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Abstract

We address the problem of jointly learning vision and

language to understand the object in a fine-grained man-

ner. The key idea of our approach is the use of object de-

scriptions to provide the detailed understanding of an ob-

ject. Based on this idea, we propose two new architectures

to solve two related problems: object captioning and natu-

ral language-based object retrieval. The goal of the object

captioning task is to simultaneously detect the object and

generate its associated description, while in the object re-

trieval task, the goal is to localize an object given an input

query. We demonstrate that both problems can be solved

effectively using hybrid end-to-end CNN-LSTM networks.

The experimental results on our new challenging dataset

show that our methods outperform recent methods by a fair

margin, while providing a detailed understanding of the ob-

ject and having fast inference time. The source code will be

made available.

1. INTRODUCTION

Over the past few years, deep learning has become

a popular approach to solve visual problems, with tradi-

tional problems in computer vision such as image classi-

fication [1], instance segmentation [2], and object detec-

tion [3] experiencing many mini-revolutions. In spite of

these remarkable results, the way these problems are de-

fined prevents them from being widely used in robotic ap-

plications. For example, the problem of instance segmenta-

tion is formed as a binary segment mask inside a rectangle

bounding box. While this is reasonable for computer vision

applications, we usually need more information (e.g., ob-

ject part understanding, grasping frame, etc.) for real-world

robotic applications [4].

In this paper, we extend the traditional object detection

problem to make it more realistic and suitable for robotic

applications. We argue that although recent successful ob-

ject detectors can achieve reasonable results on a dataset

with a few thousand classes [5], they are still limited by the

predefined classes presented during the training. Further-

more, the object detector is also unable to provide more use-

Figure 1. A comparison between the traditional object detection

problem and our approach. Top row: The groundtruth of the tra-

ditional object detection problem which is restricted to the prede-

fined object categories. Bottom row: We propose to use textual

caption as the object description, providing a more detailed under-

standing of each object.

ful information about the object. On the other hand, humans

are able to distinguish more than 30, 000 basic categories,

and we not only recognize the object based on its category,

but also are able to describe the object based on its proper-

ties and attributes [6]. Motivated by these limitations, we

propose to integrate natural language into the object detec-

tor. Compared to the traditional object detection approaches

that output only the category information, our approach pro-

vides a better way to understand the objects by outputting its

fine-grained textual description. From this observation, we

propose a new method to simultaneously detect the object

and generate its caption. Moreover, we show that by using

natural language, we can easily adapt an object captioning

architecture to a retrieval system, which has excellent po-

tential in many real-world robotic applications [7].

In particular, we first define a small set of superclasses

(e.g., animals, vehicles, etc.), then each object has

the caption as its description. This is the main difference

between our approach and the traditional object detection

problem. The superclass in our usage is a general class,



which can contain many (unlimited) fine-grained classes

(e.g., the animals class contains all the sub-classes such

as dog, cat, horse, etc.). While the superclass provides

only the general information, the object descriptions pro-

vide the fine-grained understanding of the object (e.g., “a

black dog”, “a little Asian girl”, etc.). Fig. 1 shows a com-

parison between the tradition object detection problem and

our approach.

Based on the aforementioned definition, we consider two

problems: (1) object captioning and (2) object retrieval us-

ing natural language. Our goal in the first problem is to si-

multaneously detect the object and generate its description.

In this way, we have a new object detector that can localize

the object while providing more meaningful information. In

the second problem, the goal is to localize an object given an

input query. This is particularly useful in the human-robot

interaction applications since it allows humans to use natu-

ral language to communicate with the robot [7]. We show

that both problems can be solved effectively with the deep

networks, providing a detailed understanding of the object

while achieving the state-of-the-art performance.

The rest of this paper is organized as follows. We first re-

view related work in Section 2. We then describe two end-

to-end architectures for two tasks: object captioning and

object retrieval with natural language in Section 3. In Sec-

tion 4, we present the extensive experimental results on our

new challenging dataset. Finally, the conclusion and future

work are presented in Section 5.

