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Abstract

With the rapid increase of outdoor computer vision ap-

plications requiring robustness to adverse weather condi-

tions such as automotive and robotics, the loss in image

quality that is due to raindrops adherent to the camera

lenses is becoming a major concern. In this paper we pro-

pose to remove raindrops and improve image quality in the

spatio-temporal domain by leveraging the inherent robust-

ness of adopting motion cues and the restorative capabili-

ties of conditional generative adversarial networks. We first

propose a competitive single-image baseline capable of es-

timating the raindrop locations in a self-supervised man-

ner, and then use it to bootstrap our novel spatio-temporal

architecture. This shows encouraging performance when

compared to both state of the art single-image de-raining

methods, and recent video-to-video translation approaches.

1. Introduction

Raindrops adherent to camera lenses can severely de-

grade image quality and represent a major challenge for

vision systems where weather independent reliability is

required such as advanced driver-assistance systems, au-

tonomous driving or robotics. Due to their shape, raindrops

reflect light rays from a wider area similarly to fish-eye

lenses. Moreover, given how close they are to the camera

sensor, they are often out of focus.

Despite the similarity of the adherent raindrop removal

problem to more common tasks such as image denoising

and bad weather visibility enhancing (e.g. fog, haze, rain

streaks), removing raindrops from camera lenses has some

key differences which often require specifically designed al-

gorithms. Indeed, while denoising, de-fogging or de-hazing

can be addressed as a global image transformation problem

[33, 6, 27], de-raining requires some cues about where the
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Figure 1: Examples de-rained with our method. First row:

Synthetic raindrops, second row: Real

degradation occurs in the image, often obtained in the form

of raindrop detections or attention maps [21, 22, 23, 13].

One of the major issues faced when tackling the raindrop

removal problem is the lack of available data, especially in

the video domain. The most recent and promising meth-

ods require (clean, rainy) image pairs, which are inherently

hard to obtain in real-world scenarios. Trying to tackle this

issue, Qian et al. [21] recently proposed the DeRaindrop

dataset, which while being an invaluable contribution, still

suffers from its small size and occasional slight misalign-

ments between clean and rainy images. Most critically, due

to the complex requirements of the real world acquisition

process, it only features a small variance of raindrop dis-

tributions and backgrounds. On the other hand, synthetic

data has been used in the past [22], but under very limiting

assumptions such as raindrops being sphere sections. As

our first contribution, we design a synthetic raindrop gen-

eration method that uses computer graphics to superimpose



photo-realistic raindrops over images and videos, simulat-

ing the complex interactions between light and droplets.

This results in large quantities of data that we empirically

show to not only allow experiments on otherwise unavail-

able datasets, but also improve the generalization capabili-

ties over existing datasets such as [21].

Exploiting this new and large quantity of photo-realistic

data, we address the adherent raindrop removal problem

by designing a novel neural network that relies on spatio-

temporal information for removing raindrops. We build our

architecture in two steps: First we design a single-image

baseline network that uses attention-based location cues to

remove raindrops from the first few frames of a sequence.

Then, our spatio-temporal model is initialized using these

results and proceeds to de-rain the video on-line and in a

spatially and temporally consistent manner thanks to the

ability of generative adversarial networks to generate high

quality and realistic imagery. Examples of our results can

be seen in Fig. 1.

To summarize, in this paper we make the following con-

tributions:

• We design a computer-graphics based method for su-

perimposing photo-realistic raindrops to real-world

images capable of generating much broader raindrop

distributions than the ones available in current public

datasets.

• We propose a competitive single-image de-raining

baseline that relies on a novel self-supervised raindrop

location estimation process, thus removing the limiting

requirement of localization ground truth masks.

• We develop a novel spatio-temporal de-raining model

that leverages the temporal robustness of explicitly en-

coding optical flow information and the image syn-

thesis capabilities of generative adversarial networks.

To the best of our knowledge, this is the first attempt

at using generative adversarial networks for spatio-

temporal raindrop removal.

2. Related Work

Recent methods tackling raindrop removal can be di-

vided in two main categories: single-image and video

based.

