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Abstract

Deep learning has enabled impressive progress in the
accuracy of semantic segmentation. Yet, the ability to es-
timate uncertainty and detect anomalies is key for safety-
critical applications like autonomous driving. Existing un-
certainty estimates have mostly been evaluated on simple
tasks, and it is unclear whether these methods general-
ize to more complex scenarios. We present Fishyscapes,
the first public benchmark for uncertainty estimation in the
real-world task of semantic segmentation for urban driv-
ing. It evaluates pixel-wise uncertainty estimates towards
the detection of anomalous objects in front of the vehicle.
We adapt state-of-the-art methods to recent semantic seg-
mentation models and compare approaches based on soft-
max confidence, Bayesian learning, and embedding density.
Our results show that anomaly detection is far from solved
even for ordinary situations, while our benchmark allows
measuring advancements beyond the state-of-the-art.

1. Introduction

Deep learning has had a high impact on the precision of
computer vision methods [1—4] and enabled semantic un-
derstanding in robotic applications [5—7]. However, while
these algorithms are usually compared on closed-world
datasets with a fixed set of classes [8, 9], the real-world
is uncontrollable, and a wrong reaction by an autonomous
agent to an unexpected input can have disastrous conse-
quences [10].

As such, to reach full autonomy while ensuring safety
and reliability, decision-making systems need information
about outliers and uncertain or ambiguous cases that might
affect the quality of the perception output. As illustrated
in Figure 1, Deep CNNs react unpredictably for inputs that
deviate from their training distribution. In the presence of
an outlier object (a dog), this is interpolated with available
classes (road) at high confidence. Existing research to de-
tect such behavilour is often labeled as out-of-distribution
(OoD), anomaly, or novelty detection, and has so far fo-
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cused on developing methods for image classification, eval-
uated on simple datasets like MNIST or CIFAR-10[11-19].
How these methods generalize to more elaborate network
architectures and pixel-wise uncertainty estimation has not
been assessed.

Motivated by these practical needs, we introduce
Fishyscapes', a benchmark that evaluates uncertainty esti-
mates for semantic segmentation. The benchmark measures
how well methods detect potentially hazardous anomalies
in driving scenes. Fishyscapes is based on data from
Cityscapes [9], a popular benchmark for semantic seg-
mentation in urban driving. Our benchmark consists of
(i) Fishyscapes Static, where images from Cityscapes are
overlayed with objects, and (ii) Fishyscapes Lost & Found,
that builds up on a road hazard dataset collected with the
same setup as Cityscapes [20] and that we supplemented
with labels. To further test whether methods overfit on the
set of anomalous objects in these two datasets, we (iii) intro-
duce the dynamic dataset Fishyscapes Web that updates ev-
ery three months and overlays Cityscapes images with new
objects found on the web.

To provide a broad overview, we adapt a variety of meth-
ods to semantic segmentation that were originally designed
for image classification, with examples listed in Figure 1.
Because segmentation networks are much more complex
and have high computational costs, this adaptation is not
trivial, and we suggest different approximations to over-
come these challenges.

Our experiments show that the embeddings of interme-
diate layers hold important information for anomaly detec-
tion. Based on recent work on generative models, we de-
velop a novel method using density estimation in the em-
bedding space. However, we also show that varying visual
appearance can mislead feature-based, but also other meth-
ods. None of the evaluated methods achieves the accuracy
required for safety-critical applications. We conclude that
these remain open problems, with our benchmark enabling
the community to measure progress and build upon the best
performing methods so far.

To summarize, our contributions are the following:

— The first public benchmark evaluating pixel-wise uncer-
tainty estimates in semantic segmentation, with a dy-
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Figure 1. Example of out-of-distribution (QOoD) detection: We evaluate the ability of Bayesian (top) and non-Bayesian (bottom) methods
to segment OoD objects (here a dog) based on a semantic segmentation model. Better methods should assign a high score (dark) to pixels
belonging to the object only, and a low score (white) to in-distribution (background) pixels. The semantic prediction is not sufficient.

namic, self-updating dataset for anomaly detection.

