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Abstract

Blendshape models are commonly used to track and re-

target facial expressions to virtual avatars using RGB-D

cameras and without using any facial marker. When using

blendshape models, the target avatar model must possess a

set of key-shapes that can be blended depending on the esti-

mated facial expression. Creating realistic set of key-shapes

is extremely difficult and requires time and professional ex-

pertise. As a consequence, blendshape-based re-targeting

technology can only be used with a limited amount of pre-

built avatar models, which is not attractive for the large

public. In this paper, we propose an automatic method

to easily generate realistic key-shapes of any avatar that

map directly to the source blendshape model (the user is

only required to select a few facial landmarks on the avatar

mesh). By doing so, captured facial motion can be easily

re-targeted to any avatar, even when the avatar has largely

different shape and topology compared with the source tem-

plate mesh. Our experimental results show the accuracy

of our proposed method compared with the state-of-the-art

method for mesh deformation transfer.

1. Introduction

Digital avatars are virtual representations of oneself.

They allow people from all over the world to communicate

in the digital world in a natural and human way. For exam-

ple, avatars are extensively used in online games and Social

Network Systems (SNS). While preserving the anonymity

of users is a fundamental right of the Internet users, it is

also desirable to have virtual avatars that are able to transmit

true emotions. With true emotions, it is easier to communi-

cate, and also to make the difference being humans and fake

characters. Facial expressions are key features of the human

emotions that do not tell anything about the person identity.

Therefore they are the key to emotive virtual avatars.

Transferring facial expressions to an avatar mesh is
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Figure 1: The general process of facial expression re-

targeting using blendshapes.

called re-targeting. With the recent advances in facial

feature detection [21, 22] and facial expression tracking

[18, 12], several emotive avatars have been proposed by the

main operators of social network systems (e.g., Apple’s an-

imoji, Huawei’s Qmoji, Google’s Playmoji or Samsung’s

AR emoji). However, these emotive avatars are all pre-built

and it is not yet possible to make one’s favorite avatar be-

come emotive. This is problematic because many applica-

tions and games actually base their business plan on selling

and personalizing avatars (e.g., Fortine). Therefore, instead

of changing all the avatars to a new (restricted) set of emo-

tive avatars, it would be better to enable facial expression

transfer to any personalized 3D avatar.

There are several techniques that already exist to trans-

fer facial expression to an avatar, which are frequently used

in the movie and game industry. The most common tech-

nique is to use facial markers that can be easily tracked.

Their motion can then be re-targeted to the corresponding



avatar landmarks [15]. Other approaches directly apply the

transformation of the input expression to the avatar mesh

[1, 3, 17]. These techniques allow to obtain precise and re-

alistic re-targeting effects, but are restricted to professional

usage. For the general user, it is too constraining and too

difficult to correctly put a set of facial markers before enter-

ing into a SNS discussion, or the required calculation cost

is too high for real-time re-targeting.

Marker-less re-targeting methods with light computa-

tional cost are needed for general usage. The state-of-the-

art methods use blendshapes [10] to solve this problem. As

shown in fig. 1, the blendshape strategy is to represent a fa-

cial expression by linearly blending several key expressions

(also called key shapes). By estimating the weight of each

key shape so that the source template model fits the user

face, the virtual avatar can be animated by using the same

weights given the corresponding key shapes.

Two strategies exist to map the tracked blendshape

weights to the avatar blendshapes. The first strategy as-

sumes that the set of key shapes are the same (in a semantic

meaning). The second strategy maps the blendshape coef-

ficients to the avatar key shape space with a mapping func-

tion that is either manually fitted or trained with a machine

learning technique. For both strategies, the crucial point is

that the avatar mesh must possess a set of key shapes that

spans the space of all possible facial expressions. Creating

such set of key shapes for any avatar mesh can be extremely

difficult.

In general, it is the work of artists and animation experts

to create blendshape models of a 3D mesh by using com-

plex professional software. This process requires time and

expertise, and it cannot be done by the general user. In this

work we propose an automatic method to generate the key

shapes of any facial 3D avatar. By simply selecting some

facial landmarks in the avatar mesh, any user can instantly

generate a set of key shapes that match the key shapes on

the source template model used for tracking. Our proposed

method has two main advantages: (1) it allows to create

blendshape models easily, without any expertise or use of

complex software; (2) because the key shapes matches the

template model, the re-targeting process becomes easy and

robust.

