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Abstract

This paper addresses the problem of point cloud textu-

ration of urban areas from multiple satellite images. Our

algorithm is well-suited for the case where the images are

obtained from different dates, where the dynamic ranges are

incompatible and the position of the shadows is different.

The method relies on a robust, PDE-based, fusion of the

multiple candidate textures for each surface patch, and op-

tionally on a geometric criterion to remove the shadows of

the known objects. We showcase the results by building a

3D model of some areas of Boulogne Sur Mer (Argentine)

such that all facades are correctly textured, with uniform

colours and without shadows, even if for each individual

input image only one side of the buildings was visible.

1. Introduction

We propose a method to assign a texture to a given dig-

ital elevation model from several satellite images of the

same site. The main novelty of the proposed method is

its conceptual simplicity: the texture at each point is ob-

tained by a weighted fusion of all the available images

instead of a stitched piece-wise selection of the best im-

age [27]. The smooth weights assure seamless transitions

between the different parts of the texture. Instead of merg-

ing the colours, we use an illumination invariant feature, its

drift field [28, 5], so that images of very different dynamic

ranges are combined correctly together. Since the position

of the shadows is typically different at each image it is im-

portant to be able to obtain a shadow-less final texture, they

disappear after the robust fusion based on the geometric me-

dian.

1.1. Previous work

In the last decade extensive research has been done in

the computer vision community on 3D reconstruction of

large-scale surfaces from multi-view images. For ground

and aerial images auto-calibration, Structure-from-Motion

(SfM) and Multi-view stereo techniques [20, 25, 29] can

recover with impressive accuracy the geometry for many

Figure 1: Top: detail of the Lidar provided in the IARPA dataset.
Bottom: textured mesh obtained using the Lidar and the 47 satellite
images of the dataset. The texturation adds a new dimension and
allows a better understanding of the reconstructed area.

problems. Texturation, the final step of the reconstruction,

has seemed neglected at first but recent years have seen a

steady increase of publications on this topic, in particular

since the paper of Waechter et al. [27].

Most texturation methods nowadays use high-resolution

texture atlases [4, 26, 13] and coarse meshes. We chose to

use per-vertex colours defined on a fine mesh of the same

resolution as the input panchromatic images. This method

is halfway between classic texturation with atlases and the

colourisation of point clouds [19, 18]. Our choice is made

possible by the relatively low resolution of satellite images

compared to aerial and terrestrial images and allows for a

higher flexibility for the fusion, namely using PDE (Partial

Differential Equations).

Of particular interest among large-scale surfaces are ur-



ban areas [1]. Higher quality smartphone cameras and the

growth of photo-sharing websites has lead to a large num-

ber of various views of famous buildings and can allow high

quality reconstruction. Terrestrial mobile mapping systems

(MMS) are widely used to obtain street-view data of whole

cities. They offer images acquired simultaneously ensuring

a texture with no seams and global colour adjustment [3].

The development of aerial oblique photogrammetry based

on aircraft or unmanned aerial vehicles also provide new

venues of exploration for successful urban areas 3D mod-

elling [21]. Actually both are complementary as they of-

fer different view points which is useful to reconstruct both

roofs and building facades. [30].

Another important source of input images for multi-view

stereo reconstruction of building areas is optical satellite

imagery [2, 11, 14]. Digital Surface Models (DSMs) ob-

tained from these multi-view stereo algorithms are useful in

particular for the automatic detection of elevation changes

[17, 16]. However little work has been done on texturation

using satellite images and most of it for large-scale terrain

reconstruction [24]. In the following we tackle the prob-

lem of urban areas texturation using multi-date Worldview3

images and show that current satellite camera resolution

(panchromatic: 0.31m and multi-spectral: 1.24m nadir) can

already provide interesting results.

1.2. Specifics of satellite images

Figure 2: Linear push-broom camera model. The instantaneous
camera optical centre C moves at a constant speed. The view plane
sweeps out the whole 3-space as the camera moves forward. The
3D point X is imaged by the camera to the focal plane location x

[6, 20].

Texturation using multi-date satellite images presents

several specific difficulties. In general 3D reconstructions

problems, the first step is to estimate camera parameters.

