filters 3×3×246

6 3D conv., 3×3×3, 32 filters 1×1×244

Depth Processing

7 3D conv., 1×1×8, 32 filters, zero padding 1×1×244

8 3D conv., 1×1×16, 32 filters, zero pad. 1×1×244

9 3D conv., 1×1×32, 32 filters, zero pad. 1×1×244

10-16 3D conv., 1×1×64, 32 filters, zero pad. 1×1×244

Classification

17 Fully-connected, 16 nodes, no BN 1×1×16

18 Fully-connected, 1 node, sigmoid non-

linearity, no BN

1×1×1

forms slightly better than one with a constant filter depth

while having to learn a significantly smaller number of pa-

rameters. Furthermore, zero padding is utilised for all con-

volutions in the depth processing part of the network. This

keeps the size of the output tensor constant and, compared

to no padding, provides a greater number of features as in-

put for the subsequent confidence estimation.

The third and last part of the network consists of fully-

connected layers and performs the final confidence estima-

tion. For this purpose, a binary classification of the disparity

estimation into correct and incorrect is carried out, based on

the features originating form the depth processing part. The

result of the sigmoid non-linearity used for this classifica-

tion is finally interpreted as confidence and assigned to the



centre pixel of the initial cost volume extract.

Following a common procedure [18, 37], the fully-

connected layers within the last part are replaced by con-

volutional layers, transforming the proposed architecture to

a fully convolutional network. This allows to train on image

patches while computing a confidence map of the full reso-

lution image within a single forward pass during test time.

However, this of course also allows for piecewise process-

ing the cost volume if hardware restrictions have to be taken

into account. Similar to the observations described in [12],

we found that a network with a single fully-connected layer

consisting of a small number of nodes is sufficient for the

task of classifying volumetric 3D data. This is certainly also

supported by the fact that only binary classification takes

place. Since the size and number of convolutional layers

is decisive for the quality of the results, these contain the

majority of the 782,725 parameters.

3.3. Training Procedure

Following the training protocol proposed in [21], we

train our network on the first 20 training image pairs of

the KITTI 2012 dataset [3]. For this purpose, tensors of

size 13× 13× 256 are extracted from normalised cost vol-

umes (see Section 3.1) corresponding to the left image of

each pair. Every extract is centred on a pixel with avail-

able ground truth disparity, resulting in more than 2.7 mil-

lion training samples. Experiments with varying numbers of

training samples have shown a convergence of the test ac-

curacy of our network at around 2.6 million samples when

trained on the KITTI 2012 dataset. Since the point of con-

vergence strongly depends on the variance of characteristics

present in the training samples, this number can vary greatly

if the network is trained on different data.

Knowing only whether a disparity estimate is correct

or not, the task of estimating its confidence is commonly

transferred to a binary classification task. While the net-

work classifies the disparity estimation as correct or incor-

rect, the result of the final sigmoid non-linearity is used

as confidence score. The ground truth for this binary la-

bel is derived from the error metric proposed in [14]: A

disparity estimation dest is assumed to be correct if either

|dest−dgt| < 3 pixels or |dest−dgt| < (dgt×0.05), where

dgt is the corresponding ground truth disparity.

Our network is trained on batches of size 256 for 10

epochs with a learning rate of 10−4, followed by 3 epochs

with a learning rate decreased by factor 10. While the con-

volutional layers are initialised with a normal distribution

N (0, 0.0025), for the fully-connected layers Glorot initial-

isation [4] is used. Adam [10] is employed to minimise

the Binary Cross Entropy, setting the moment estimates ex-

ponential decay rates to their default values β1 = 0.9 and

β2 = 0.999. Finally, to enforce generalisation, dropout [30]

is applied to the fully-connected layers with a rate of 0.5.

4. Experimental Results

In this section, an extensive evaluation is presented, in

which we validate our approach on the datasets KITTI 2012

[3], KITTI 2015 [14] and Middlebury v3 [24]. More-

over, the evaluation is carried out on the cost volumes

computed by the popular stereo matching methods Census-

based block matching (with a support region size of 5× 5)

[36], Census-based SGM [6] and MC-CNN fast [37]. By

validating on a local, a global and a deep learning based

stereo matching method computed on different datasets, the

general validity of the proposed CVA-Net is investigated.

