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Abstract

Reconstructing 3D geometry from satellite imagery is an

important topic of research. However, disparities exist be-

tween how this 3D reconstruction problem is handled in the

remote sensing context and how multi-view reconstruction

pipelines have been developed in the computer vision com-

munity. In this paper, we explore whether state-of-the-art

reconstruction pipelines from the vision community can be

applied to the satellite imagery. Along the way, we address

several challenges adapting vision-based structure from mo-

tion and multi-view stereo methods. We show that vision

pipelines can offer competitive speed and accuracy in the

satellite context.

1. Introduction

Satellite imagery finds applications in a variety of do-

mains, including ecological monitoring, 3D urban modelling,

and navigation. The growing number of academic and com-

mercial satellites, and increasing accessibility of satellite

imagery, has sparked greater interest in use of satellite im-

agery for large-scale 3D reconstruction of the Earth’s sur-

face [25, 11, 4, 5]. Satellites can capture the same geographic

area over the course of seconds, days, months, and years,

yielding a wealth of imagery available for 3D reconstruction.

Much of the research on 3D reconstruction from satellite

imagery has progressed in the remote sensing community.

At the same time, the computer vision community has also

seen great advances in 3D reconstruction, primarily using

ground-level views of objects, buildings, and interiors [32,

33, 1, 28]. As a result, several software packages for high-

quality reconstruction are available [22, 14, 28, 26]. While

developments in the remote sensing and computer vision

communities have proceeded largely independently over the

past few decades, it seems natural that advances in one area

should benefit the other, since the fundamental challenges

involved are similar. However, the solutions produced in

each community have diverged in several ways:

• In remote sensing, recent satellite-based reconstruc-

tion methods often focus on the minimal two-view sce-

nario [8, 2, 27] within a paradigm of fusing multiple

two-view reconstructions. This strategy works well em-

pirically [36], e.g., in the state-of-the-art S2P satellite

reconstruction pipeline [11]. In contrast, full multi-view

stereo methods have long been explored in computer

vision due to their advantages in areas of occlusion,

repeated patterns, low image signal, etc.

• While the full set of satellite images available for

a certain location might span years, remote sensing

methods tend to conservatively select pairs of im-

ages within much shorter time span for reconstruction

due to the associated diversity in illumination, season,

weather, etc. In contrast, recent vision pipelines such

as COLMAP [28, 29], are designed for Internet photos

captured in the wild under highly diverse conditions.

• Accordingly, methods like COLMAP focus on scalabil-

ity to thousands or millions of views, and hence strive

for efficient algorithms suitable for GPU computing.

• Finally, there are significant differences in terminology

and assumptions between communities. For example,

satellite cameras are typically described by complex

black-box models, while computer vision pipelines as-

sume simpler pinhole cameras.

In this paper, we explore the question of whether these

gaps can be bridged, and in particular, whether state-of-the-

art reconstruction pipelines developed in the vision commu-

nity can be leveraged for satellite reconstruction problems.

If yes, then the satellite stereo problem can benefit from

progress made in the computer vision community.

Specifically, we take COLMAP, a computer vision

pipeline that performs both structure from motion (SfM)

and multi-view stereo (MVS), and a top performer in recent

ground-level reconstruction benchmarks [24], and adapt it

to the satellite image scenario. Along the way, we address a

number of key technical challenges, described in this paper.

Our adapted stereo pipeline is much more efficient compared

to S2P, and can indeed operate on large numbers of diverse

images. This method achieves sub-meter accuracy, although

its accuracy is lower compared to S2P, in part due to its

prioritization of efficiency during the MVS stage. Hence,

we also develop a simple plane-sweep stereo alternative that

performs comparably to S2P in terms of accuracy.