2. Related Work

In computer vision, detecting objects from RGB images

is a well-known task. With the rise of deep learning, recent

works design different deep architectures to solve this prob-

lem. These architectures can be divided into two groups:

region-based [3] and non region-based approaches [5] [8].

While non region-based methods can achieve real-time per-

formance, region-based architectures provide a more flex-

ible way to adapt the object detection problem to other

scenarios [2]. However, the drawback of the methods

in [3] [5] [8] is their reliance on a fixed set of classes for

both training and inference. Therefore, they are unable to

deal with a new class or provide more detailed understand-

ing of the object.

Along with the object detection problem, image cap-

tioning is also an active field in computer vision. Cur-

rent research has shown recurrent neural networks such as

LSTM [9] to be effective on this task. Recently, the au-

thors in [10] proposed to fuse deep reinforcement learning

with LSTM and achieved competitive results. While we re-

tain the concept of image captioning for object description,

our goal here is more closely related to the dense caption-

ing task [11] since we want to generate the caption for each

object, not for the entire image. However, unlike [11] that

generates the captions for all possible regions, our network

only generates captions for objects in the superclasses. This

allows us to have a more detailed understanding of each ob-

ject, while still being able to distinguish objects based on

their superclasses.

In the robotics community, the work in [7] introduced a

method to localize an object based on a text query. Recently,

Hu et al. [12] improved on this by fusing the query text, the

spatial, and the global context of the image into three re-

current neural networks. Similarly, the authors in [13] in-

troduced a new discriminative training method for this task.

Although these methods are able to localize the object based

on the input query, their architectures are not end-to-end

and unable to run in real-time since the object proposals are

generated offline and not trained with the network. With a

different viewpoint, Plummer et al. [14] proposed to local-

ize objects that correspond to the noun phrases of a textual

image description. Although our goal in the retrieval task

is similar to [7] [12] [13], the key difference with our ap-

proach is the use of an end-to-end architecture, which has

a fast inference time and does not depend on any external

bounding box extraction method [12] [13].

3. Object Captioning and Retrieval with

Natural Language

We start by briefly describing three basic building blocks

used in our architecture: Convolutional backbone with Re-

gion Proposal Network (RPN) as proposed in Faster R-

CNN [3], Long-Short Term Memory (LSTM) network [9]

and the embedding of word representations. We then

present in details the network architectures for two sub-

problems in section 3.2 and 3.3.

3.1. Background

Convolutional Backbone Inspired by [2] [4], we build

an end-to-end network with two branches: the first branch

localizes and classifies the object based on its superclass,

while the second branch handles the object caption. This ar-

chitectural methodology was proposed in Faster R-CNN [3]

and is now widely used since it provides a robust way

to extract both the image feature map and the region fea-

tures. In particular, given an input image, the image feature

map is first extracted by a convolutional backbone (e.g.,

VGG16 [15]). An RPN that shares the weights with the

convolutional backbone is then used to generate candidate

bounding boxes (RoIs). For each RoI, unlike Faster R-CNN

that uses the RoIPool layer, we use the RoIAlign [2] layer

to robustly pool its corresponding features from the image

feature map into a fixed size feature map.

LSTM In this work, we use LSTM to model the sequen-

tial relationship in the object caption. The robustness of the

LSTM network is due to the gate mechanism that helps the



network encodes the sequential knowledge for long periods

of time, while is still remaining sturdy against the vanishing

gradient problem. In particular, the LSTM takes an input xt

at each time step t, and computes the hidden state ht and

the memory cell state ct as follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = φ(Wxgxt +Whght−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ φ(ct)

(1)

where ⊙ represents element-wise multiplication, σ is the

sigmod non-linearity, and φ is the hyperbolic tangent non-

linearity function. The weight W and bias b are the param-

eters of the network.

Word Embedding For simplicity, we choose the one-hot

encoding technique as our word representation. The one-

hot vector y ∈ R
|D| is a binary vector with only one non-

zero entry indicating the index of the current word in the

vocabulary. Formally, each value in the one-hot vector y is

defined by:

yj =

{

1, if j = ind(y)

0, otherwise
(2)

where ind(y) is the index of the current word in the dictio-

nary D. In practice, we add two extra words to the dictio-

nary (i.e., EOC word to denote the end of the caption, and

UNK word to denote the unknown word).