The results are compared against the state-of-the-art confi-

dence estimation methods CCNN [18], LFN [2] and LGC-

Net [33], already introduced in Section 2.1. To allow a fair

comparison, all examined methods have been trained on the

same data, following the procedure described in Section 3.3.

Based on the proposed network design, the depth of a

cost volume to be processed is limited to a disparity range

of [0,255] pixels. This range was chosen according to the

disparities that may occur in the KITTI dataset, which was

used to train the proposed CVA-Net. As a consequence, also

the cost volumes processed during inference must conform

to this depth resolution. For this purpose, within this eval-

uation the resolution of the reference images is halved as

long as the maximum disparity exceeds 255. Alternatively,

a compression of the cost volume would also be conceiv-

able. However, this is beyond the scope of the present work

and is the subject of further investigations.

4.1. Evaluation Protocol

To evaluate the methodology presented in this paper, the

performance is assessed using a measure which relies on

ROC curve analysis. This is a well-established procedure

in the field of confidence estimation, originally proposed in

[7]. The ROC curve represents the error rate as a function

of the percentage of pixels sampled from a disparity map in

order of decreasing confidence. More precisely, the density

is sampled in 5 % steps, but pixels with equal confidence are

processed together to avoid ambiguous results. However,

this procedure can lead to large distances in between two

sample points (more than 40 % of all pixels, c.f. upper right

part in Fig. 4) if many pixels share the same confidence. The

consequence is a high discretisation error. In extreme cases,

the sampled ROC curve is below the theoretically optimal

curve - a contradiction in terms.

As a solution, we propose an interval-based extension to

sample additional points within this regions, again in 5 %

steps. The interval boundaries are defined by the best and

worst possible case (all correct/incorrect depth estimates

first) and are determined for every additional point. The

error of a point is then taken to be the centre of the cor-

responding interval. In the last step, the Area Under the

Curve (AUC) is computed, which is then used to assess the
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Figure 4. Visual proof of the necessity for a refined evaluation method. Following the original procedure, the ROC curve is not sampled

within ranges of the same confidence score. This may result in cases with high discretisation error and segments below the theoretically

optimal curve (here especially visible in the upper right part). To minimise the discretisation error, additional sampling points are introduced

within those ranges. Ambiguities are avoided by estimating the error of such an additional point based on its lower and upper error bound.

accuracy of a confidence estimation regarding the detection

of wrong disparity assignments. Assuming that an optimal

confidence map contains higher values for every correct dis-

parity assignment than for any incorrect one, the optimal

AUC depends only on the overall error ǫ of a disparity map:

AUCopt =

∫
1

1−ǫ

p− (1− ǫ)

p
dp

= ǫ+ (1− ǫ) ln(1− ǫ)

(1)

where p is the percentage of pixels sampled from a disparity

map. The closer the AUC of a confidence map reaches the

optimal value, the higher the accuracy.

4.2. Validation on KITTI 2012 & 2015

Following the evaluation procedure of recently published

confidence measures [2, 18, 33], we first assess the perfor-

mance of the proposed CVA-Net on the KITTI 2012 [3] and

KITTI 2015 [14] stereo datasets. Both were captured using

vehicle mounted stereo camera set-ups and provide LIDAR

based ground truth disparity maps with disparities for 30 %

of the pixels. Containing various street scenes from urban

as well as rural environments, these datasets still pose a

challenge to dense stereo matching algorithms. Since we

perform training using KITTI 2012 images, the 23 images

used for training and validating the networks are excluded

from the evaluation of the KITTI 2012 dataset, resulting in

171 images for the latter task. From the KITTI 2015 dataset

all 200 images are used for the evaluation.

Analysing the results presented in Tab. 2, it can be seen

that the proposed approach outperforms the other methods

on almost all evaluated configurations. Especially in noisy

regions of a disparity map, superior accuracy can be ob-

served (c.f. Fig. 5 and 6). This applies regardless of whether

these noisy disparity estimates belong to strongly textured

Table 2. Quantitative results on the three evaluated datasets.