Our adapted reconstruction pipeline is shown in Fig. 1,

which highlights some key enhancements to COLMAP. The

same adaptation techniques can also be applied to other MVS

pipelines. In particular, the challenges we faced include:

For SfM: a main difficulty arises from the complex Rational

Polynomial Camera (RPC) model [16, 34, 20] that is widely

used for satellite images. We propose a method to reduce the

RPC model locally to a simpler pinhole camera model, which

in turn allows us to utilize state-of-the-art computer vision

SfM pipelines [28] to bundle adjust the camera parameters.

For MVS: a major issue involves the lack of numerical

precision due to depths that concentrate in an interval that

is far from the sensor plane, as a result of the large distance

between satellites and the Earth. Numerical precision issues

are particular severe on consumer GPUs, which are limited

to single-precision floating point computation. Our solution

is to re-parameterize depth using plane-plus-parallax [21].

In addition to these contributions, we also have released

our code implementing these changes. We hope that this

software can help make it easier for 3D computer vision re-

searchers to explore the growing domain of satellite imagery.

2. Background and related work

Satellite images. Research dating back to the early 2000s

[34, 20] has promoted the RPC camera model as a generic

replacement of a physical sensor model for geo-mapping.

The RPC model commonly used includes 78 coefficients and

10 normalization constants:
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where x, y, z denote latitude, longitude, and altitude, g, h
are ratios of two cubic polynomials parameterized by 39

coefficients, and µ{x,y,z,u,v} and σ{x,y,z,u,v} are normaliza-

tion constants. While lacking physical interpretability, the

RPC model has been successful in downstream photogram-

metry tasks such as ortho-photo generation and DEM extrac-

tion [20]. It has consequently become a standard practice

over the past decade for satellite image vendors to deliver an

RPC model to accompany each satellite image.

Based on the RPC model, prior work has explored pa-

rameter estimation, bundle adjustment, and various minimal

solvers. Parameter estimation [16] requires knowledge of

the physical sensor, which is often inaccessible to end users,

and so such estimation is generally performed by the satellite

image vendors. However, efforts have sought to understand

the residual error in vendor-provided RPCs, leading to the

notion of the bias-corrected RPC model [13]. This work ob-

serves that the RPC model can be subject to a bias equivalent

to a 2D image-space translation, and this bias can be cor-

rected with the aid of human surveyed ground control points.

Grodecki and Dial [15] propose an adjustable image-space

translation term to facilitate bundle adjustment of multiple

RPCs. Later, de Franchis et al. [9] propose a similar method

to fix relative pointing error in a stereo pair. Regarding mini-

mal solvers, inverse projection and triangulation are critical

for geometry-related tasks. For RPC models, they involve

solving non-trivial third-order polynomial systems [39].

In the remote sensing community, multiple satellite stereo

pipelines are based on the RPC model [8, 2, 27, 31]. These

often focus on a minimal two-view stereo setting rather than

utilizing multiple views at once. The two-view stereo com-

ponents rely on disparity [8, 27, 2] or optical flow estima-

tion [4] to find dense correspondence, followed by RPC-

based triangulation. A representative recent work, S2P [11],

heuristically ranks all pairs of images in an input set, then

aligns and merges independent reconstructions produced via

two-view stereo on the top 50 image pairs [8]. We compare

our approach primarily to S2P, as it was the winner of the

IARPA Multi-View Stereo 3D Mapping Challenge [4].

Ground-level images. Pipelines developed in the computer

vision community adopt the easy-to-interpret pinhole camera

model, in contrast to the RPC model. Using homogeneous

coordinates, the pinhole model is written as1

[u; v; 1] = K[R t][x; y; z; 1] (3)

The intrinsics matrix K ∈ R3×3 takes the form

[fx, s, cx; 0, fy, cy; 0, 0, 1], while the extrinsics consist of a

camera rotation R ∈ SO(3) and translation t ∈ R3. In many

scenarios, one can assume zero skew (s = 0), unit aspect

ratio (fx = fy), and centered principal point (cx, cy = 0.5
in normalized image coordinates).