Our contributions are three-fold: (1) we propose a

method for robust and accurate 3D mesh polygon corre-

spondences; (2) we propose a new landmark-guided defor-

mation transfer method; (3) we show application possibili-

ties with re-targeting.

2. Related works

Creating facial animation from actors performances is a

well studied problem with famous applications in the cin-

ema and video game industry. In this section we focus on

re-targeting and animation methods targeting the general

consumer and that can be deployed on cheap devices.

Although early works have focused on creating facial an-

imation using a combination of motion capture data and

blendshape interpolation ([6, 7, 15]), recent techniques do

not require facial markers anymore ([2, 5, 11]). To do this

Dutreve et.al., [8] proposed a method that uses facial fea-

tures extracted from the color images. Thies et al. [18] pro-

posed to generate and track a 3D face model with blend-

shapes using only RGB inputs. In this work, tracking is

done by minimizing the difference between the appearance

of the face area obtained from the input RGB image and

the appearance of the two-dimensional projection of the

3D model represented by the linear sum of the source key

shapes. These methods use as input only RGB images and

the facial features detected with standard computer vision

techniques [21] or machine learning techniques [19, 22].

The system configuration for these methods is easy, but the

expression estimation fails in the case of occlusions.

More recently, the development of RGB-D cameras al-

lowed for more robust and accurate facial re-targeting sys-

tems [12]. Several extensions have been proposed to im-

prove the facial animation tracking accuracy [18, 20]. For

example, Hsieh et. al. [9] proposed a method for track-

ing and re-targeting of expressions using blendshapes that

is robust to occlusions. Concretely the authors proposed to

use the RGB-D information to detect parts that occlude the

face, then augment the input image with the tracked facial

model to make the occluding part disappear. The facial ex-

pression tracking is then applied on the diminished image,

which makes the whole system less sensitive to occlusions.

For re-targeting purposes, blendshapes are used when-

ever possible. Given a set of source key-shapes and target

key-shapes the expression of the source model can be effi-

ciently transferred to the target model [4, 16, 14]. The main

challenge in these techniques is how to efficiently transfer

the blendshape weights for realistic animation. This can be

difficult when the source and target sets of blendshapes are

different. Here, we propose a method to generate the target

set of blendshapes that directly matches the source set of

blendshapes.

Nor & Neumann et al. Carried out deformation of the

mesh using the method of transferring the motion of the ver-

tices constituting the mesh of the source to the vertices on

the avatar [13]. The authors proposed to use user-defined

corresponding points between the source and target mesh

to transfer the expression of the source mesh to the target

mesh. Although this method is specialized for transfer of fa-

cial expression change, it does not support transfer of over-

all mesh shape change.

Sumner et al. Performed mesh deformation by trans-

ferring polygon deformation instead of vertex movement

[17]. With the help of landmark points set at dozens of

corresponding positions between two meshes of source and



avatar, the mesh of the expressionless avatar is transformed

into the shape of the expressionless source mesh, and then

the facial expression is transferred by acquiring the corre-

spondence information of polygons and applying the defor-

mation of each polygon of the source to each polygon of

the corresponding avatar. In this method, not only the ex-

pression part but also the movement of the whole mesh can

be transferred, but as for the fine movement, the more the

avatar shape differs from the source, the more accurate the

result will be.

3. Preliminaries

We first define the notations used thought the paper, as

well as the data structures and the 3D model representations

used in our proposed method.

3.1. Notations

In this paper, vectors are denoted with bold font and

small letters (e.g., a) and matrices are denoted with bold

font and capital letters (e.g., A). Moreover, a list is denoted

with capital letters such as L, or by small letters such as

some l.

We represent a 3D mesh M with a pair of lists (V, F ),
where V = {v1, ..., vn} is the list of 3D vertices and

F = {f1, ...fm} is the list of faces that connect all vertices

together. Each element vi = (x y z)⊤ of V (i ∈ [1 : n])
represents the 3D coordinates of a vertex in the reference

coordinate system. Each element fi = (idx1, ..., idx3) of F

(i ∈ [1 : m]) represents a triangular face, whose jth summit

is vidxj
.