Single-image removal: Methods that only use single

images for detection and removal [26, 18, 4, 25, 21] tradi-

tionally relied on hand-crafted image features. For example,

Wu et al. [26] analyze color, shape and texture in an image

to identify potential regions of interest, and use a saliency-

driven approach to obtain the final localization map. Once

raindrop locations are obtained and appropriately pruned of

false positives via SVM classification, standard image in-

painting techniques are used to reconstruct the underlying

image. More recently, Eigen et al. [4] tackle the removal of

raindrops and other small drop-like (e.g. mud) degradations

using one of the first approaches based on a convolutional

neural network. Using a fairly shallow model (3 Conv lay-

ers) and a standard MSE loss they remove drops but, due

to the small capacity of their network and the known issues

with MSE-based optimization, results tend to be blurry and

cannot cope with different raindrops distributions, in partic-

ular bigger and more out of focus drops. The current state

of the art results for single-image raindrop removal are ob-

tained by the method by Qian et al. [21]. Not dissimilarly

from the use of saliency in [26], they rely on the idea of

guiding the removal through an attention-based mechanism.

In particular, they use a convolutional LSTM to estimate

raindrop locations in the spatial domain, and exploit this in-

formation in a GAN framework where both generator (the

remover) and discriminator benefit from the attention-based

localization. The main drawback of this approach is the way

the attention maps are learned: The authors rely on super-

vised training and ground truth location masks, which are

inherently hard to obtain. They automatically compute the

location masks via image processing, which often results in

poor quality ground truths. Differently from them, we pro-

pose a novel method for estimating the localization maps in

a completely self-supervised way, both removing the need

for hard to obtain ground truth and predicting better location

maps thanks to not having to learn from low quality binary

masks.

Spatio-temporal removal: On the other hand, re-

searchers have also been using video information to tackle

the raindrop detection and removal problem [22, 31, 30, 18],

generally showing improved performance when relying

on both spatial and temporal information. In particular,

Nashashibi et al. [18] rely on blur detection and edge (or

lack of thereof) estimation to propose candidate regions for

raindrops, and validate them by using spatio-temporal cor-

relation between ROIs. Yamashita et al. [29, 28] propose

two similar methods for removing adherent raindrops us-

ing multiple images (stereo in [29], a monocular video se-

quence in [28]). In [29], the authors use stereo-based dispar-

ity and correlation for each pixel to detect raindrops and in-

terpolate the corrupted zones between the two views, under

the assumption that the parts of the image that are occluded

by raindrops in one view will be visible in the other one.

In [28], a similar process is applied but in the temporal do-

main using a monocular video sequence. Differently, You et

al. [30] compute optical flow and dense trajectories and ex-

ploit motion inconsistencies caused by occluding raindrops.

Detection is cast as a labeling problem in a Markov Ran-

dom Field framework, where the motion consistency is used

along with appearance and sharpness consistencies. Finally,

removal is performed via trajectory-based video comple-

tion, ensuring both spatial and temporal consistency. The



Figure 2: Stages of raindrop generation, from computing

refraction direction, to color sampling, to defocus and com-

positing.

authors later extend their method in [31], where they show

improved results by incorporating a deeper analysis of the

blurriness of a raindrop and performing video completion

dependent from the type of blur and thus information that

can be recovered from the raindrop itself.

To the best of our knowledge, no methods relying on

modern deep neural networks for spatio-temporal adher-

ent raindrop removal currently exist. This is likely due to

two major factors: The lack of video-based datasets of suit-

able size, and the significantly more demanding hardware

requirements of video-based deep learning, for which only

recent advancements in GPU technology enabled many ap-

plications.

3. Generating Photo-realistic Raindrops

To address the lack of data in the field, in this paper we

propose to use computer graphics and leverage the research

that has been put into screen-space post-processing tech-

niques to augment large quantities of image data that are

already publicly available. Specifically, for generating our

raindrops we combine and modify two screen-space effects

commonly used in games: Refraction and depth-of-field.

Screen-Space Refraction: The first stage in our rain-

drop synthesis process is generating the refraction direction

buffer. This is an off-screen image which is used to de-

termine, for each pixel of the screen, what portion of the

background image should be used to render the raindrop

refraction. Accurate modeling of the raindrop surface nor-

mal [23] and calculation of the vector of refracted light is

possible. However, since we do not have a 3D scene to

work with, and therefore cannot perfectly recreate refrac-

tion through a raindrop, our goal in this experiment was to

reproduce raindrops with subjectively correct appearance.