Most modern computer vision reconstruction pipelines

consist of SfM and MVS stages. SfM aims to obtain accurate

camera parameters by iteratively optimizing these parame-

ters along with a triangulated sparse point cloud. We refer

the readers to [28] for recent progress in SfM. MVS recon-

structs a dense point cloud or mesh given a set of images and

their corresponding camera parameters. Key issues in MVS

include view selection based on camera baseline, overlap,

etc, and robust recovery of dense depth maps [29]. From a

computational perspective, many MVS pipelines can scale

to thousands of images thanks to the use of GPU hardware.

3. Adapting SfM to satellite imagery

The goal of SfM is to recover accurate camera parameters

for use in subsequent steps such as dense reconstruction. A

major factor distinguishing satellite stereo pipelines from typ-

ical vision pipelines is the camera model (RPC vs. pinhole).

1In this paper, we follow MATLAB notation for denoting column vec-

tors, row vectors, and matrices. Vectors and matrices are in boldface.



Figure 1. Our proposed satellite-adapted 3D reconstruction pipeline. Dashed borders indicate SfM modules and solid borders indicate MVS.

Point cloud is displayed as height map on a geographic grid, with color scale in Fig. 8.

In this section, we bridge this gap by locally approximating

the RPC model with a pinhole model. Following this ap-

proximation, modern SfM pipelines, e.g., VisualSFM [38]

and COLMAP SfM [28] can be utilized to bundle adjust the

camera parameters.

3.1. Coordinate system

Our Earth is approximately ellipsoidal. To locate a point

on the Earth’s surface, the RPC model uses a global coordi-

nate frame consisting of (latitude, longitude, altitude). This

coordinate frame is defined with respect to a nominal refer-

ence ellipsoid, e.g., World Geodetic System 1984 (WGS84).

The (latitude, longitude, altitude) coordinate system is not

a Cartesian frame as assumed by most vision pipelines. In

real-world applications, however, we almost always focus on

a much smaller geometric area, e.g., 1 km2, either because

our reconstruction task is regional or a large area is divided

into smaller patches for parallel processing. Hence, we adopt

a simpler local Cartesian coordinate system for a specific

reconstruction problem. In particular, we use the East-North-

Up (ENU) coordinate system, defined by first choosing

an observer point (latitude0, longitude0, altitude0), and

then the “east”, “north”, and “up” directions at this point

form the three axes. The “east-north” plane is parallel to

the tangent plane of the reference ellipsoid at the point

(latitude0, longitude0, 0). With a careful choice of the ob-

server point, such a local Cartesian frame not only opens the

door to a pinhole model approximation, but also improves

numerical stability by bringing the scene close to the origin.

3.2. 3D bounding cube generation

In the (latitude, longitude, altitude) coordinate system,

an area of interest (AOI) is specified by a 2D bounding box

[xmin, xmax] × [ymin, ymax]. To bound the AOI along the z-

axis, we use public SRTM data describing the global terrain

altitude up to an accuracy of 30m [23], together with the

assumption that most vegetation and buildings are less than

a few hundred meters in height. We assume that the input

satellite images are cropped to this AOI.

3.3. Tonemapping

Satellite images typically have high dynamic range

(HDR). To accelerate computation, the input HDR satellite

images are tonemapped to LDR. We observe that the original

pixel intensities exhibit a long-tailed distribution, hence di-

rect scaling results in dark, low-contrast LDR images. Hence,

we instead use a standard tonemapping operation consisting

of a gamma correction Iout = I
1/2.2
in

(where I denotes pixel

intensity) followed by a scale factor.

3.4. Perspective camera approximation

We now mathematically justify the practice of locally ap-

proximating an RPC camera with a perspective camera, then

provide a numerical method to estimate camera parameters.

Mathematical justification. The physical satellite imag-

ing process can be modelled by an orbiting linear pushb-

room camera, such that each row of a satellite image is

captured at a slightly different time instant. For satellite

images, the depth values Z of scene points lie in the interval

[Z̄ − Ẑ/2, Z̄ − Ẑ/2], with Z̄ ≫ Ẑ. Under this condition,

we show that both perspective cameras and linear pushb-

room cameras can be accurately approximated by the so-

called weak perspective camera, and consequently we can

approximately transform a linear pushbroom camera into a

perspective camera.