Typically the internal (focal length, pixel width and prin-

cipal point) and external parameters (position and orien-

tation) are estimated using auto-calibration and Structure-

from-Motion. While aerial or terrestrial imagery is obtained

by a projective camera, satellite images are acquired by lin-

ear push broom sensors. The sensor sweeps a region of

space capturing a single line at a time, hence its name. Thus

in the direction of the sensor motion the image is an ortho-

graphic projection, preventing the use of most 3D recon-

struction pipelines

Instead satellite images metadata provide us with a lot of

information. On modern high resolution satellite we can

assume that the internal parameters are perfectly known,

having been precisely calibrated before launch. The ex-

ternal parameters are measured on board in real time and

given with the images but a pointing error still remains. For

Worldview 3 satellite the geolocation accuracy is inferior

to 3.5m, an error that remains too large for the texturation

without a registration step.
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Figure 3: Crops of some of the input images. Here we can see
colour variations, saturation, various cast shadows and states of
the trees depending on the season and on the bottom right image
the blur resulting from a cirrus.

Another important difficulty comes from working with

multi-date images. In aerial views, shadows are often be

avoided by flying under clouds so that the shadows are dif-

fuse; while for satellite images only cloudless views are ex-

ploitable. Nowadays, commercial satellites are designed to

take picture of a zone always around the same time, around

2pm in our dataset. Thus the shadows are always attached to

the same side of the objects, only the cast shadows change

direction with the seasons. Few oblique views show the

shadowed side of the surface and the shadows in satellite

imagery are very dark and noisy. In one direction the textu-

ration always fail.

Reflections, on the roof or the windows in particular, lead

to saturation, and the images have very different and high

dynamic range due to the seasons and the cirrus cover. Also

these various atmospheric conditions lead to very different

colours that necessitate a global colour adjustment. See Fig-

ure 3.

Finally very slanted surface with respect to the point of

view such as building facades are challenging and some

blurring cannot be avoided.



2. IARPA dataset and S2P algorithm

For our experiments, we used the public benchmark

dataset for multiple view stereo mapping using multi-date

satellite images. This dataset, which supported the IARPA

Multi-View Stereo 3D Mapping Challenge, includes 47

DigitalGlobe WorldView-3 images of a 100 square kilome-

tre area near San Fernando, Argentina [2] (see Figure 4).

The images were acquired over a period of 14 months. Most

of them were taken at different dates. Nearly all the images

are clear sky. However, the quality is not consistent: the

winter images are considerably noisier, and the images with

large incidence angles suffer from a loss of resolution in the

range direction. The dataset also includes 30 cm resolution

airborne lidar ground truth for a 20 square kilometre subset

of the covered area.

Each satellite image is provided with a Rational Poly-

nomial Coefficients (RPC) camera model [10], and other

metadata such as the exact acquisition date or the direction

of the sun. The RPC model combines the internal and ex-

ternal parameters of the push-broom system in a pair of ra-

tional polynomial functions that approximate the mapping

from 3D space points given as (latitude, longitude, height)

to 2D image pixels (i, j) = P (λ, µ, h) (named projection),

and its inverse L : R2 × R → R
3, localisation (see Figure

6. Both rational functions have degree 3 (for a total of 160

coefficients per image). Figure 6.

Figure 4: Footprints and dates of the 47 images of the IARPA chal-
lenge dataset [2]. The images cover the North part of Buenos Aires
and were acquired over a period of 14 months. Only four groups of
images were taken during the same orbit: two pairs, one triplet, one
sextuplet.

2.1. Geolocation error

Although the RPC are accurate, the model they encode is

subject to measurement errors which translate into geopo-

sitioning errors of the localised points. For high-resolution

Figure 5: Effect of attitude errors on the localisation function. The
figure on the left shows a pitch error of ε. To first order, this induces
a ground displacement of the sensor projection of aε, where a is
the flying altitude of the sensor. The figure on the right shows a
yaw error of ε. It induces a maximal ground displacement of D

2
ε,

obtained for the sensor endpoints, where D denotes the swath width
[6].

satellite images one can assume that the internal parame-

ters are known perfectly and that the external parameters

are known with a high precision.

An error of 1cm of the camera centre position results in

an error of at most 1cm on the ground and is negligible at

our working resolution. Errors relative to the sensor orien-

tation however have more serious consequences. This ori-

entation is computed from external parameters, the attitude

parameters: yaw, roll and pitch. As illustrated in Figure 5

while a yaw error has little effect, a pitch or a roll error is

much more problematic. Indeed for a satellite orbiting at

600km, a small error of a µrad on the roll or pitch leads to

a displacement of about 60cm on the ground. This is the

main cause of geolocation inaccuracy. Locally this error

can be approximated as a 3D translation of the focal plane

for scenes of size up to 50× 50 km [6]. The pointing errors

can be of the order of tens of pixels in the image domain.