An individual raindrop is an informational texture, where

the red and green channels encode the refraction vector, and

the blue channel encodes a refraction multiplier, simulating

the thickness of the drop.

When we have built our refraction direction buffer, we

use a fragment shader to build a second buffer containing

the refracted background image called the refraction color

buffer. The following steps are executed for each pixel of

the destination, in our case, the refraction color buffer:

• Sample the refraction direction buffer at the same po-

sition of our current pixel.

• Multiply the direction buffer’s red and green channels

by the blue channel, and add the resulting vector to the

current pixel’s position.

• Rescale the alpha channel of the direction buffer from

0.0-1.0 to a narrow range (say, 0.4-0.6) to make the

sharp contour of the drop.

• At the new offset position, look up the color of the

background and output it as the refracted color, along

with the alpha value.

The resulting refraction color buffer already looks like rain-

drops on a transparent background, but it is virtually impos-

sible for both a distant background and water on the lens to

be completely in focus. Hence, we use this reflection color

buffer as an input to a second process: Screen space depth

of field.

Defocus Blur and Bokeh: Light passing through rain-

drops will be substantially out of focus if the background is

in focus as the drops are virtually guaranteed to be behind

the focal plane. Light traveling through a raindrop and hit-

ting the image sensor in these conditions is defocused and

spread out over an area referred to as the circle of confu-

sion. Subjectively, low contrast regions do appear blurred,

but bright high contrast regions expand into distinct circles

referred to by photographers as “bokeh.”

The analogous image processing operation is convolv-

ing the in-focus image with a disk. Ergo, no blur can ac-

curately reproduce the defocus phenomena. To produce a

defocused depth-of-field effect we use an approximation of

this disk convolution called Bokeh Splatting [17, 14]. Note

that, since we do not have a depth map for our backgrounds,

we assume that light defocused by raindrops will have the

same sized bokeh shape. To begin, when we build the re-

fraction color buffer, we save the location and color of that

pixel to a list of “rays of light,” but only if a drop is present

(the alpha channel is greater than zero.) Next, we transform

our list of pixels into textured squares representing individ-

ual bokeh shapes with a geometry shader. This draws tens

of thousands of transparent bokeh shapes over the back-

ground, each corresponding to a single ray. These shapes

use the color we saved from the refraction color buffer, and

we make the disks transparency inversely proportional to

luminance of their color, so dark refractions have less influ-

ence on the final image. To properly reproduce the appear-

ance of a raindrop obstructing the underlying background,

these disks are stacked using alpha blending rather than the

additive blending, as additive blending cannot remove light

from scene.



Figure 3: Transition from in-focus to extreme defocus.

This has one significant drawback: Drawing order mat-

ters. In a real image, a defocused bright light in darkness

should result in a single bright bokeh on a dark field. Us-

ing our technique that light’s bokeh could get buried under

disks representing dark pixels. The list of pixels is built in

the fragment shader, so the order in which pixels are added

to the list is nondeterministic. Our solution is to sort the list

of pixels by their luminance, so that the disks are rendered

dark-to-light, which accurately reproduces the “bloom” ef-

fect of bright light and makes the brightest bokeh the most

clearly visible. Finally, to achieve a realistic range of fo-

cus, we add tunable parameters to our bokeh splatting ef-

fect so that defocus is defined by a parameter ranging from

fully in focus at 0 to nearly invisibly out of focus at 1. Fur-

thermore, bokeh size increases linearly with defocus while

bokeh opacity decreases exponentially with defocus (see

Fig. 3).

4. Proposed Method

After introducing our approach for generating high-

fidelity synthetic raindrops, in this section we first present

our baseline single-image architecture, and then discuss

how to extend it to account for temporal information in the

raindrop removal pipeline.

4.1. Single-image Raindrop Removal

Our single-image baseline network is built on two major

components: A raindrop location estimator and a remover.

The location estimator relies on the idea that a rainy image

R can be expressed as R = C+A where C is the clean im-

age and A is an additive map that represents the raindrops.