3.2. Object Captioning
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Figure 2. An overview of our object captioning network. In the

second branch, each positive RoI is first cloned and fed into the

LSTMroi layer (in light blue), then the input words and the out-

puts of LSTMroi layer are combined to become the input for the

LSTMword layer (in dark yellow).

In this task, our goal is to simultaneously find the object

location, its superclass, and the object caption. While the

object location and its superclass are learned using the first

branch of the network as in [2] [4], inspired by [16] [17]

we propose to use two LSTM layers to handle the object

caption. The first LSTM layer (LSTMroi) encodes the vi-

sual information from each RoI provided by the RPN net-

work, while the second layer (LSTMword) combines the

visual information from the first LSTMroi layer with the

input words to generate the object caption. Fig. 2 shows an

overview of our object captioning network.

In particular, we first use the convolutional backbone to

extract the image feature map from the input image. From

this feature map, the RoIAlign layer is used to pool the

variable-sized RoIs to a fixed-size region feature map (i.e.,

7 × 7). In the first branch, this region feature map is fed

into two fully connected layers, each having 4096 neurons,

to localize the object location and classify its superclass.

In the second branch, this region feature map is fed into

three fully connected layers to gradually squeeze the region

feature map into a smaller map that fits with the LSTM in-

put. The LSTMroi layer uses the feature from the last fully

connected layer to encode the visual information for each

RoI, while the LSTMword layer then encodes both the vi-

sual features provided by the LSTMroi layer and the input

words to generate the object caption.

In practice, we use three fully connected layers with

4096, 2048, 512 neurons, respectively in the second branch.

The feature from the last fully connected layer is used as

the input for the LSTMroi layer. More formally, the in-

put of the LSTMroi layer is a visual feature vector: Xr =
(x1,x2, ...,xnℓ

), where nℓ is the number of LSTM time

steps. We note that all the xi ∈ Xr are identical since

they are cloned from one RoI. The LSTMroi layer then

encodes its visual input into a list of hidden state vectors

Hr = (hr
1
,hr

2
, ...,hr

nℓ
). Each hidden state vector hr

i is

combined with one input word to become the input for the

second LSTM layer, i.e., the input for the LSTMword layer

is a vector: Xw = (hr
1
⊕ w1,h

r
2
⊕ w2, ...,h

r
nℓ

⊕ wnℓ
),

where ⊕ denotes the concatenation operation and w is the

input word of the object caption. In this way, the network is

able to learn the sequential information in the input object

caption, while is aware of which object the current caption

belongs to (via the concatenation operation).

Multi-task Loss We train the network end-to-end with a

multi-task loss L function as follows:

L = Lloc + Lsuperclass + Lcaption (3)

where Lloc and Lsuperclass are defined on the first branch

to regress the object location and classify its superclass,

Lcaption is defined on the second branch to generate the

object caption. We refer readers to [3] for a full descrip-

tion of the Lloc and Lsupereclass loss, while we present the



Lcaption loss in details here.

Let zt denote the output of each cell at each time step t

in the LSTMword layer. Similar to [18], this output is then

passed through a linear prediction layer ŷt = Wzzt + bz ,

and the predicted distribution P (yt) is computed by taking

the softmax of ŷt as follows:

P (yt = w|zt) =
exp(ŷt,w)

∑

w′∈D exp(ŷt,w′)
(4)

where Wz and bz are learned parameters, w is a word in

the dictionary D. The Lcaption loss is then computed as

follows:

Lcaption =

nRoI
∑

i=0

nℓ
∑

t=0

Pi(yt = w|zt) (5)

where nRoI is the number of positive RoIs, nℓ is the number

of LSTM time steps. Intuitively, Equation 5 computes the

loss at each word of the current outputted caption for each

positive RoI provided by the RNP network.