Each key shape of an avatar is a 3D mesh with the same

list of faces and same number of vertices as the neutral

mesh. Only the 3D coordinates of the vertices change be-

tween different key shapes. The set of key shapes is de-

noted as {Bi (i = 0...n)}, where the key shape with neu-

tral expression is B0. Then given the set of coefficients

{wi (i = 0...n)}, the blendshape model can be animated

to create a new mesh M with the corresponding facial ex-

pression, where

M = B0 +

n
∑

i=1

{wi(Bi −B0)}. (1)

In this work, we use two types of blendshape models: the

source model and the avatar model. As shown in fig. 1, the

source model is composed of a neutral expression mesh and

the set of key shapes with characteristic facial expressions.

On the contrary, the avatar model only has the neutral ex-

pression mesh and our objective is to generate the set of key

shapes that correspond to those of the source model.

3.2. Polygon deformations

All the key shapes of a blendshape model must share the

same list of faces F , while the 3D coordinates of each ver-

tex in V change. Therefore, in order to generate the set of

key shapes from a given neutral mesh, we need to deform

each face of the neutral mesh towards the expected key ex-

pressions. We represent the deformation of a face with 3D

affine transformations. An affine transformation consists of

the 3×3 matrix T that represents the polygon rotation, scal-

ing, and shear (this is the linear part); and the 3 × 1 vector

d that represents the translation.

For any triangular face fi (i ∈ [1 : m]) with summits

(v1, v2, v3), we create an additional vertex v4 that allows to

represent the polygon orientation.

v4 = v1 +
(v2 − v1)× (v3 − v1)

|(v2 − v1)× (v3 − v1)|
. (2)

We can write the problem of transferring the deforma-

tion between two key-shapes of the source model to the

avatar model (which is the core of the proposed method)

as the problem of minimizing the following cost function

with constraints.

min
(T1,d1),...,(T|T |,d|T |)

|F |
∑

i=1

||Ssi − Tti ||
2
F

such that Tjvi+dj = Tkvi+dk, ∀i, ∀j, k ∈ p(vi).
(3)

Here, S and T are the linear parts of the affine transforma-

tions from the neutral shape to a given key shape for all

the faces in the meshes of the source and avatar models, re-

spectively. All linear transformations S are known from the

source model and we aim at estimating the unknown linear

transformations T and translations d of the avatar model.

Note that the list of faces and number of vertices of the

source and avatar models are different. As a consequence

we need the correspondences (si, ti) between the faces of

the two models which we obtain in a semi-automatic man-

ner as explained in section 4.2. By minimizing the differ-

ence between the affine transformations of the correspond-

ing faces, we can accurately transfer the facial deformation

from the source model to the avatar model. Note that || · ||F
is the Frobenius norm, |F | is the total number of polygons

of the avatar and p(vi) is the list of indices of all polygons

that share the vertex vi.

However, depending on the shape, density and topology

of the avatar mesh, solving the constrained optimization

problem of equation 3 may be difficult and inefficient. As a

consequence, as explained in [17] we re-write the polygon

deformation optimization problem in a more efficient way.

Let us consider the kth face with summits (v1, v2, v3) and

linear transformation Tk. Then we can write

TV = Ṽ, (4)



where V and Ṽ are the 3× 3 matrices defined as follows.

V =
[

v2 − v1 v3 − v1 v4 − v1,
]

(5)

Ṽ =
[

ṽ2 − ṽ1 ṽ3 − ṽ1 ṽ4 − ṽ1,
]

(6)

with ṽi = Tvi + d.

From these equations, the linear transformation compo-

nent T of a polygon’s affine deformation can be expressed

as a function of the vertices coordinates.

T = ṼV−1. (7)

As a consequence, the constrained optimisation system in

equation 3 can now be written as the following uncon-

strained optimisation system with respect to the new vari-

ables ṽ1, ..., ṽn.

min
ṽ1,...,ṽn

|F |
∑

i=1

||Ssi − Tti ||
2
F . (8)

By moving the positions of the vertices of the avatar

mesh so that components of the affine transformations of

all faces become close to the those of the source mesh, the

avatar is deformed while maintaining the adjacency and the

local shape of the mesh.