Differently from Qian et al. [21], this allows the location

map to be learned in a self-supervised manner that does not

require ground truth locations (i.e. binary raindrop masks).

To estimate this location map our architecture is based on

the popular encoder-decoder paradigm [10]. In particular,

two strided convolutional layers encode the input image and

are followed by a feature extractor that uses residual blocks

[7] to propagate information. The final output is obtained

by decoding these features with two transposed convolu-

tion layers. To train the location estimation without location

ground truth, the following objective function is minimized:

LA(R,R′) = ||R−R′||2
2
, with R′ =

C +GA(R)

2
(1)

Figure 4: Self-supervised additive map for our location es-

timation process.

where R′ is the reconstructed rainy image obtained by

summing the additive location map obtained from the gen-

erator network GA(R) to the clean image. The idea behind

this loss function is to exploit the cyclic relationship be-

tween rainy and clean images to avoid direct supervision in

term of raindrop locations (see Fig. 4 for a graphical exam-

ple of this process). Since our goal is to learn an additive

map A that produces plausible results when added to the

clean image, we add a second adversarial term to the loss

function [5]. Note that, in place of the popular VGG Per-

ceptual loss [12], in Equation 1 a L2 loss is chosen. This is

because the use of the VGG perceptual loss is not suitable

to evaluate rainy images due to the lack of raindrops on the

images used to train said VGG network, resulting in its fea-

tures being unreliable. On the other hand, the L2 loss does

not suffer from this issue and is thus more suitable in this

context.

The location map estimated by this first step is then fed to

the second part of the network along with the rainy image R

through channel-wise concatenation. Since they both output

a three channel image, the raindrop remover shares the same

architecture of the location estimator with the exception of

the number of input channels which is doubled.

This second part of the network is also trained using a

combination of adversarial and content losses. As a content

loss we adopt the VGG Perceptual loss [12]. The additive

map estimator and the remover are jointly trained optimiz-

ing this final objective function:

L(R,R′, C, C ′) = αLA(R,R′) + αLV GG(C,C
′)+

βLAdv(R,R′) + βLAdv(C,C
′)

(2)

where LV GG is the VGG perceptual loss and LAdv are

the two adversarial components. The two weights α and β

are empirically set to 10, 1 respectively.

4.2. Spatio-temporal Raindrop Removal

In this section we present our solution for extending the

baseline architecture with temporal information. Follow-

ing [24], we model the temporal dynamics by making a

Markov assumption, where each video frame is generated

sequentially based on the previous T frames. Formally,



Figure 5: Architecture of our spatio-temporal de-raining model.

this allows us to model the current de-rained frame C ′

t as

C ′

t = F(C ′t−1

t−T , Rt) where F is the video de-raining func-

tion implemented by our generator network. The first T −1
frames are de-rained using the single-image architecture de-

scribed in Section 4.1 (we empirically fix T = 3). Our pre-

liminary experiments showed no significant gain in perfor-

mance when increasing the temporal width of the method

further (while significantly increasing training time).

Traditional computer vision methods [22, 31, 30] often

relied on optical flow features to detect raindrops in images.

For this reason, we explicitly include flow information in

our generator network and use it to better localize raindrops

in the current frame. Joint learning of optical flow is shown

to be beneficial to several tasks [19, 3, 34], hence instead

of just having optical flow as an additional input, we jointly

learn optical flow inside our generator. Ground-truth opti-

cal flow is traditionally hard to obtain, and for this specific

task a coarse flow is sufficient to guide the learning of tem-

poral features. For these reasons, we follow recent meth-

ods estimating flow in a self-supervised manner [24, 1, 11]

by optimizing a reconstruction loss on the warping between

two adjacent frames. Furthermore, similarly to [24] we also

drive the learning of the optical flow through an adversarial

objective where the real flow between two adjacent frames

is obtained using a pretrained FlowNet 2 [9]. We refer to

Figure 5 for a graphical explanation of our spatio-temporal

generator architecture: First, two encoder branches extract

features from the current rainy image Rt and from the pre-

vious T − 1 de-rained images C ′t−1

t−T . The resulting feature

maps are concatenated channel-wise and fed into two new

branches: Additive map and optical flow estimation. The

optical flow branch is followed by a decoder that outputs

the flow between frames t and t− 1. The additive map esti-

mation feature maps are concatenated channel-wise with the

flow features before being decoded into the actual additive

map, explicitly injecting strong temporal information in the

location estimation. The de-raining branch then proceeds

to use the additive map estimation features for producing

C ′

t. We refer to the additional material for a layer-by-layer

breakdown of our generator architecture and details on the

discriminator networks used for the adversarial objectives.