Training and Inference The network is trained end-to-

end for 200k iterations using stochastic gradient descent

with 0.9 momentum and 0.0005 weight decay. The learn-

ing rate is empirically set to 0.001 and keeps unchanging

during the training. We select 2000 RoIs from RPN to com-

pute the multi-task loss. A RoI is considered as positive

if it has the IoU with a ground-truth box by at least 50%,

and negative otherwise. We note that the Lbox is calcu-

lated from both the positive and negative RoIs, while the

Lsupereclass and Lcaption losses are computed only from

the positive RoIs. In the second branch, each positive RoI is

cloned and fed into the first LSTMroi layer, then the word

embedding and the hidden states of the first LSTM layer are

combined and fed into the second LSTMword layer. This

layer converts the inputs into a sequence of outputted words

as the predicted object caption. This process is performed

sequentially for each word in the predicted caption until the

network generates the end-of-caption (EOC) token.

During the inference phase, only the input image is given

to the network. We first select top 300 RoIs produced by

RPN as the object candidates. The object detection branch

uses these RoIs to assign the object superclass. The re-

sults are then suppressed by the non-maximum suppression

method [19]. In the captioning branch, all RoIs are also for-

warded into two LSTM layers in order to generate the cap-

tion for each RoI. The outputted boxes that have the clas-

sification score higher than 0.5 and its associated caption

are chosen as the final detected objects. In case there are

no boxes satisfying this condition, we select the one with

highest classification score as the only detected object.

3.3. Object Retrieval

In this task, rather than generating the object caption, we

want to retrieve the desired object in the image given a natu-

ral language query. For simplicity, the object is also defined

as a rectangle bounding box. The general idea is to select

the “best” (i.e., with the highest probability) bounding box

from all region proposals. To this end, our goal is similar

to [7] [12], however we note that while the authors in [12]

focus more on finding the local and global relationship of

the query object and other parts of the image, we propose

to perform the retrieval task within the concept of the object

superclass. In this way, we can train the network end-to-

end, while still be able to select the desired object.
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Figure 3. An overview of our object retrieval network (ORN). Each

input query is encoded by an LSTM layer, then this feature is com-

bined with the RoI feature in order to regress the retrieval score for

this RoI.

Since we need a system that can generate the object pro-

posals, the RPN network is well suitable for our purpose.

We first encode the input query using one LSTM layer. Sim-

ilar to the object captioning task, we feed each positive RoI

into a sequence of fully connected layers (with 4096, 2048,

512 neurons, respectively). The feature map of the last fully

connected layer with 512 neurons is combined with the out-

put of the LSTM layer to create a visual word. This visual

word then goes into another fully connected layer with 256
neurons, then finally the retrieval score is regressed at the

last layer with only 1 neuron. Intuitively, this whole pro-

cess computes a retrieval score for each positive RoI given

the input text query. We note that in parallel with the re-

trieval branch, the object detection branch is also trained as

in the object captioning task. Fig. 3 illustrates the details of

our object retrieval network.

Multi-task Loss Similar to the object captioning task,

we train the network end-to-end with a multi-task loss L

function as follows:

L = Lloc + Lsuperclass + Lretrieval (6)

where Lloc and Lsuperclass loss are identical to the ones in

Equation 5. Lretrieval is the sigmoid cross entropy loss of

the retrieval branch and is defined on the positive RoIs as

follows:



Lretrieval =

nRoI
∑

i=0

log(1 + exp(−yif(xi)) (7)

where y is the groundtruth label (retrieval label) of the cur-

rent positive RoI, and f(x) is predicted output of the re-

trieval branch of the network.

Training and Inference We generally follow the train-

ing procedure in the object captioning task to train our ob-

ject retrieval network. The key difference between these

two networks relies on the second branch. In particular, in

the object retrieval task, at each iteration, we randomly se-

lect one groundtruth object caption as the input query and

feed it into the LSTM network. The output of LSTM is then

combined with each positive RoI to compute the Lretrieval

loss for this RoI. Note that, the retrieval groundtruth score

of each RoI is automatically reconstructed during training

since we know the current input text query belongs to which

object (i.e., the positive RoIs associated with the object of

the current query has the retrieval score 1, otherwise 0).