— We report an extensive evaluation with diverse state-
of-the-art approaches to uncertainty estimation, adapted
to the semantic segmentation task, and present a novel
method for anomaly detection.

— We show a clear gap between the alleged capabilities
of established methods and their performance on this
real-world task, thereby confirming the necessity of our
benchmark to support further research in this direction.

2. Related Work

Here we review the most relevant works in semantic seg-
mentation and their benchmarks, and methods that aim at
providing a confidence estimate of the output of deep net-
works.

2.1. Semantic Segmentation

State-of-the-art models are fully-convolutional deep net-
works trained with pixel-wise supervision. Most works [,
21-23] adopt an encoder-decoder architecture that initially
reduces the spatial resolution of the feature maps, and sub-
sequently upsamples them with learned transposed convo-
lution, fixed bilinear interpolation, or unpooling. Addition-
ally, dilated convolutions or spatial pyramid pooling enlarge
the receptive field and improve the accuracy.

Popular benchmarks compare methods on the segmen-
tation of objects [24] and urban scenes. In the latter case,
Cityscapes [9] is a well-established dataset depicting street
scenes in European cities with dense annotations for a lim-
ited set of classes. Efforts have been made to provide
datasets with increased diversity, either in terms of environ-
ments, with WildDash [25], which incorporates data from
numerous parts of the world, or with Mapillary [26], which
adds many more classes. Like ours, some datasets are ex-
plicitly derived from Cityscapes, the most relevant being

Foggy Cityscapes [27], which overlays synthetic fog onto
the original dataset to evaluate more difficult driving condi-
tions. The Robust Vision Challenge” also assesses general-
ization of learned models across different datasets.

Robustness and reliability are only evaluated by all these
benchmarks through ranking methods according to their
accuracy, without taking into accounts the uncertainty of
their predictions. Additionally, despite one cannot assume
that models trained with closed-world data will only en-
counter known classes, these scenarios are rarely quanti-
tatively evaluated. To our knowledge, WildDash [25] is
the only benchmark that explicitly reports uncertainty w.r.t.
OoD examples. These are however drawn from a very lim-
ited set of full-image outliers, while we introduce a diverse
set of objects, as WildDash mainly focuses on accuracy.

Bevandic et al. [28] experiment with OoD objects for se-
mantic segmentation by overlaying objects on Cityscapes
images in a manner similar to ours. They however assume
the availability of a large OoD dataset, which is not realis-
tic in an open-world context, and thus mostly evaluate su-
pervised methods. In contrast, we assess a wide range of
methods that do not require OoD data. Mukhoti & Gal [29]
introduce a new metric for uncertainty evaluation and are
the first to quantitatively assess misclassification for seg-
mentation. Yet they only compare few methods on normal
in-distribution (ID) data.

2.2. Uncertainty estimation

There is a large body of work that aims at detecting OoD
data or misclassification by defining uncertainty or confi-
dence estimates.

The softmax score , i.e. the classification probability of the
predicted class, was shown to be a first baseline [13], al-
though sensitive to adversarial examples [30]. Its perfor-
mance was improved by ODIN [3 1], which applies noise to
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the input with the Fast Gradient Sign Method (FGSM) [30]
and calibrates the score with temperature scaling [32].

Bayesian deep learning [33, 34] adopts a probabilistic
view by designing deep models whose outputs and weights
are probability distributions instead of point estimates. Un-
certainties are then defined as dispersions of such distri-
butions, and can be of several types. Epistemic uncer-
tainty, or model uncertainty, corresponds to the uncertainty
over the model parameters that best fit the training data
for a given model architecture. As evaluating the poste-
rior over the weights is intractable in deep non-linear net-
works, recent works perform Monte-Carlo (MC) sampling
with dropout [35] or ensembles [36]. Aleatoric uncertainty,
or data uncertainty, arises from the noise in the input data,
such as sensor noise. Both have been applied to seman-
tic segmentation [34], and successively evaluated for mis-
classification detection [29], but only on data and not for
anomaly detection. Malinin & Gales [ 1] later suggested
that epistemic and aleatoric uncertainties are only meaning-
ful for inputs that match the training distribution, and that
a third kind, distributional uncertainty, is required to rep-
resent model misspecification with respect to OoD inputs.
Their approach however was only applied to image clas-
sifications on toy datasets, and requires OoD data during
the training stage. To address the latter constraint, Lee et
al. [37] earlier proposed a Generative Adversarial Network
(GAN) that generates OoD data as boundary samples. This
is however not possible for complex and high-dimensional
data like high-resolution images of urban scenes.