Hereafter, we use this vertex-based approach to define

the evaluation function for the mesh deformation.

4. Proposed method

We propose a method that generates avatar key shapes

automatically from any avatar mesh with a neutral facial

expression. Our proposed deformation transfer method ex-

tends the technique proposed by Sumner et al. [17] by con-

sidering the motion amplitude and local consistency of the

facial landmarks. Our proposed method allows to transfer

facial expressions to any avatar, even when the 3D mesh dif-

fers greatly in shape and topology compared with the tem-

plate model used for tracking.

4.1. Overview

Our proposed method generates any avatar’s blend-

shapes given only the neutral mesh and some facial land-

marks provided manually by the user. We propose a mesh

deformation transfer technique that keeps motion ampli-

tude consistency to generate key-shapes of the avatar mesh

similar to those of a source human template model. Our

proposed method can be separated into two main steps as

shown in fig. 2

In the first step, we compute the face correspondences

between the (neutral) source and target meshes. To do so we

first re-scale the avatar mesh to match the scale of the source

mesh, and then deform the avatar mesh into the source mesh
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Figure 2: The pipeline of our proposed method

while keeping the mesh organization (based on facial land-

marks). A fine 3D registration allows to overlay the source

and warped target mesh to identify faces correspondences.

In the second step, we transfer the deformations of the

source mesh from the neutral shape into all other key-shapes

to the avatar model. Firstly, the linear component of the

affine transformation (i.e., rotation, scaling and sheering) of

each face of the source model is transferred to the corre-

sponding faces of the avatar model. Secondly the move-

ments of the vertices define the translation part. This al-

lows to identify the affine transformation of each face of the

avatar model and generate all the key-shapes.

4.2. Faces correspondences

In this section we describe our proposed method to ro-

bustly and precisely identify the face correspondences be-

tween the source and target neutral mesh (as illustrated in

fig. 2). We also describe the representation of the linear

component of the affine transformations using vertices co-

ordinates, which is a crucial point of our proposed method.

4.2.1 Re-scaling

The absolute scale of the avatar mesh is likely to be differ-

ent from the one of the source mesh, which precludes any

direct alignment of the two meshes. Therefore, as a pre-

processing stage, we re-scale the avatar mesh to match the

scale of the source mesh. Concretely, each vertex v of the

avatar mesh is re-scaled to the new position v
′

, where

v
′

= v
xs + ys + zs

xt + yt + zt
. (9)

Here, xs, ys, zs and xt, yt, zt are the size of the bound-

ing boxes in all axis coordinates of the source and avatar



meshes, respectively.

4.2.2 Non-rigid deformation

To get the correspondences between the faces of the source

and avatar meshes, the avatar mesh is firstly deformed

into the source mesh. To do so, we solve a constrained

minimization problem with the vertices of the transformed

avatar as variables. The cost function to minimize is a

weighted linear sum of the following three cost functions.

The first cost function is expressed as follows.

ES(ṽ1, ..., ṽn) =

|F |
∑

i=1

∑

j∈adj(i)

||Ti − Tj ||
2
F , (10)

where ṽ1, ..., ṽn are the vertices of the avatar mesh after

transformation, adj(i) is the set of adjacent faces of the

ith face in the mesh. Also Ti is the linear component of

the affine transformation of the ith face. Note that ES is a

function of the vertices of the mesh as discussed in sec. 3.2.

The second cost function is expressed as follows.

EI(ṽ1, ..., ṽn) =

|F |
∑

i=1

||Ti − I||2F , (11)

where I is the 3× 3 identity matrix.

The third cost function is expressed as follows.

EC(ṽ1, ..., ṽn) =
n
∑

i=1

||vi − ci||
2, (12)

where ci is the closest valid point on the source mesh for

the vertex vi on the avatar mesh. The angle between the

normal vectors of vi and ci is enforced to be within 90◦. As

illustrated in fig. 3, by considering this angle, it becomes

possible to differentiate between topologically far regions

such as points in the upper and lower lips.