The geolocation error can be highlighted using the out-

put DSMs of the Satellite Stereo Pipeline (S2P) 1 [8, 7, 11].

The S2P pipeline takes as input a pair of satellite images A

and B and its associated RPC and gives as output a 3D point

cloud. This point cloud is then projected on a geographic

grid with the same resolution as the satellite nadir GSD

(ground sampling distance). Both input images have dif-

ferent pointing errors but the output DSM, denoted DSMA

in Figure 6, is coherent with the first input image with re-

spect to geolocation. To each pixel (i, j) of this DSM can

be associated a 3D point with Universal Transverse Mer-

cator (UTM) coordinates (e, n, z) by the function denoted

ϕ2 : R2 × R → R
3 in Figure 6:

(e, n, z) = ϕ2((i, j),DSMA(i, j)) (1)

= (sAe i+ oAe , s
A
n + oAn ,DSMA(i, j)). (2)

The scale (sAe , s
A
n ) and the offset (oAe , o

A
n ) needed to obtain

the UTM coordinates are extracted from the metadata of the

satellite image.

1https://github.com/cmla/s2p



It is thus possible to obtain for each satellite image of our

dataset an associated DSM with the same geolocation error

as the image by running S2P several time. Our method takes

as input a reference DSM used to create a mesh, the satel-

lite images with their metadata and the associated DSMs

from S2P associated to each image. For the experiments

presented here, the reference DSM is the Lidar.

Figure 6: This figure illustrates all the coordinates system we use
for the pipeline. The localisation and projection functions, LA and
PA, are found in the metadata of the satellite image A. The func-
tions ϕ1 and ϕ2 are the inverses of the functions used to project the
georeferenced point clouds onto the DSMs. The vector TA corre-
sponds to the geolocation error. Ψ translates UTM coordinates into
longitude-latitude.

3. Texturation pipeline

In this section we detail the proposed pipeline to obtain a

textured mesh. The input of the algorithm is the original set

of N satellite images, and the associated set of DSMs com-

puted by the S2P software (or a similar 3D reconstruction

software). The output of the algorithm is a textured mesh.

The texturation has five steps, two of them optional.

First, a high resolution mesh is created from a single DSM

that is taken as reference (section 3.1). Second, all the

datasets are accurately registered (section 3.2) to the ref-

erence one; this step is only necessary because S2P does

not include a bundle adjustment, which is nontrivial for the

degenerate satellite case. Third, the colors of each image

are projected to the same reference 3D model, giving a set

of N textures over the same mesh (section 3.3). Fourth, the

shadows on each image are identified (section 3.4); this step

is optional, only required if we want the “shadowless” im-

ages. Fifth and last, the N textures are merged into a single

one (section 3.5).

3.1. Mesh Creation

The first step consists in creating a fine and watertight

mesh from the reference DSM, which is a 2.5D model. As

noted in [9], the problem of reconstructing facade geome-

try from a DSM is a challenge. At our working resolution

however we can use a very basic approach. This is done in

four steps illustrated in Figure 7:

(a) Lidar (detail) (b) Filtered (detail)

(c) Scaled mesh (d) Scaled mesh (detail)

(e) Refined mesh (f) Refined mesh (detail)

(g) Smooth mesh (h) Smooth mesh (detail)

Figure 7: Steps described in Subsection 3.1 for the creation of a
smooth mesh from a reference DSM.

First the reference DSM is filtered to eliminate aberrant

points, smooth building facade and fill in the trees in the par-

ticular case of a Lidar. This step is done by median filtering.

A intermediary mesh is created by triangulation, each ver-

tex corresponding to a pixel of the filtered reference DSM.

The vertices have UTM coordinates in meter obtained by

the function called ϕ1 : R2 × R → R
3 in Figure 6.

(e, n, z) = ϕ1((i, j),DSMref (i, j)) (3)

= (sei+ oe, sn + on,DSMref (i, j)). (4)

The scale and offset are obtained from the metadata of the

reference DSM. This leads to elongated triangles on the fa-

cades with a zigzag pattern in respect to their orientation.

The mesh is then refined using the CGAL library [22] so

that each point all vertices are equidistant. The length of the



edges is chosen a little smaller than the size of a panchro-

matic pixel. Finally a Laplacian smoothing (using the um-

brella operator) is applied to regularise the orientation of the

faces. For this step we used the trimesh2 library avail-

able online 2.