OoD and novelty detection is often tackled by non-
Bayesian approaches, which explicitly do not require ex-
amples of OoD data at training time. As such, feature intro-
spection amounts to measuring discrepancies between dis-
tributions of deep features of training data and OoD sam-
ples, using either nearest neighbour (NN) statistics [12, 38]
or Gaussian approximations [14]. These methods have the
benefit of working on any classification model without re-
quiring specific training. On the other hand, approaches
specifically tailored to perform OoD detection include one-
class classification [15, 16], which aim at creating discrim-
inative embeddings, density estimation [17, 39], which es-
timate the likelihood of samples w.r.t to the true data dis-
tribution, and generative reconstruction [18, 19], which use
the quality of auto-encoder reconstructions to discriminate
OoD samples. Richter et al. [40] apply the latter to simple
real images recorded by a robotic car and successfully de-
tect new environments. Yet all of these methods are only
applied to image classification models for OoD detection
on toy datasets or for adversarial defense. As such, it is
not trivial to adapt these methods to the more complex ar-
chitectures used in semantic segmentation, and to the scale
required by large input images.

3. Benchmark Design

In the following we describe our Fishyscapes bench-
mark: (i) the overall motivations and philosophy; (ii) the
datasets and their creation; and (iii) the metrics used for
comparisons of methods.

3.1. Philosophy

Because it is not possible to produce ground truth for
uncertainty values, evaluating estimators is not a straight-
forward task. We thus compare them on the the proxy clas-
sification task [13] of detecting anomalous inputs. The un-
certainty estimates are seen as scores of a binary classifier
that compares the score against a threshold and whose per-
formance reflects the suitability of the estimated uncertainty
for anomaly detection. Such an approach however intro-
duces a major issue for the design of a public OoD detection
benchmark. With a publicly available ID training dataset
A and OoD inputs B, it is not possible to distinguish be-
tween an uncertainty method that informs a classifier to dis-
criminate A from any other input, and a classifier trained to
discriminate A from B. The latter option clearly does not
represent progress towards the goal of general uncertainty
estimation, but rather overfitting.

To this end, we (i) only release a small validation set
with associated ground truth masks, while keeping larger
test sets hidden, and (ii) continuously evaluate submitted
methods against a dynamically changing dataset. This setup
preserves the uncertainty as to which anomalous objects
might be encountered in the real world. To encourage un-
supervised methods, we stress that the validation set is for
parameter tuning only, and should not be used to train mod-
els. The evaluation is performed remotely using executables
submitted by the participants.

Using these executables, methods submitted to the
benchmark are continuously evaluated on every new version
of the dynamic dataset. This enables us to evaluate methods
on data that was not existent at the time of submission to the
benchmark, assessing their generalization capabilities. In-
dependent from their submission time, methods can always
be compared using the fixed datasets.

While some of the datasets are synthetically generated,
the Lost & Found data allows to check the consistency of
results between real and synthetic data to identify methods
that rather detect processed images than anomalies.