The single entries show the theoretically optimal (Opt.) and the

average AUC ×10
2 of the evaluated confidence measures on the

three examined stereo matching methods over all considered im-

ages of a dataset. The smaller the values, the better, while Opt. is

the best achievable value (c.f. Sec. 4.1).

avg. AUC

= 10
−2

×
Opt.

CCNN

[18]

LFN

[2]

LGC-Net

[33]
Ours

KITTI 2012 [3]

CENSUS-BM 10.94 12.37 12.30 11.97 11.52

CENSUS-SGM 0.92 2.41 2.44 2.31 2.25

MC-CNN 2.24 2.89 2.91 2.71 2.55

KITTI 2015 [14]

CENSUS-BM 9.07 10.59 10.49 10.18 9.86

CENSUS-SGM 0.84 2.36 2.40 2.39 2.31

MC-CNN 2.46 3.35 3.35 3.19 3.02

Middlebury v3 [24]

CENSUS-BM 6.69 9.01 9.12 8.36 8.21

CENSUS-SGM 2.26 5.58 6.14 5.33 5.40

MC-CNN 3.54 5.22 5.27 4.91 4.85

(e.g. the vegetation on the right in Fig. 5(a)) or low-texture

areas (e.g. the street) of the reference image. Keeping in

mind, that all other methods estimate the confidence based

on the disparity map (and the reference image for LFN)

only, it is evident that our method benefits from the addi-

tional information contained in cost volumes along the dis-

parity axis. This statement is also supported by the fact that

LGC-Net uses a much wider receptive field (48× 48) com-

pared to our method (13 × 13) and is therefore provided

with more information along the height and width axes, but

nevertheless performs slightly worse.

On the other hand, Tab. 2 also illustrates that although

the cost volumes are normalised the performance improve-

ments vary between the different stereo matching methods,

which is particularly evident in the case of SGM. This is

a clear indication that CVA-Net is sensitive to differences



(a) Reference image (b) Disparity map (Census-BM) (c) Confidence map (CCNN [18])

(d) Confidence map (LFN [2]) (e) Confidence map (LGC-Net [33]) (f) Confidence map (ours)

Figure 5. Qualitative evaluation on frame 90 of the KITTI 2012 dataset [3]. The colour of a pixel represents its confidence from black

(low) to white (high). Using a threshold of τ = 0.5, pixels with available ground truth disparity are coloured green if either the assigned

disparity is correct and the confidence c is larger than τ or if the disparity assignment is wrong and c ≤ τ . Red pixels, on the other hand,

indicate an incorrect confidence estimation. The advantages of the proposed CVA-Net can especially be seen in noisy areas of the disparity

map, e.g. on the street in the central lower part of the image and in the left part of the image, showing vegetation.

(a) Reference image (b) Disparity map (Census-BM) (c) Confidence map (CCNN [18])

(d) Confidence map (LFN [2]) (e) Confidence map (LGC-Net [33]) (f) Confidence map (ours)

Figure 6. Qualitative evaluation on frame 165 of the KITTI 2015 dataset [14]. For details on the colour coding, please refer to Fig. 5.

CVA-Net shows a superior accuracy in noisy regions of the disparity map, especially noticeable for street and car at the right image border.

Both regions are characterised by low texture in the reference image, identifiable using the information of the cost curve (c.f. Fig. 2(d)).

in the characteristics of cost curves resulting from differ-

ent stereo matching methods. Nevertheless, the results still

proof that the proposed method is applicable to cost vol-

umes of quite different stereo matching approaches.