By minimizing the weighted linear sum of the above

three cost functions, the vertices coordinates of the avatar

mesh after deformation ṽ1, ..., ṽn can be estimated. The

constrained optimization problem to solve is expressed as

follows.

min
ṽ1,...,ṽn

E(ṽ1, ..., ṽn) = wsES + wiEI + wcEC

such that ṽcorr(i) = [vi]s,neut, i ∈ L,
(13)

Surface of the Source mesh
Surface of the Avatar mesh

Figure 3: Illustration of closest valid point identification

Iteration: 1 2 3 4

Avatar Source

Figure 4: Non-rigid deformation of the avatar mesh towards

the source mesh

where [v]s.neut indicates that the vertex v is a vertex on the

source neutral mesh, L is a list of facial landmark indices

on the source mesh (as described below), corr(i) is index

of the ith landmark of the avatar mesh corresponding to the

ith landmark of the source mesh

In order to minimize equation 13, a set of facial land-

marks provided by the user is required. We use 51 facial

landmarks around the eyes, eyebrows, nose and mouth as in

dlib 1. The source mesh is already given a fixed set of land-

marks L. Then we develop a user interface for the user to

easily select the corresponding 51 facial landmarks on the

avatar mesh. The important point here is that the landmarks

on the avatar mesh must have the same semantic meaning

as those of the source mesh (e.g., ”left corner of the eye” or

”middle of upper lip”). This is crucial to help good conver-

gence of the deformation of the avatar neutral mesh towards

the source neutral mesh. If the resolution of the avatar mesh

is insufficient, we up-sample the avatar mesh. Then, we can

always select the corresponding landmarks at the semanti-

cally correct position.

In order to obtain optimal results, the minimization of

the system in equation 13 is repeated several times while

changing the weights applied to each cost function. In the

experiments, we used four iterations, with ws = 1, wi =
0.1, wc = 0 for the first iteration and ws = 1, wi =
0.001, wc = 1 for the subsequent iterations. Figure 4 il-

lustrates the non-rigid deformation process.

4.2.3 Matching

With the transformed avatar mesh it becomes possible to

identify the faces correspondences. We align the trans-

formed avatar mesh to the source mesh and select the corre-

spondences as the nearest faces. Figure 5 illustrates the face

correspondences acquisition.

Firstly, we compute the centroids and normal vectors of

all the faces of the transformed avatar mesh. Secondly, all

the faces of the avatar mesh are matched to the closest face

on the source mesh that satisfies the constraint that the angle

1https://www.pyimagesearch.com/2017/04/03/

facial-landmarks-dlib-opencv-python/



between the normal vectors is smaller than 90◦. The same

process is done in the reverse way from the source mesh to

the avatar mesh. In this way, we obtain one-to-many and

many-to-one correspondences between the faces of the tar-

get and source meshes. As a consequence, meaningful cor-

respondences can by obtained even between meshes hav-

ing totally different density. The correspondence list is ex-

pressed as follows.

M = {(s1, t1), (s2, t2), ..., (s|M |, t|M |)}, (14)

where si is the index of the face in the source mesh and ti
is the index of the face in the avatar mesh.

4.3. Deformation transfer

We use the face correspondences between the source

and avatar meshes to generate a set of key-shapes of the

avatar model with the same facial expressions as the source

blendhsape model. To this end we transfer the deformation

of the source mesh from the neutral expression to its various

expressions to the neutral avatar mesh. This deformation

transfer is guided by the facial landmarks.

4.3.1 Polygon deformation transfer

We use the following displacement cost function to transfer

the deformation of a face in the source mesh to its corre-

sponding face in the avatar mesh.

Ed(ṽ1, ..., ṽn) =

|F |
∑

i=1

||Ssi − Tti ||
2
F , (15)

which is similar to equation 8 with using the list of face

correspondences M = {(s1, t1), (s2, t2), ..., (s|M |, t|M |)}.

In the original work of Sumner et.al. [17], only this dis-

placement cost function is used to guide the deformation.

We propose to use two additional cost functions to achieve

more faithful deformation transfer.

4.3.2 Landmark guided deformation transfer

In order to guarantee the successful expression transfer even

to meshes that cannot be handled only by the linear trans-

formation component, we propose to use the motion of the

manually selected facial landmarks. We thus define the fol-

lowing landmark cost function.