First, as a result of small scene depth variation and very

large average scene depth, a perspective camera reduces to

a weak perspective camera that takes the form u ≈ fx
Z̄
X +

s
Z̄
Y + cx, v ≈

fy
Z̄
Y + cy, where (X,Y, Z) is a point in the

camera coordinate frame [12].2

2In this paper (x, y, z) refers to a 3D point in the scene coordinate



Next, we show that a linear pushbroom camera can also

be reduced to a weak perspective camera under the same con-

dition. Projection under a linear pushbroom camera can be

modeled as: u = a1x+b1y+c1z+d1, v = a2x+b2y+c2z+d2

a3x+b3y+c3z+d3

,

where (x, y, z) is a point in the scene coordinate frame. In

other words, satellite images exhibit linearity along the row

axis u, while having a (weak) perspective effect along the

column axis v. Let f, c̃x, c̃y,R, t be the intrinsics and ex-

trinsics (assuming zero skew and unit aspect ratio) of the

perspective camera along the column axis. We then use R, t
to transform scene coordinates (x, y, z) to camera coordi-

nates (X,Y, Z), and rewrite the linear push-broom camera

model. With some approximation, the result is again a weak

perspective camera:

u = â1X + b̂1Y + ĉ1Z + d̂1

= â1X + b̂1Y + ĉ1Z̄ ·

(

1 +
Z − Z̄

Z̄

)

+ d̂1

≈ â1X + b̂1Y + ĉ1Z̄ + d̂1 (4)

v = f
Y

Z
+ c̃y (5)

Comparing the two weak perspective cameras, we have â1 =
fx
Z̄
, b̂1 = s

Z̄
, ĉ1Z̄ + d̂1 = cx, f = fy, c̃y = cy. Solving for

fx, fy, s, cx, cy , together with R, t, gives us the perspective

camera approximation. Note that Eq. 4, 5 assumes that the

satellite moves at a constant orientation and velocity, which

is approximately true because of the extremely short time

period needed to capture a small local area.

Numerical solution. The derivation above only establishes

the existence of perspective approximations to satellite cam-

eras in a local area. To actually solve for an approximated

perspective camera model, we perform three steps: sampling

the RPC model, fitting a projection matrix, and factorizing

into a standard form.

We first sample the RPC model by generating a set of 3D-

2D correspondences. Specifically, we uniformly discretize

the ENU 3D bounding cube into a finite grid, with each axis

evenly divided into M sample locations. The resulting M3

grid samples (x, y, z) are then converted from ENU coor-

dinates to (latitude, longitude, altitude), and projected via

the RPC model into pixel coordinates (u, v); this gives us a

total of M3 3D-2D correspondences (xi, yi, zi, ui, vi), i =
1, . . . ,M3. We filter out correspondences whose pixel coor-

dinates lie outside the image boundary.

Next, we solve for a 3 × 4 projection matrix P =
[pT

1 ;p
T
2 ;p

T
3 ]. For simplicity, we denote x = [x; y; z; 1],

and then the projection equation of our perspective camera

becomes u = pT
1 x/p

T
3 x, v = pT

2 x/p
T
3 x. Given a total of

L 3D-2D correspondences, (xi, ui, vi), i = 1, . . . , L, we

use the standard direct linear transformation method to solve

frame, while (X,Y, Z) is a 3D point in a given camera coordinate frame.

for P [17]. Finally, we factor P into the standard form

K[R t] [17]. Note that this numerical solution outputs a

full intrinsic matrix with a non-zero skew that is unusual for

ground-level images, but can be explained in the satellite

case by the equation s = b1Z̄ in our derivation above. The

physical intuition is that satellite images are produced by

stitching image rows captured at slightly different instants;

hence rows may not be perfectly aligned.