3.2. Correction of Geolocation errors

After the first step it, is already possible to project each

satellite image on the mesh. However the geolocation error

(explained in section 2.1) renders the results inconsistent as

illustrated in Figure 8. The roofs are partly projected on

the facades while some ground texture appears on the roofs.

To mitigate this problem we need to find the 3D displace-

ment vectors resulting from the geolocation errors inherent

to each input image.

The S2P pipeline does not perform a bundle adjustment;

instead, it selects a list of pairs of input images, computes

a DSM for each pair independently, and then merges all the

obtained DSM. Thus, each of these intermediate DSM is

naturally registered to the first image of the corresponding

pair. We chose the best DSM as reference, and then we

compute the 3D translations that register all the other DSM

to this one. Registering 3D models turns out to be more

stable than registering image features, especially when there

are a lot of shadows and occlusions, as is the case.

For the registration of the DSM, we use an algorithm

performing subpixellic gradient phase correlation [15]. The

goal of this algorithm was to register aerial and satellite im-

ages. As they are taken at different times, under distinct

heights and sometimes even on different spectral bands it is

a difficult problem. Gradient phase correlation is invariant

to illumination changes, handles appearing and disappear-

ing objects, large displacements, noise and compression

artefacts and small intersections between images. When

registering DSMs there are no noise or compression arte-

facts. However we still have to handle large displacements,

appearing and disappearing objects. And the height transla-

tion can be visualised for this application as an illumination

change.

After registration, we find that the error is generally less

than 50cm on the ground. The more complete the recon-

structed DSM, the more precise the translation parameters

obtained. See Figure 8 for an illustration of this step. Now

we can assume that each point of the mesh can be mapped

precisely into any of the images from where it is visible.

The final texture will be obtained by combining all these

colours in a consistent way. At the end of this step, we are

in possession of the vector TA represented in Figure 6.

2https://gfx.cs.princeton.edu/proj/trimesh2/, Copyright c©2004-2018

Szymon Rusinkiewicz.

Figure 8: Top: Projection on the mesh obtained from the Lidar of
image I before and after the registration step. Bottom: Lidar, DSM
from S2P associated with image I before and after registration, all
represented with the same colormap. The translation vector ob-
tained from gradient correlation is TA = (−6.94985 pix, −20.2493

pix,−3.06814 m).

3.3. Data projection

After the registration step, it is now possible to project

accurately each vertex of the mesh onto the image plane,

allowing to assign a color to this vertex. However not all

of the vertices are actually visible by the camera. We now

have all the data needed to project the mesh on the image

plane. The image pixel (i, j) associated to a vertex with

UTM coordinates (e, n, z) is:

(i, j) = PA ◦Ψ ◦ ϕ2 ◦ TA ◦ ϕ1(e, n, z)). (5)

As illustrated on Figure 9, all points of the mesh on the

same line of sight are projected on the same pixel in the

image plane: the points Ai, Bi and Ci are all projected re-

spectively on the pixels A, B and C of the image plane.

A classic tool of computer graphics, z-buffering [12], al-

lows us to determine which of these vertices are really vis-

ible in the satellite image. In our case the z-buffer is easily

built thanks to the fact as the camera is situated far above

the objects considered, the point visible in the image is the

highest one. The Figure 9 illustrates the z-buffer associated

to a detail of one of a satellite image.

We define the normal to a vertex as the 3D average of the

normals of the triangles to which it belongs.

For each vertex v of the mesh, and for each image, we

store:

• Scv = cos(�n, �ncam): the scalar product of its normal �n

and the vector director of the line of sight (represented

by �ncam in Figure 9),

• PANv: the intensity, using bicubic interpolation, from

the panchromatic image if the vertex is visible, NaN



Figure 9: Top: sketch of the projection of the mesh onto the image
plane. Bottom left: mesh textured from one image, seen from the
camera viewpoint. Bottom right: elevation of each point seen by the
camera on the image plane.

otherwise,

• MSIv: the values from the multi-spectral image if the

vertex is visible, using bicubic interpolation, NaN oth-

erwise.

Thus, after the projection step we have a set of N tex-

tures defined on the same mesh. Each texture has “holes”

of NaN at different parts, where the surface was not visi-

ble from the corresponding image. We can now already try

merge all these textures (section 3.5), but for some merging

criteria it is better to first detect the shadows.