During the testing phase, the inputs for the network are

an image and a text query. Our goal is to select the out-

putted box with the highest retrieval score. To evaluate

the result, each object caption groundtruth of the test im-

age is considered as one input query. This query and the

test image are forwarded through the network to generate

the object bounding boxes and their retrieval scores. Simi-

lar to the object captioning task, we select top 300 RoIs as

the object candidates. These candidates are pruned by the

non-maximum suppression process [19], then the one with

highest retrieval score is selected as the desired object. We

notice that along with the retrieval score, the network also

provides the object superclass and its location via its first

branch.

4. EXPERIMENTS

4.1. Dataset

Currently, there are many popular datasets for object

detection such as Pascal VOC [20] and MS COCO [21].

However, these datasets only provide the bounding boxes

groundtruth [20] or the caption for the entire image [21]. In

the field of referring expressions, we also have the ReferIt

dataset [22] and the G-Ref dataset [13]. Although these

datasets can be used in the object retrieval task, they fo-

cus mostly on the context of the object in the image, while

we focus on the fine-grained understanding of each object

alone. Motivated by these limitations, we introduce a new

dataset (Flick5k) which contains both the object superclass

and its descriptions for the fine-grained object understand-

ing. With our new dataset, we can train the network end-to-

end to detect the object, generate its caption, or retrieve the

object from an input query.

Table 1. Object Captioning Results on Flick5k Dataset

Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L CIDEr

OCN1 VGG16 0.564 0.366 0.150 0.000 0.213 0.559 0.845

OCN1 ResNet50 0.566 0.361 0.150 0.000 0.215 0.563 0.847

OCN1 ResNet101 0.571 0.369 0.158 0.000 0.221 0.570 0.852

OCN2 VGG16 0.682 0.555 0.469 0.405 0.344 0.675 1.628

OCN2 ResNet50 0.693 0.568 0.468 0.403 0.345 0.681 1.630

OCN2 ResNet101 0.696 0.570 0.469 0.400 0.342 0.685 1.632

In particular, we select 5000 images from the Flick30k

dataset [14]. We only reuse the bounding boxes that come

with the Flick30k dataset then manually assign the super-

class and annotate the object captions. Note that, one

bounding box only has one specific superclass, while it can

have many captions. Totally, our new Flick5k dataset has 4
object superclasses (people, instruments, animals,

vehicles), 7979 object bounding boxes, and 18, 214 ob-

ject captions. The number of bounding boxes for each su-

perclass are 3839, 475, 2387, and 1278 for the people,

instruments, animals, vehicles, respectively. We

randomly use 50% of the dataset for training and the re-

manding 50% for testing.

4.2. Implementation

For both two sub-problems, we use the LSTM network

with 512 hidden units. The number of LSTM timestep nℓ is

empirically set to 6. Subsequently, the longer captions are

cut from the beginning to the sixth word, while the shorter

captions are padded with the EOC word until they reach

6 words. From all the captions, we build a dictionary from

the words that appear at least twice, resulting in a dictionary

with 866 words. We use the strategy in [2] [4] to resize the

input image to (600, 1000) size. The object proposals are

generated by the RPN network with 12 anchors (4 scales

and 3 aspect ratios). We use three popular convolutional

backbones: VGG16 [15], ResNet50 and ResNet101 [23] in

our experiments. All the networks are trained end-to-end

for 200k iterations. The training time is approximately 2
days on an NVIDIA Titan X GPU.