Advantages. Locally approximating the RPC model with a

perspective camera yields several benefits besides physical

interpretability, efficiency, and simplicity of minimal solvers.

First, it enables us to easily convert satellite images for use in

existing SfM and MVS pipelines. For instance, Section 3.6

describes how to correct for the skew effect in satellite im-

ages. Second, this approximation shows that linear epipolar

geometry approximately holds locally in satellite imagery,

which avoids the need to handle the complex epipolar lines

described by the RPC model as in [11]. This is important for

standard vision-based reconstruction pipelines. Third, bun-

dle adjustment is simplified, as demonstrated in Section 3.5,

whereas bundle adjusting RPC models is unintuitive and

requires expert or proprietary knowledge.

3.5. Bundle adjustment

Bundle adjustment is a method for refining the parameters

of a set of cameras in order to improve their global consis-

tency and accuracy, via minimization of reprojection error

of a set of sparse 3D points given their measured projections

in the image set [37]. As shown in prior work [13, 15], the

RPC model is subject to a bias drift in the image domain. We

observe that the principal point (cx, cy) in the perspective

camera model naturally captures any image space translation,

and therefore we can bundle adjust just the principal points

of all cameras, while keeping the other intrinsic and extrin-

sic parameters fixed. To minimize the distortion caused by

projective ambiguity, and to also fix the gauge ambiguity

and constrain the reconstruction to the same geographic area,

we propose to add a regularization term to the sparse 3D

points’ coordinates such that they do not drift too far from

their original coordinates during bundle adjustment. Let

(xi, ui, vi,pi1,pi2,pi3), i = 1, 2, . . . , N be the 3D-2D cor-

respondences and first three rows of their projection matrices.

Our proposed regularized bundle adjustment objective is,

N
∑

i=1

(

ui −
pT
i1xi

pT
i3xi

)2

+

(

vi −
pT
i2xi

pT
i3xi

)2

+ λ‖xi − x̂i‖
2

2
,

(6)

where x̂i are the point coordinates triangulated with cam-

era parameters before bundle adjustment, λ is the tuned

regularization weight, ‖ · ‖2 is the Euclidean norm, and

(xi,pi1,pi2,pi3), i = 1, 2, . . . , N are our optimization vari-

ables. We set λ = 1.0 in our experiments.



3.6. Skew correction

The skew parameter in an intrinsic matrix is typically

assumed to be zero in computer vision approaches, and

hence existing MVS pipelines often do not model it. We

design a simple skew-correction step to remove skew so that

we can use standard pipelines. Our approach decomposes an

intrinsic matrix as follows:

⎡

⎣

fx s cx
0 fy cy
0 0 1

⎤

⎦=

⎡

⎣

1 s/fy 0

0 1 0

0 0 1

⎤

⎦

⎡

⎣

fx 0 cx−scy/fy
0 fy cy
0 0 1

⎤

⎦. (7)

With this decomposition, we then apply the inverse of the

first matrix on the right-hand side to transform the images

themselves, and use the second matrix on the right-hand

side as the new, skew-free intrinsics. The resulting image

warp resamples the image at the original resolution, and so

resolution is preserved by this step. Other modifications of

intrinsics, such as enforcing non-unit aspect ratio can be

performed in a similar way.

4. Adapting MVS to satellite imagery

In this section, we identify and resolve key issues that

prevent direct application of standard MVS pipelines tailored

for ground-level images to the satellite domain.

4.1. Depth reparametrization

MVS pipelines in computer vision often begin by esti-

mating per-view depth maps. Depth is usually defined as

the Z component of a 3D point in the reference camera’s

coordinate frame. Satellite cameras are distant (hundreds or

thousands of km) from Earth, leading to a depth distribution

with a large mean and comparatively small variance. This

introduces numerical precision issues when computationally-

intensive MVS algorithms are run on consumer GPUs with

only single-precision floating point, which supports only 7

effective decimal digits.