3.4. Shadow detection

The images have all been taken around the same hour

(2 pm +- 15min) but over a year. Thus while the attached

shadows stay more or less the same, the length of the cast

shadows varies a lot between summer and winter. We want

to detect these shadows as accurately as possible.

Because the images provide us with the sun position (az-

imuth and elevation) it is natural to start by predicting the

shadows using the mesh geometry. To this end, we consider

the sun in the same way as we did the camera in the previ-

ous section. A “sun plane” is created by analogy with the

image plane and we say that a vertex is in the shadow if it

is not visible in this artificial plane. The method is exactly

the same as the one described above in section 3.3. It is also

possible to distinguish between the attached shadow and the

cast shadow. Indeed a vertex is in the attached shadow if the

triangles it belongs to face away from the sun. In this step

we store

• S, a binary mask equal to zero in the shadow,

• Sa, a binary mask equal to zero in the attached shadow,

two vectors of length the number of vertices.

But the mesh is only a rough approximation of the real

surface. Moreover the actual surface changes during the

year: trees grow and lose their leaves in winter, cars move,

etc. To get a more precise detection we use the fact that

shadows in satellite images are very dark and we assume

that they can be detected by a simple thresholding. The

threshold t is obtained by L1 minimisation:

t = argmin
∑

v

1PANv>t1Sv=0 + 1PANv<t1Sv=1. (6)

The drift-field of an image I , a contrast invariant feature

of the image defined as dI = ∇I
I

, encodes shadows only

at their boundaries [28, 5]. Dilatation and contraction of

the shadow masks provide the approximate boundaries of

the shadows and the attached shadows. The terminator, the

edge between the attached shadow and the lit areas of the

image, is the intersection of the shadow boundary and the

attached shadow boundary. These additional data make it

possible to perform a shadow removal step as described in

[5]. See Figure 10 for an illustration of these different steps.

Figure 10: Top: image projected on the mesh before and after a
shadow removal step [5]. Bottom: predicted shadow from geometry,
shadow from thresholding and estimated shadow boundary.

3.5. Data fusion

The last and most important step is the data fusion. We

have N textures defined over the vertices of the same mesh.

We want to obtain a single texture over this mesh. This

fusion is performed using weighted aggregators, operating

independently at each vertex of the mesh. At each vertex

there are N features x1, . . . , xN that we want to merge.

These features may be either the RGB colours or, in which

case xi ∈ R
3 or the colour gradient, in which case xi ∈ R

6.



For the aggregation, we use Fréchet means Fp,q defined

as

Fp,q(ω;x) := argmin
m

N∑

i

ω
q
i ‖xi −m‖p. (7)

The Fréchet means include as particular cases the aver-

age (p = 2, q = 0), the geometric median (p = 1, q =
0), and a geometric “mode” (p = 1

2
, q = 0). By set-

ting q > 0 we obtain weighted average, weighted median,

and weighted modes. The value of the parameter q controls

the importance given to the weights. For q → ∞, only the

feature with largest weight is kept.

This simplifies the scripting considerably: the fusion is

always computed using all the images but a specific image

can be discarded by setting its weight to zero. Notice that

since the textures are incomplete (due to occlusions), some

of the values xi are NaN; this is equivalent to setting their

weight to zero.

In what follows we assume that the weight wi of a point

is the combination of some criteria pertaining to the shad-

ows and the positive part of the cosine of the angle between

the normal at the surface on that point and the line of sight:

ωi = C(Si, Sai)max(0, cos(�n, sighti)) (8)

= C(Si, Sai)max(0, Sci), (9)

where Sc is the vector acquired at the data projection step.

Thus the weight is 1 for exactly fronto-parallel surface

patches, and decreases until 0 for perpendicular and invisi-

ble surface patches. Furthermore, the weight can be set to

zero depending on the shadow trimaps and the fusion crite-

rion used.

In the simplest case, we can aggregate the colours of

each image to obtain a texture y = f(x1, . . . , xN ). How-

ever, this has some limitations because the contrasts of the

images are very different, as shown in the experiments. A

more advanced idea is to use a PDE-based fusion [5, 28, 5].

Let D be a differential operator and f an aggregator func-

tion. You compute D−1 ◦ f ◦ D. Notice that D−1 in-

volves solving a PDE (partial differential equation), and

you typically have to give a Dirichlet boundary condition

on some points (always), and optionally a few Neumann

boundary conditions. Typical examples include D = gradi-

ent and D−1 = Poisson equation [23]

∆u = div(f(∇I1, . . . ,∇IN ), (10)

or D = drift field and D−1 = osmosis equation [28, 5]

∆u = div(f(dI1 , . . . ,dIN )u) (11)

For D = D−1 = identity we recover the previous cases

based on colour values.