To train this spatio-temporal model, we employ a com-

bination of different loss functions.

Optical flow: As stated above, we learn optical flow in a

self-supervised manner. Being Ft the flow between frames

t − n and t predicted by our flow branch, F̃t the flow be-

tween the same inputs computed using [9] and Wt the re-

sults of warping Ct−n with Ft, we train our flow branch by

optimizing a combination of the following objectives:

LW = ||Ct −Wt||
2

2
(3)

LFAdv
= E[logDF (F̃t)] + E[log(1−DF (Ft))] (4)

where DF is our flow discriminator. To learn more robust

temporal features, we progressively increase the size of the

temporal interval considered, with n = 1, . . . , T .

Additive location map: following the same insight used

for our single-image baseline, for the additive map estima-

tion branch we use Equation 1 as content loss and further

add the adversarial term:

LAAdv
= E[logDI(R)] + E[log(1−DI(R

′))] (5)

with DI being our image discriminator.

De-raining: To train our final de-raining branch, we op-

timize the VGG perceptual loss [12] as content loss and an

additional adversarial objective on the de-rained output:



(a) Rainy image (b) Additive map (c) De-rained result

Figure 6: Example of additive map computed by our self-

supervised location estimation branch.

LV GG =
∑

j

1

cjhhwj

||φj(Ct)− φj(C
′

t)||
2

2
(6)

LC′

Adv
= E[logDI(C̃t)] + E[log(1−DI(C

′

t))] (7)

where cjhhwj are the shapes of the j − th feature map φj

of the pre-trained VGG network and DI is the same image

discriminator used in Eq. 5.

5. Experimental Evaluation

Obtaining real-world video sequences with clean, rainy

pairs is inherently hard, requiring either a very complex

hardware setup or severely constraining the type of scenes

acquired. While such a dataset exists for single images [21],

large scale video-based raindrop removal is still largely un-

explored. For this reason, we choose to rely on a photo-

realistic synthetic data generation process to generate train-

ing and testing data. Using the technique described in Sec-

tion 3, we augment videos from the DR(eye)VE dataset

[20] by adding photo-realistic raindrops. The reasons for

choosing the DR(eye)VE dataset are twofold: First, it cur-

rently is the biggest automotive (arguably the prime setting

for raindrop removal) dataset providing high-quality videos

of driving, featuring more than 500,000 frames; second,

its sequences are divided by weather conditions which al-

lows us to synthetically augment cloudy sequences obtain-

ing very realistic results. We select 11 sequences out of the

DR(eye)VE dataset for training and divide them into 2750

clips 30 frames long, each one with a different synthetic

raindrop distribution. For testing, we use 2 more sequences

resulting in 500 clips of 30 seconds each.

5.1. Image Quality Evaluation

We begin our evaluation by analyzing the performance

of our de-raining approach using image quality assessment

metrics such as PSNR and SSIM. While these metrics do

not account for any temporal aspect, they are commonly

used to evaluate image quality and allow us to provide con-

Table 1: Image quality assessment evaluation on the De-

Raindrop dataset. Baseline indicates the results of our

single-image network.
PSNR SSIM

Rainy 24.20 0.875

Eigen13 [4] 28.59 0.673

Pix2Pix [10] 30.14 0.830

Qian et al. [21] 31.57 0.902

Ours 31.94 0.945

text for our baseline performance by comparing it to the

current state of the art for image de-raining.

DeRaindrop Dataset: The first experiment is performed

on the DeRaindrop dataset [21]. Following the experimen-

tal setup of Qian et al., we use the test a test set for our eval-

uation. Since the dataset does not provide video sequences

but only single images, we evaluate the performance of our

single-image baseline and compare it to the current state of

the art.