We tackle this challenge by reparametrizing depth using

plane-plus-parallax [21]: we first choose a plane close to the

scene and parallel to the ground plane as our reference plane.

Then the distance between a 3D point and this reference

plane is defined as the reparametrized depth, which is usually

bounded by hundreds of meters. Concretely, this amounts to

adding a fourth row to the 3 by 4 projection matrix:

⎡

⎢

⎢

⎣

u

v

1

m

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

uZ

vZ

Z

mZ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

0 0 Z̄ −Z̄d

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x

y

z

1

⎤

⎥

⎥

⎦

, (8)

where Z = P31x+P32y+P33z+P34 is the conventional

depth; the plane (0, 0, 1, d)3 is chosen to lie below the scene,

3We denote the plane equation n
T x−d = 0 as (n, d) for convenience.

i.e., z > d holds for all scene points; Z̄ is the average

conventional depth of all the sparse scene points in the SfM

step. With these careful choices, the reparametrized depth

m = (0 · x+ 0 · y + Z̄ · z − Z̄ · d)/Z ≈ z − d is a positive

variable generally bounded by hundreds of meters.4 The

augmented 4× 4 projection matrix is finally scaled such that

the largest entry is 1.

4.2. Stable homography computation

To measure photo-consistency between two views, many

modern MVS systems use homographies to relate an image

patch in a reference view to one in a source view. The homog-

raphy matrix is computed as H = K2

(

R12 −
n

T
t12
d

)

K−1

1 ,

where (n, d) is a plane in camera one’s coordinate frame,

and R12, t12 is camera two’s relative pose with respect to

camera one. We find that this expression for computing

a homography can be numerically unstable under single-

precision, due to large intermediate values. To address

this issue, we derive an alternative way to compute the

homography directly from the 4 × 4 projection matrix in

Eq. 8 without involving large numbers. For convenience,

denote pixel coordinates as u = [u; v; 1], scene coordi-

nates as x = [x; y; z; 1], and projection matrices (aug-

mented with a fourth row) as P ∈ R4×4. Given a plane

[n;−d]Tx = 0, and the projection equation of two cameras

[u1;m1] = P1x, [u2;m2] = P2x, our goal is to derive a

homograhy matrix H ∈ R3×3 such that u2 = Hu1.

Derivation. The plane equation implies that

[n;−d]Tx = [n;−d]TP−1

1 [u1;m1] = 0. (9)

Let us write the 1× 4 vector [n;−d]TP−1

1 as [qT , r], with

q ∈ R3, r ∈ R. Then qTu1+rm1 = 0, i.e., m1 = −q
T
u1

r .

Hence we have

[u2;m2] = P2P
−1

1 [u1;m1] = P2P
−1

1 [u1;−
qTu1

r
]

= P2P
−1

1 [I;−
qT

r
]u1, (10)

where I ∈ R3×3 is an identity matrix. Let us define

A = P2P
−1

1 [I;−q
T

r ]. Then the homography matrix is

H = A1:3,1:3. One can easily check that Eq. 10 involves

numbers with limited magnitude, given that P1,2 are pre-

scaled. Analysis of its numerical stability can be found in

the supplemental document.

4.3. Plane-sweep stereo

In addition to integrating the depth re-parametrization

and stable homography computation methods into MVS in

4The second equality is due to the fact that Z has a large mean but small

variance so that Z̄/Z ≈ 1; z − d is the distance between the the point

(x, y, z) and the plane (0, 0, 1, d).



Table 1. Overview of the data. Avg. # Pix stands for average number

of pixels over all views.