3.2. Datasets

FS Static is based on the validation set of Cityscapes [9].
It has a limited visual diversity, which is important to make
sure that it contains none of the overlayed objects. In ad-
dition, background pixels originally belonging to the void
class are excluded from the evaluation, as they may be
borderline OoD. Anomalous objects are extracted from the



generic Pascal VOC [24] dataset using the associated seg-
mentation masks. We only overlay objets from classes that
cannot be found in Cityscapes: aeroplane, bird, boat, bot-
tle, cat, chair, cow, dog, horse, sheep, sofa, tvmonitor. Ob-
jects cropped by the image borders or objects that are too
small to be seen are filtered out. We randomly size and
position the objects on the underlying image, making sure
that none of the objects appear on the ego-vehicle. Objects
from mammal classes have a higher probability of appear-
ing on the lower-half of the screen, while classes like birds
or airplanes have a higher probability for the upper half.
The placing is not further limited to ensure each pixel in
the image, apart from the ego-vehicle, is comparably likely
to be anomalous. To match the image characteristics of
cityscapes, we employ a series of postprocessing steps sim-
ilar to those described in [4 1], without those steps that re-
quire 3D models of the objects to e.g. adapt shadows and
lighting. To make the task of anomaly detection harder, we
add synthetic fog [42, 43] on the in-distribution pixels with
a per-image probability. This prevents fraudulent methods
to compare the input against a fixed set of Cityscapes im-
ages. The dataset is split into a minimal public validation
set of 30 images and a hidden test set of 1000 images. It
contains in total around 4.5¢7 OoD and 1.8e9 ID pixels.
The validation set only contains a small disjoint set of pas-
cal objects to prevent few-shot learning on our data creation
method.

FS Web is built similarly to FS Static, but with overlay
objects crawled from the internet using a list of keywords.
Our script searches for images with transparent background,
uploaded in a recent timeframe, and filters out images that
are too small. The only manual process is filtering out im-
ages that are not suitable, e.g. with decorative borders. The
dataset for March 2019 contains 4.9¢7 OoD and 1.8e9 ID
pixels and is not publicly released. As the diversity of im-
ages and color distributions for the images from the web is
much greather than those from Pascal VOC, we also adapt
our overlay procedure. In total, we follow these steps, some
of which were however only added for the FS Web June
dataset:

— in case the image does not already have a smooth alpha
channel, smooth the mask of the objects around the bor-
ders for a small transparency gradient

— adapt the brightness of the object towards the mean
brightness of the overlayed pixels

— apply the inverse color histogram of the Cityscapes image
to shift the color distribution towards the one found on
the underlying image (FS Web Mar has a different color
postprocessing)

— radial motion blur (only FS Web June)

— depth blur based on the position in the image (only FS
Web June)

— color noise

— glow effects to simulate overexposure (only FS Web
June)

As indicated, the postprocessing was improved between it-
erations of the dataset. Because the purpose of the FS Web
dataset is to measure any possible overfitting of the meth-
ods through a dynamically changing dataset, we will con-
tinue to refine also this image overlay procedure at every
iteration of the dataset, updating our method with recent re-
search results.

FS Lost & Found is based on the original Lost & Found
dataset [20]. However, the original dataset only included
annotations for the anomalous objects and a coarse anno-
tation of the road. It does not allow for appropriate eval-
uation of anomaly detection, as objects and road are very
distinct in texture and it is more challenging to evaluate the
anomaly score of the objects compared to building struc-
tures. In order to make use of the full image, we add
pixel-wise annotations that distinguish between objects (the
anomalies), background (classes contained in Cityscapes)
and void (anything not contained in Cityscapes classes).
Additionally, we filter out those sequences where the ‘road
hazards’ are children or bikes, because these are part of reg-
ular Cityscapes data and not visual anomalies. We subsam-
ple the repetitive sequences, labelling at least every sixth
image, and remove images that do not contain objects. In
total, we present a public validation set of 100 images and a
testset of 275 images, based on disjoint sets of locations.
While the Lost & Found images were captured with the
same setup as Cityscapes, the distribution of street scenery
is very different. The images were captured in small streets
of housing areas, industrial areas, or on big parking lots.
The anomalous objects are usually very small and are not
equally distributed on the image. Nevertheless, the dataset
allows to test for real images as opposed to synthetic data,
therefore preventing any overfitting on synthetic image pro-
cessing. This is especially important for parameter tuning
on the validation set.