In Table 1 we report the results of evaluating raindrop

removal on the DeRaindrop dataset where we compare our

baseline network against the current state of the art for sin-

gle images, the method by Qian et al. To provide a bet-

ter context, we also report the results of Eigen13 [4] and

Pix2Pix [10]. It can be seen that our baseline network out-

performs recent single-image de-raining methods on both

PSNR and SSIM metrics, with a particularly large gap in

the second one. Compared to Qian et al. [21], we argue that

our self-supervised location estimation is capable of pro-

ducing better attention maps. Indeed, Qian et al. rely on

a supervised process that is trained with automatically gen-

erated ground truths obtained by applying image process-

ing techniques such as thresholding and morphology to the

difference between rainy and clean images, often resulting

in imprecise ground truth masks. Slight misalignments be-

tween the image pairs, objects moving in the scene or parts

of the image not correctly filtered by the thresholding step

contribute to reduce the quality of the ground truth, hinder-

ing their learning process. On the other hand, thanks to the

self-supervised location estimation described in Section 4.1,

we do not suffer from this issue and thus we obtain better

de-raining performance. Figure 7 reports qualitative exam-

ples of this evaluation.

DR(eye)VE dataset: Furthermore, we evaluate the de-

raining performance on the DR(eye)VE dataset augmented

with synthetic raindrops. Here, we measure the perfor-

mance of our baseline method and of the full spatio-

temporal approach and compare them against the current

state of the art for single-image de-raindrop [21]. To es-

tablish a spatio-temporal baseline we compare against the

recent video-to-video translation method by Wang et al.,

Vid2Vid [24]. Furthermore, due to the lack of spatio-

temporal raindrop removal methods, we evaluate the cur-

rent state of the art for rain-streak removal [15]. To provide



Figure 7: Qualitative results of de-raining on the DeRaindrop test-set

a fair comparison, these methods are re-trained on the same

synthetic training-set used for the training of our spatio-

temporal approach. Note that differently from [21], we train

their method using ground-truth location masks obtained

from our synthetic generation instead of computing them

by subtracting rainy and clean frames, a procedure subject

to error and noise. As for [15], the same two-stages training

approach proposed in the paper is used. Despite holding the

current state of the art for spatio-temporal raindrop removal,

the methods by You et al. [30, 31] are not included in this

evaluation. While obtaining promising results on their very

constrained data, these methods are not suitable for real-

world raindrop removal and cannot be successfully applied

to sequences from the DR(eye)VE dataset. We refer the

reader to the supplementary material for a broader discus-

sion on the reason behind the failure of [30, 31].

As Table 2 shows (Rainy column) the synthetically aug-

mented DR(eye)VE dataset suffers a more severe degrada-

tion compared to the DeRaindrop dataset (PSNR 22.07 vs

24.20, SSIM 0.725 vs 0.875). Furthermore, thanks to the

ability to generate different raindrop distributions, a much

broader variety of raindrop patterns, sizes and types of fo-

cus is present compared to the DeRaindrop dataset where

all the images have been acquired by spraying water on

a glass. According to both PSNR and SSIM, our spatio-

temporal method results in the best image quality by a large

margin, followed by our single-image baseline. Despite

some similarities between the two tasks and the excellent

results it achieves on video rain-streak removal, the poor

performance of the method by Liu et al [15] is due to the

Table 2: Image quality assessment evaluation on the De-

Raindrop dataset. Baseline indicates the results of our

single-image network.
PSNR SSIM

Rainy 22.07 0.725

Qian et al. [21] 26.29 0.961

Baseline 29.13 0.967

Vid2Vid [24] 28.64 0.959

Liu et al [15] 23.26 0.938

Ours 32.44 0.974

significantly different temporal dynamics. In fact, video

rain-streak removal relies on the assumption of fast-moving

rain-streaks and tackles the problem in a way which is more

similar to video denoising, which is unsuitable for raindrop

removal.

5.2. Temporal Consistency

To evaluate the quality of the de-rained video sequences

taking into account the temporal aspects of videos, we rely

on the same experimental pipeline proposed by Wang et al.

[24]. This evaluation procedure is motivated by the two

use-cases of a video-based de-raining method: Either the

results are destined to a human viewer (e.g. de-raining a

back-facing camera on a car for safety or parking), or used

for further processing by another network (e.g. to improve

object detection while driving in a rainy day). To account

for these use-cases, the two metrics used are:

• Human Preference Score (HPS) evaluates the visual



Table 3: Evaluation with spatio-temporal metrics.