4.3. Cross-validation on Middlebury v3

After demonstrating the performance of our network on

the dataset it was trained on, we now illustrate the generality

of our solution by testing it on images showing completely

different environments. For this purpose, we evaluate the

same three stereo matching methods on the Middlebury v3

dataset [24]. It contains 15 training samples showing var-

ious indoor scenes captured with a static stereo set-up and

providing dense ground truth disparity maps based on struc-

tured light. Due to the limitation of the cost volume depth

explained at the beginning of this section, the images of the

Middlebury dataset are processed at one quarter of the orig-

inal resolution. Contrary to the KITTI benchmark, the Mid-

dlebury benchmark accepts disparity assignments dest to be

correct if |dest−dgt| ≤ 1 pixel, where dgt is the correspond-

ing ground truth disparity. However, since the error metric

specified with the KITTI datasets is utilised for training, to

ensure consistency, it is also used for evaluating the confi-

dence estimations on the Middlebury v3 dataset.

Similar to the results on the KITTI datasets, the pro-

posed CVA-Net shows state-of-the-art accuracy on the Mid-

dlebury dataset as well (c.f. Tab. 2). This proofs that the

concept of learning to estimate the confidence of a disparity

assignment based on its cost curve generalises well over dif-

ferent datasets. As illustrated in Figure 7, also on the images

of the Middlesbury dataset CVA-Net is characterised by the

ability to estimate confidence accurately in noisy areas. The

following example furthermore demonstrates the advantage

of using the information of the cost curve: The texture-less

region around the specular reflection on the right computer

screen in Fig. 7(a) corresponds to a relatively smooth area

within the disparity map. If only the disparity map is used,

it is highly challenging to assess the confidence for this

case correctly (c.f. Fig. 7(c) and 7(e)). As can be seen in

Fig. 7(d), using the reference image already facilitates this



(a) Reference image (b) Disparity map (Census-BM) (c) Confidence map (CCNN [18])

(d) Confidence map (LFN [2]) (e) Confidence map (LGC-Net [33]) (f) Confidence map (ours)

Figure 7. Qualitative evaluation on frame ’Vintage’ of the Middlebury v3 dataset [24]. For details on the colour coding, please refer

to Fig. 5. This example proofs visually that CVA-Net’s ability to estimate the confidence of a disparity assignment generalises well over

different datasets. It can be observed that the proposed network can also detect the ambiguity of texture-less regions if they are represented

relatively smoothly and with low noise within the disparity map (e.g. on the right screen). On the other hand, it can also be seen that most

of CVA-Net’s erroneous confidence estimates are close to depth discontinuities, indicating one of its limitations.

task. The corresponding cost curves, on the other hand, are

characterised by the presence of wide and flat global min-

ima as illustrated in Figure 2(d). Thus, based on the cost

curve the ambiguity arising from low textured or texture-

less areas is clearly identifiable, allowing to improve the ac-

curacy of the confidence estimation (c.f. Fig. 7(f)).

Finally, in Figure 7 it can also be seen that most of CVA-

Net’s erroneous confidence estimates are close to depth dis-

continuities. It can be assumed that this is (at least partly)

due to the fact that samples of depth discontinuities are un-

derrepresented in the training set. First experiments with

CVA-Net trained on synthetic data have shown that dense

ground truth for the training images can help to overcome

this limitation. Further investigations on that issue will be

carried out in future work.

5. Conclusion

Inspired by the superior results of learned confidence

measures on the one hand and confidence measures based

on cost curve features on the other hand, in this paper,

we propose to learn the estimation of confidence for dense

stereo matching based on 3D cost volumes. We argue that

such cost volumes contain additional information compared

to disparity maps, which allows to estimate confidence more

accurate. To the best of our knowledge, this is the first time

that complete cost volumes are used as input to a CNN in

the context of this task.

With an extensive evaluation on three well-established

datasets using three common stereo matching methods, we

prove the superior performance of the proposed CVA-Net

architecture compared to the state-of-the-art. In the con-

text of the evaluation, we furthermore discuss the weakness

of the commonly used AUC computation approach of in-

troducing a potentially significant discretisation error and

propose a solution in form of an interval-based extension.

Finally, as already mentioned in Section 4.2, there is space

for further improvement: The sensitivity to depth disconti-

nuities as well as to differences between curves from dif-

ferent stereo matching methods needs further investigation.

However, the results of the evaluation not only confirm the

general validity of the proposed approach, but also demon-

strate its superior accuracy especially in noisy regions.
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