Using shadow trimaps Ti leads to even more fusion cri-

teria. The Ti take values between 0 (completely inside the

Figure 11: Weighted average of the colour information with and with-
out the shadowed areas. Note how much information is recovered
on the right when using only lit images.

Figure 12: Left: Colour-based shadow-less fusion. Right: Osmosis-
based shadow-less fusion. For both results we took f = F1,3. Note
how the colour-based fusion results in visible seams in the image
that disappear in the PDE-based fusion output. The white tower
and the side of the hotel in the shadow in all the satellite images are
much clearer using the PDE-based fusion.

shadow), 1 (completely outside the shadow) and we can in-

terpolate on the boundaries. There are different ways to use

these trimaps. We can either:

1. Ignore the shadow trimaps

2. Multiply the weights of the aggregator by 0, at the

points where the trimap does not equal to 1. Thus, the

features that are inside the shadow are not used.

3. Use the trimap values as aggregator weights. If the

trimap is smooth, this allows a smooth transition be-

tween the inside and the outside of the shadow.

4. Set the drift field to zero where the trimap does not

equal 0 or 1. Thus, only drift fields that are completely

inside or completely outside the shadow are used.

5. Solve the PDE on the region T < 1, with Dirichlet

boundary condition determined by aggregating the im-

ages on the region T=1. For one image, it is equivalent

to a shadow removal step [28, 5]. See Figure 10.

It is clear that taking the colour of the most frontal view

for each vertex leads to clear discontinuities. These discon-

tinuities also appear when taking a weighted median of the

vertices colours (not shown). With the weighted average on



Figure 13: Top rows: seven input images taken from one webcam and one from another webcam. Middle row: fusion by average (left) and
median (right) of the colour values. Bottom row: median of the color values without the extraneous image (left) and median (right) of the
drift-fields.

Figure 14: Left: mesh textured after a shadow-less osmosis-based
fusion performed with f = F2,3. Right: same result after adding
back shadows. Note how it makes the tower and the trees easier to
distinguish.

the vertices colours, with or without shadows, these seams

are less noticeable but still present.

Performing a PDE-based fusion gives much smoother re-

sults. It is particularly noticeable for the weighted average

of the drift-fields without features in a shadowed region. For

these PDE-based fusions, we solved the osmosis equation

on the region T = 1 and used as Dirichlet boundary con-

ditions the weighted average of the vertices colours with-

out shadows. In the result obtained with the fusion of the

canonical drift-fields without shadowed features (weighted

average or weighted median), the cast shadows have almost

disappeared. The best results are obtained by computing the

weighted median of the drift-fields without shadows. The

median has the additional advantage of being robust to the

presence of a few badly registered images.

Because of the imperfect geolocation of the images, even

after the registration step, the weighted averages lead to

some blurring, which is mitigated when computing a robust

fusion using the Fréchet p-means such as the weighted me-

dian or by increasing q, the power attributed to the weights

in the fusion. In the experiments we illustrate several inter-

esting combinations of these choices. To better illustrate the

effect of different criteria we first show it on a 2D case in

Figure 13.

3.6. Adding back shadows

While it is satisfying to obtain a shadow-less final tex-

ture, in reality shadows are a vital part of our understanding

of the topography of an area. For this reason we add back

a shadow to our final result. For simplicity we arbitrarily

choose the predicted shadow of one of the images. Note that

this doesn’t negate the importance of performing a shadow-

less fusion. Indeed not removing the shadows in the fusion

step would lead to a result with aberrant shadows in several

directions.

4. Conclusion

Our algorithm proved to be well-suited for the case of

multi-date satellite images. The PDE-based fusion is robust

to incompatible dynamic ranges and varying shadow posi-

tions, especially when adding a geometric criterion to detect

the shadows of the known objects. The output 3D models

are such that all facades are correctly and seamlessly tex-

tured, with uniform colours and coherent shadows.

The vertex-wise representation is easier to work with for

computing differential equations, and this is the choice re-

tained. However large meshes will be huge and sluggish to

display. Maybe in the future we can have the best of both

worlds. Since refining and simplifying a mesh are standard

and well-known operations, we can use the atlases for stor-

ing a final, efficient mesh, and still keep the vertex-wise

representation for all the intermediate processing. These

operations are standard in the CGAL library.
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