4.3. Object Captioning Results

Evaluation Protocol Although both the traditional ob-

ject detection and image captioning tasks have the standard

metrics to evaluate the results, the object captioning task

is more challenging to evaluate since its output contains

many information (i.e., the object class, the location, and

its caption). In [13], the authors proposed to use human

evaluation, however this approach is not scalable. Unlike

the system in [13] which is not end-to-end and only pro-

vides the caption for each bounding box without the super-



Figure 4. Example of prediction results using our OCN2 ResNet101 network. Besides the correct object detection, the network is able to

generate an accurate caption for each object based on its properties (e.g., “a red race car” vs. “a blue car”, etc.).

class information, out network provides all these informa-

tion. Therefore, we propose to use the standard metrics of

image captioning [24] to evaluate the outputted caption of

the bounding boxes that have high classification score. This

protocol is also widely used in other problems when the net-

work provides both the detected object and its other infor-

mation [4] [25].

Table 1 summarizes the object captioning results. We

compare our object captioning network with two LSTM

layers (denotes as OCN2) with the baseline that uses only

one LSTM layer (denotes as OCN1, see details in Ap-

pendix). Overall, OCN2 clearly outperforms OCN1 by

a substantial margin in both three backbones VGG16,

ResNet50, and ResNet101. This demonstrates that the way

we combine the region feature map with the input caption

plays an important role in this task. Intuitively, the ap-

proach in OCN2 is more robust than OCN1 since in OCN2

the feature of each positive RoI is combined at every word

of the input caption, while in OCN1 the feature is only

combined once with the first word. Table 1 also shows

the ResNet101 backbone achieves the highest performance

and outperforms VGG16 backbone. However, this improve-

ment is not very significant. Fig. 4 shows some example re-

sults from our OCN2 ResNet101 network. It is worth not-

ing that the network is able to generate accurate captions

within a superclass based on the object properties (e.g., “a

red race car” vs. “a blue car”, etc.).

Table 2. Object Retrieval Results on Flick5k Dataset

R@1

SCRC [12] 68.23%

ORN VGG16 (ours) 70.61%

ORN ResNet50 (ours) 74.08%

ORN ResNet101 (ours) 76.36%

4.4. Object Retrieval Results

Similar to [12], we use the R@1 score to evaluate the

object retrieval results. The R@1 score is the percentage of

the predicted box with highest retrieval score being correct.

We notice that the predicted box is considered as correct if

it has the overlap with the groundtruth box by at least 50%
IoU. Table 2 summaries the object captioning results on the

Flick5k dataset. Overall, our ORN ResNet101 achieves the

highest performance with 76.36% of the input queries has

the correct retrieval bounding box. This is a significant im-

provement over SCRC [12]. While we employ an end-to-

end architecture to jointly train both the bounding box lo-

cation and the input query, in SCRC the bounding boxes

are pre-extracted and not trained with the network, hence

there are many cases the network does not have the reliable

bounding box candidates to regress the retrieval score. Fur-

thermore, the inference time of our ORN network is only

around 150ms per query, which is significantly faster the

non end-to-end SCRC approach. Fig. 5 shows some exam-



Figure 5. Example of retrieval results using our ORN ResNet101 network. The network is able to retrieve the correct object in the

challenging cases (e.g., “a black dog” vs. “a spotted dog”). The text query (Q) is in purple at the bottom of the image. The retrieval score

(RS) is denoted inside each detected object. Best viewed in color.

ple of retrieval results using our ORN ResNet101 network.

It is worth noting that the network successfully retrieves the

correct object in challenging scenarios such as when there

are two dogs (“a black dog” vs. “a spotted dog”) in the

image.

4.5. Ablation Studies

Object Superclass Unlike the traditional object detec-

tion methods [3] [8] which use the normal object categories

(e.g., dog, cat, etc.), we train the detection branch using

the superclass (e.g., animals, etc.). With this setup, the

object detection branch only provides the location and gen-

eral knowledge of the object, while the fine-grained under-

standing of the object is given by the second branch. In

the main experiment, we classify all objects into 4 super-

classes in order to keep the basic knowledge of the object

categories. However, in applications that do not require the

object category understanding, we can consider all the ob-

jects belong to one unique superclass (i.e., the object su-

perclass). To this end, we group all the objects of 4 su-

perclasses into only one object superclass, and then train

the captioning and retrieval networks with the ResNet101

backbone as usual.