El(ṽ1, ..., ṽn) =
6

∑

k=1

∑

i∈Lk

||AkRkui − ũcorr(i)||
2,

where

{

ui = [vi]s.exp − [vi]s.neut
ũcorr(i) = ṽcorr(i) − [vcorr(i)]t.neut

(16)

Here, Lk is the list of indices of the landmarks on the source

mesh. corr(i) is the index of the landmark in the avatar

Calculate Centroids and Normals
for all polygons

Select corresponding Source polygons 
from Avatar polygons

Select corresponding Avatar polygons 
from Source polygons

Surface of the Source mesh
Surface of the Avatar mesh

ܯ = { ,ଵݏ ଵݐ , ,ଶݏ ଶݐ , … , ,|ெ|ݏ |ெ|ݐ }
Figure 5: Face correspondences acquisition pipeline

mesh that corresponds to the ith landmark on the source

mesh. ui and ũcorr(i) are the displacement vectors of the

ith landmark between the neutral expression and the current

expression for the source and avatar meshes, respectively.

[v]s.exp, [v]s.neut, [v]t.neut indicate that v is a point on the

source mesh with expression, on the neutral source mesh

and on the neutral avatar mesh, respectively. Finally, Ak

and Rk are 3 × 3 matrices that allow to adjust the amount

and direction of the movement of the landmarks.

The size and orientation of the facial parts (like the nose

for example) vary greatly depending on the chosen avatar

mesh (for example if the avatar is a horse, the shape is to-

tally different than the face of a human). Therefore, we

propose to divide the facial parts of the source and avatar

models into six parts: right eyebrow, left eyebrow, nose,

right eye, left eye and mouth. We measure the size and ori-

entation of each facial part and coherently adjust the amount

and direction of the landmarks motion.

Firstly, we measure the orientation of each facial part.

We organise the landmarks into the different parts in the list

Lk(k ∈ 1...6). From each group we select the landmarks

that are best suited to compute the facial part’s orientation,

and we denote as L
′

k the list made of these landmarks. We

then minimize the following cost function so that the normal

vector nk becomes approximately perpendicular to all lines

that can be drawn between the landmarks in L
′

k.

E(nk) =

|L
′

k|
∑

i=0

|L
′

k|
∑

j=i

nk · (vL′

k
[i] − v

L
′

k
[j]), k ∈ [1 : 6] (17)

From the orientation vector nk of the kth part of the face,

we compute the rotation matrix Rk,s,Rk,t that aligns nk

with the z axis. Those rotation matrices are computed inde-

pendently for each of the 6 facial parts.



To measure the size of each facial part, we first use the

rotation matrices Rk,s and Rk,t to align the facial part with

the z axis. Then, we compute the 3D bounding box of the

aligned facial parts for the source and avatar meshes with

size ax,s ay,s az,s and ax,t ay,t az,t, respectively. This al-

lows us to obtain the size ratio Ak as follows.

Ak =

⎡

⎢

⎣

ax,t

ax,s
0 0

0
ay,t

ay,s
0

0 0
az,t

az,s
.

⎤

⎥


(18)

In the case of the mouth part (for which the range of move-

ments cannot be measured by only the neutral avatar mesh)

we compute the ratio in the y direction using the distance

between the lower end of the nose and the center of the

lower lip. The ratio in the z direction is set to 1.

We can then faithfully transfer the motion of the land-

marks from the source model to the avatar model by warp-

ing the landmarks of the source mesh to the re-sized and

aligned coordinate system of the corresponding face part in

the avatar mesh. The landmark motion vector ũcorr(i) in the

avatar mesh is obtained as the transformed motion vector

AkRkui of the corresponding landmark in the source mesh.

4.3.3 Optimization

We compute the new vertices coordinates ṽ1, ..., ṽn of the

deformed avatar mesh by minimizing the following cost

function that is a weighted sum of the cost functions ES

and EI introduced in above.

min
ṽ1,...,ṽn

E(ṽ1, ..., ṽn) = wdEd + wlEl + wiEI (19)

In our experiments, we set wd = 1, wl = 100, ws = 10
and wi = 1. We repeat the minimization process for all

the key-shapes of the source model to obtain a blendshape

avatar model that corresponds to the source model.