Qian et al. [21] Baseline Vid2Vid [24] Ours

HPS 0.12 0.08 0.05 0.75

FID 3.25 4.24 8.83 1.51

quality of the outputs. Results from the different meth-

ods evaluated are shown to people and they are asked

to express a preference indicating which one has the

best quality both in terms of de-raining performance,

overall video quality and temporal consistency of the

results. Following [24], we employ a pool of 10 dif-

ferent subjects each one viewing 15 randomized se-

quences from the de-rained test-set.

• Fréchet Inception Distance (FID)[8] is used to mea-

sure both visual quality and temporal consistency of a

video. Using a pre-trained network as feature extrac-

tor, spatio-temporal features are computed from both

the clean and the de-rained videos and their statistics

are compared. More formally, being µ, µ̃ the mean of

the computed feature maps for respectively the clean

and de-rained videos and Σ, Σ̃ their covariance matri-

ces, the FID is computed as ||µ− µ̃||2 + Tr(Σ + Σ̃−

2
√

ΣΣ̃). Here, the popular I3D network [2] is used as

inception network (layer maxpool3d 5a 2x2).

Table 3 reports the results of this evaluation. Surpris-

ingly, despite both metrics accounting for the temporal

consistency of the resulting videos, Vid2Vid performs the

worst. The poor results of this temporal baseline are due

to the fact that while producing videos that are overall tem-

porally consistent, Vid2Vid often fails to remove raindrops

and introduces artifacts in their place. This confirms the

observation that raindrop removal requires location infor-

mation and cannot directly be treated as a image or video

translation problem. Besides this, the spatio-temporal eval-

uation confirms that our method is largely preferred by hu-

man observers and also outputs videos that result in activa-

tion maps much more similar to the original clean videos.

5.3. Synthetic Data for Improving Domain Specific
De-Raining

Here we discuss a second application of the synthetic

raindrop generation approach described in Section 3: Do-

main specific data augmentation. We propose to evaluate

the improvement in terms face reconstruction and face de-

tection under real-world heavy raindrops and use our single-

image baseline network as de-raining method and the De-

Raindrop dataset [21] as data baseline. Note that due to the

specific setup in which the dataset has been acquired, no

human beings nor faces are included in the training data.

We train our network twice with the same training setup

except that the second time we only use half of the De-

Raindrop dataset, and use as second half a set of images

Figure 8: From left to right: Rainy image, de-rained without

domain specific images, de-rained with 50% synthetically

augmented CelebA images.

of faces with synthetic rain on them, randomly sampled

from the popular CelebA dataset [16]. Using an acquisi-

tion rig similar to the one used in [21], we spray water and

collect video sequences with real-world raindrops. In each

of the collected videos, one and only one face is always

present, resulting in an obvious ground truth for detection

recall. De-raining the videos with the two networks and

applying the popular MTCNN face detector [32], we show

an increase in detection recall from the 0.65 of the network

trained only on DeRaindrop to 0.76 when using synthetic

data augmentation, compared to a recall for the rainy image

of 0.56. This confirms the ability of our synthetic generation

method to produce photo-realistic raindrops and shows how

augmenting a generic dataset with domain specific rainy im-

ages can significantly improve the performance. Figure 8

shows qualitative examples of face reconstruction using the

two networks. It can be seen how despite neither network

achieves perfect de-raining in such challenging conditions,

augmenting the training set with synthetic raindrops over

faces greatly improves the face reconstruction.

6. Conclusions

In this paper we presented the first deep-learning based

method for adherent raindrop removal using video informa-

tion. Thanks to our baseline’s capability of estimating rain-

drop locations in a self-supervised manner, we remove the

requirement for binary ground truth location masks. This

not only produces good results with the current datasets, but

will also be beneficial in the future when switching to new

and real-world datasets. Our spatio-temporal architecture

shows results that are often preferred to existing methods

both by human observer and by inception scores, validat-

ing our pipeline. To foster future research on the topic, we

plan to release both the source code of our method and the

computer-graphics based raindrop generation tool.
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