We follow the same testing procedure as described

above. The Bleu 1, Bleu 2, Bleu 3, Bleu 4, METEOR,

ROUGE L and CIDEr scores of the OCN2 ResNet101 net-

work in this experiment are 0.673, 0.544, 0.454, 0.395,

0.330, 0.666, and 1.572, respectively. While the R@1 score

of the ORN ResNet101 network is 73.06%. As we ex-

pected, the accuracy of the networks is slightly dropped

in comparison with the 4 superclasses setup, but it is still

very reasonable. This demonstrates that the object detec-

tion branch can be used to just localize the object location,

while the fine-grained knowledge of the object can be ef-

fectively learned in the captioning/retrieval branch. More

importantly, from this experiment we can conclude that the

captioning/retrieval results do not strongly depend on the

object classification results of the detection branch, but are

actually learned by the captioning/retrieval branch. Com-

pared to the dense captioning framework [11] that does not

take the object category knowledge into account, or the non

end-to-end object retrieval methods [7] [12], our approach

provides a flexible yet detailed understanding of the object,

while still is able to complete both the captioning and re-

trieval tasks effectively with fast inference time.

Generalization Although we train both of the OCN

and ORN networks on a relatively small training set

(i.e., there are only 2500 images in the training set),

they still generalize well under challenging testing envi-

ronments. Fig. 6-a shows a qualitative result when our

OCN2 ResNet101 network successfully detects the object

and generates its caption from an artwork image. In Fig. 6-

b, the ORN ResNet101 is able to localize the desired object

in an image from Gazebo simulation. Besides the general-

ization ability, the inference time of both networks is only

around 150ms per image (or query) on an NVIDIA Titan

X GPU, which makes them well suitable for the real-time

robotic applications.



Failure Cases Since we use an end-to-end network to

simultaneously train the object detection and the caption-

ing/retrieval branch, the outputted results of the second

branch strongly depend on the object location given by the

object detection branch. Therefore, a typical failure case in

our networks is when the object detection branch outputs

the incorrect object location. Fig. 7-a and Fig. 7-b show

two examples when the detection branch misrecognizes the

object (i.e., the dog) or is unable to detect the object (i.e.,

the bird). Similarly, Fig. 7-c shows a case when the detec-

tion branch is unable to provide the object location for the

retrieval branch. We notice that, although in this case the

object location is wrong, the retrieval branch is able to as-

sign a very low retrieval score to the wrong object, which

shows that it is not confident about the final result.

(a) (b)

Figure 6. Qualitative results. Our networks generalize well un-

der different testing environments. (a) The OCN2 ResNet101 suc-

cessfully generates the caption for an object in an artwork image.

(b) The ORN ResNet101 retrieves the correct object in a simula-

tion image.

(a) (b) (c)

Figure 7. Some failure cases from the OCN2 ResNet101 network

(a, b), and ORN ResNet101 network (c).

5. Conclusions and Future Work

In this paper, we address the problem of jointly learn vi-

sion and language to understand objects in the fine-grained

manner. By integrating natural language, we provide a de-

tailed understanding of the object through its caption, while

still is able to have the category knowledge from its super-

class. Based on the proposed definition, we introduce two

deep architectures to tackle two problems: object caption-

ing and object retrieval using natural language. We show

that both problems can be effectively solved with the end-

to-end hybrid CNN-LSTM networks. The extensive exper-

imental results on our new dataset show that our proposed

methods not only achieve the state-of-the-art performance

but also generalize well under challenging testing environ-

ments and have fast inference time. We plan to release a

new large-scale version of our dataset and the full source

code of this paper in the future. We hope that these re-

sources can further improve the development of the object

captioning and retrieval tasks, making them ready for the

real-world robotic applications.

Appendix

The architecture of OCN1 network is as follows:
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Figure 8. An illustration of the OCN1 network with one LSTM

layer.

While our proposed object captioning network with two

LSTM layers (Fig. 2) combines each input word with the

visual feature, the OCN1 network only combines the first

word with the visual feature. The experimental results from

Table 1 show that the OCN1 network has poor performance

and cannot effectively generate the long caption.
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