# Views Avg. # Pix Area (km2)

site 1 47 4.22M 0.464

site 2 47 1.27M 0.138

site 3 40 1.44M 0.150

COLMAP (which is based on PatchMatch stereo [3]), we

also evaluate the use of standard plane-sweep stereo, with

ground-parallel planes, as an alternate MVS module. This

usage is motivated by the observation that the fronto-parallel

assumption often holds very strongly for urban scenes if we

sweep planes parallel to the ground. We adopt the census

cost as a photo-consistency measure, and compute a cost

volume. We further smooth each cost slice using a guided

filter as in [19]. Plane-sweep and cost volume filtering are

very efficient; if accuracy is not a top concern, then the arg

minimum at each pixel of the filtered cost volume can serve

as the height map. However, we can also compute a refined

height map using Markov Random Field (MRF) optimization

techniques, which are especially helpful in areas of weak

texture, as we demonstrate in our experiments.

5. Experiments

In this section, we provide empirical evidence to demon-

strate the validity of our proposed adapted pipeline on a

benchmark dataset we created from MVS3DM dataset [4].

We first evaluate the SfM module, and then the MVS module.

5.1. Dataset and metrics

We tested our methods on three sites from the IARPA

MVS3DM dataset [4]. Tab. 1 summarizes the data. The

images were captured over a span of two years by the

WorldView-3 satellite with a resolution of 30cm per pixel in

nadir views. 3D ground-truth is captured by airborne lidar.

During evaluation, we follow previous practice [4] and

flatten the ground-truth point cloud and the reconstructed one

onto the same pre-specified geographic grid to obtain two

height maps. Each geographic grid cell is 0.5× 0.5m2. The

maps are then aligned and compared pixel-wise to compute

metric scores, namely median height error and completeness

(percentage of points with error less than a threshold of 1m).

5.2. Structure from motion

We evaluate our perspective camera approximation using

three metrics: accuracy of forward projection, accuracy of

triangulation, and consistency between our bundle-adjusted

perspective cameras and S2P’s pointing-error-corrected RPC

models. For concision, the following experiments are done

on site 1, but the conclusions generalize to other sites.

Figure 2. Feature track length, site 1 (average length is 3.85).

Figure 3. Triangulation error of approximate perspective camera

with respect to the RPC model for site 1.

As mentioned above, our approximated perspective cam-

eras are derived using the M3 (M = 100) grid points sam-

pled in the bounding volume. The average of per-view maxi-

mum forward projection error compared with the RPC model

on these grid points is 0.194px. Further, we apply both

the RPC model and the approximate perspective camera to

points in the ground-truth point cloud. The average of per-

view maximum forward projection error is 0.126px, which

leads to as small as a maximum 3.8cm loss of accuracy given

an image resolution of 30cm per pixel.

Second, we evaluate the triangulation accuracy of our

perspective cameras. We first run standard feature detection

and matching across all views, then triangulate the result-

ing feature tracks using both the approximate perspective

and RPC models. The distribution of the number of views

across ∼34K feature tracks is shown in Fig. 2. Perspective

camera triangulation is performed with COLMAP, and for

RPC triangulation we implemented a solver based on [35].

We then compute the difference in point locations between

the perspective- and RPC-triangulated 3D points. The dis-

tribution of differences is shown in Fig. 3; the majority of

the differences are below 5cm, with a few large differences

caused by incorrect correspondences.

Third, we investigate the effect of bundle adjustment. The

median reprojection error over ∼34K sparse points reduces

from 1.36px to 0.864px after bundle adjustment; the distribu-

tion of reprojection errors is shown in Fig. 4. This reduction

in reprojection error indicates better consistency among cam-

eras and final reconstruction accuracy because our bundle

adjustment scheme is free from projective ambiguity. We

also compare the bundle-adjusted perspective cameras to the

RPC model whose pointing error is corrected by S2P. We

take the correspondence map between two views computed

by S2P, and re-triangulate with our bundle-adjusted perspec-



Figure 4. Distribution of reprojection errors before and after bundle

adjustment, site 1.

RPC Perspective Error

Figure 5. Consistency between S2P’s point-error-corrected RPC

and our bundle-adjusted perspective camera.

Figure 6. Color bars used for displaying height maps and error

maps in this paper; units are meters.

tive cameras. We then compare our triangulated point cloud

to S2P’s point cloud triangulated with RPC model using

the evaluation code. The median height difference is just

2.72cm. The error map is shown in Fig. 5.