5. Experiments

We evaluate the ability of our proposed method to gen-

erate faithful blendshape models of avatars by using several

meshes with totally different shapes (like horse and cat). We

compared the results obtained with our proposed method

with those obtained with the state-of-the-art mesh deforma-

tion transfer method of Sumner et.al., [17] and we show the

results in figures 6, 7, 8 and 92.

For each avatar, the selected landmarks are shown in

the lower left corner of the corresponding figure. We use

landmarks only on the deformable parts of the human face,

2Video available at http://limu.ait.kyushu-u.ac.jp/e/

member/member0042.html
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Figure 6: Comparative results obtain with ”old man”.
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Figure 7: Comparative results obtain with ”cat”.
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Figure 8: Comparative results obtain with ”horse”.

which is enough to re-target the facial expression (no land-

marks on the ear for example). While selecting the land-

marks for human-like avatars such as the ”old man” can be

done precisely, we can only set approximate positions of the

landmarks for avatars with totally different shapes.
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Figure 9: Comparative results obtain with ”Mario”.

Figure 6 shows the results obtained with the human-like

avatar ”old man” when using our proposed method and the

one in [17]. In this case, accurate face correspondences

could be obtained, which allowed to generate faithful blend-

shape models with both methods. However, as we can see

from figures 7 and 8 the method proposed by Sumner et.al.,

[17] could not generate correct facial expression for avatar

meshes with totally different shape than the source mesh.

The main problems arose around the eye region. This is

because perfect face correspondences cannot be obtained

in these cases. Nevertheless, our proposed method could

successfully generate the correct facial expressions even in

these challenging situations by using landmark deforma-

tions to guide the deformation transfer.

Figure 9 shows the comparative results obtained with the

avatar ”Mario”. This case is extremely challenging because

not only the density of the source and avatar mesh are to-

tally different, but the topology of meshes are also different

(the moustaches and the hat for example). The low density

of faces in the avatar mesh explains why when the eye gets

closed, part of the forehead moves unnaturally. One pos-

sible solution to avoid this problem would be to up-sample

the avatar mesh to increase the face density. Moreover some

parts of the face may penetrate other parts of the face in an

unnatural way (like the teeth or the mustache). In order to

cope with avatars composed of a plurality of meshes and

avatars having many irregularities, further consistency con-

straints should be considered, which is left for future works.

We demonstrate the potential of our proposed method

with a concrete re-targeting application. We used the facial

expression tracking method proposed by Thomas et.al., [20]

to compute in real-time the blendshape coefficients of the

source template model, using a Kinect V1 RGB-D camera.

Then we re-targeted these expressions to the avatar meshes

with the key-shape created with our proposed method. Fig-

ure 10 a) compares the results obtained with our proposed

Figure 10: Re-targeting results.

method (on the bottom left of the screen) with the results

obtained when using the state-of-the-art mesh deformation

method proposed by Sumner et.al., [17] to create the key-

shapes (on the bottom right). As we can see from these re-

sults, our proposed method allowed us to obtain much more

faithful expression re-targeting results. The advantage is

particularly clear in the eye area (right side of fig. 10 a)).

Only our proposed method could correctly transfer the eye

shutter motion, which is a very important facial expression.

In addition, fig. 10 b) shows that our proposed method can

be applied to various kinds of avatar meshes, with similar

results (the video of this experiments is available in the sup-

plemental materials). Note that by creating the key-shapes

that match the input source model, simple re-targeting ap-

proach by directly applying the tracked blendshapes coeffi-

cients becomes possible.

6. Conclusion

In this paper, we proposed a method to generate the key-

shapes of an avatar mesh in a semi-automatic manner by

transferring the deformations of a source blendshape model.

We extend the method proposed by Sumner et.al., [17] by

adding a landmark-guided deformation constraint. By do-

ing so, faithful facial expressions of the avatar could be

easily generated. Our experimental results confirmed the

advantage of our proposed method over the state-of-the-art

and demonstrate the potential of this technology for realis-

tic re-targeting purpose. In our future work, we plan to add

additional constraints to avoid unnatural intersection of dif-

ferent parts of the face. We will also extend the method to

transfer fine facial details such as wrinkles.
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