The above three aspects demonstrate the high accuracy

of the approximated perspective camera for the RPC model

in a local area. The entire SfM procedure takes about 1.68

minutes5 for this site with 46 images, which is very efficient

thanks to the fact that the SfM pipeline was initially designed

to handle large-scale Internet photo collections.

5.3. Multi-view stereo

We now evaluate our adapted MVS module by running:

1) COLMAP’s MVS enhanced with our proposed depth

re-parametrization and stable homography computation, 2)

different methods including plane-sweep stereo compared

on stereo pairs.

We report the accuracy of our enhanced COLMAP MVS

run on all images in each site on sites 1-3 in Tab. 2. Qual-

itative results are shown in Fig. 8. Considering COLMAP

MVS’s greater efficiency and scalability, these results are

quite good, despite the fact that the accuracy is lower than

the S2P-based method [8]. We believe this gap in accuracy

is mainly due to the fact that COLMAP MVS’s core stereo

component is efficiency-driven. In particular, it sometimes

struggles at object boundaries and in weakly-textured re-

5All runtimes are reported on a machine with 16 CPUs, 60GB memory,

and 3 GPUs.

S2P (CP=70.9%) COLMAP (CP= 64.1%)

PSS+CVF (CP= 65.9%) PSS+CVF+MRF (CP=69.9%)

Figure 7. Error maps of different algorithms on the same reference

and source views (captured seconds apart).

gions, as can be seen from the errors surrounding buildings,

on the ground, and on building tops. Similar observations are

also reported recently on ground-level images [30]. However,

we also note that an interesting aspect of this experiment

is that COLMAP is leveraging all images at once, which is

quite distinct from the practice of S2P, which only considers

pairs of images at a time. We believe that these results are

promising and suggest that further explorations of diverse

handling of images in the satellite domain will be fruitful.

Next, we compare different algorithms on the minimal

setting of stereo pairs. In particular, we compare the standard

S2P to COLMAP configured to run on just two views, as well

as various settings of plane-sweep stereo. For each site, we

select 10 image pairs on which the baseline S2P performs

very well; all algorithms are tested on these same image

pairs, so that the comparison focuses on stereo accuracy,

isolated from the influence of view selection and aggregation.

The average metric performance over the selected pairs is

shown in Tab. 3. The experiments show that COLMAP

MVS is the least accurate while being the fastest, while

our PSS+CVF+MRF6 outputs comparable results to S2P.

Furthermore, we found that both COLMAP and PSS+CVF,

which lack global optimization, suffer from the errors on

weakly-textured areas, e.g., ground and large building tops,

while MRF helps reduce the errors (see Fig. 7).

6. Conclusion

In this work, we propose a set of mechanisms to adapt

the satellite-image-based 3D reconstruction problem to one

that can be solved with computer vision pipelines designed

6We use graph cuts in these experiments [7, 6]; the system can be further

accelerated with faster MRF solvers, e.g., SGM-like solvers [18, 10].



Example View Lidar GT COLMAP Error

Site 1

Site 2

Site 3

Figure 8. Qualitative results of COLMAP MVS. Overall, the reconstruction is very good, despite some room for improvement at building

boundaries and weakly-textured regions (e.g., ground and building tops).

Table 2. Metric result of COLMAP MVS; CP stands for complete-

ness, ME for median height error.

CP (%) ME (m) Time (mins)

site 1 66.4 0.409 18.7

site 2 61.0 0.603 7.37

site 3 58.8 0.518 6.94

for ground-level images. We show the effectiveness of the

proposed methods by incorporating them into COLMAP,

a state-of-the-art SfM and MVS system. We evaluate this

pipeline, as well as plane-sweep stereo, on a remote sensing

dataset. We will publish our code to encourage future re-

search in brigding the gap between satellite stereo and vision

reconstruction.
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