3.3. Metrics

We consider metrics associated with a binary classifica-
tion task. Since the ID and OoD data is unbalanced, metrics
based on the receiver operating curve (ROC) are not suit-
able. We therefore base the ranking and primary evaluation
on the average precision (AP). However, as the number of
false positives in high-recall areas is also relevant for safety-
critical applications, we additionally report the false posi-
tive rate (FPR) at 95% true positive rate (TPR). This metric
was also used in [ 3] and emphasizes safety.

Semantic classification is not the goal of our benchmark,
but uncertainty estimation and outlier detection should not
come at high cost of performance. We therefore addition-
ally report the mean intersection over union (IoU) of the
semantic segmentation on the Cityscapes validation set.



4. Evaluated Methods

We now present the methods that are evaluated in
Fishyscapes. In a first part, we describe the existing base-
lines and how we adapted them to the task of semantic seg-
mentation. A novel method based on learned embedding
density is then presented. All approaches are applied to
the state-of-the-art semantic segmentation model DeepLab-
v3+[1].

4.1. Baselines

Softmax score. The maximum softmax probability is a
commonly used baseline and was evaluated in [1 3] for OoD
detection. We apply the metric pixel-wise and additionally
measure the softmax entropy, as proposed by [37], which
captures more information from the softmax.

Training with OoD. While we generally strive for methods
that are not biased by data, learning confidence from data
is an obvious baseline and was explored in [44]. As we
are not supposed to know the true known distribution, we
do not use Pascal VOC, but rather approximate unknown
pixels with the Cityscapes void class. In our evaluation, we
(1) train a model to maximise the softmax entropy for OoD
pixels, or (ii) introduce void as an additional output class
and train with it. The uncertainty is then measured as (i) the
softmax entropy, or (ii) the score of the void class.

Bayesian DeepLab was introduced by Mukhoti &
Gal [29], following Kendall & Gal [34], and is the only un-
certainty estimate already applied to semantic segmentation
in the literature. The epistemic uncertainty is modeled by
adding Dropout layers to the encoder, and approximated by
T MC samples, while the aleatoric uncertainty corresponds
to the spread of the categorical distribution. The total un-
certainty is the predictive entropy of the distribution y,

Hylx] = - (;Zyt> log (; Zyt> .

where y! is the probability of class ¢ for sample ¢. The
epistemic uncertainty is measured as the mutual informa-
tion (MI) between y and the weights w,
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Dirichlet Prior Networks [I1] extend the framework
of [33] by considering the predicted logits z as log con-
centration parameters o of a Dirichlet distribution, which
is a prior of the predictive categorical distribution y. In-
tuitively, the spread of the Dirichlet prior should model the
distributional uncertainty, and remain separate from the data
uncertainty modelled by the spread of the categorical distri-
bution. To this end, Malinin & Gales [ 1] advocate to train

the network with the objective:

L(0) = Ep,, [KL [Dir(p|cun)|[p(p/x; 0)]]

+ Ep,.. [KL [Dir(pleow)|[p(plx; 0)]]  (3)
+ CrossEntropy(y, z).

The first term forces ID samples to produce sharp priors
with a high concentration «;,, computed as the product of
smoothed labels and a fixed scale ay. The second term
forces OoD samples to produce a flat prior with oyt = 1,
effectively maximizing the Dirichlet entropy, while the last
one helps the convergence of the predictive distribution to
the ground truth. We model pixel-wise Dirichlet distribu-
tions, approximate OoD samples with void pixels, and mea-
sure the Dirichlet differential entropy.

kNN Embedding. Different works [12, 38] estimate un-
certainty using kNN statistics between inferred embedding
vectors and their neighbors in the training set. They then
compare the classes of the neighbors to the prediction,
where discrepancies indicate uncertainty. In more details,
a given trained encoder maps a test image x’ to an embed-
ding z; = f;(x’) at layer [, and the training set X to a set
of neighbors Z; := £;(X). Intuitively, if x" is OoD, then
7' is also differently distributed and has e.g. neighbors with
different classes. Adapting these methods to semantic seg-
mentation faces two issues: (i) The embedding of an inter-
mediate layer of DeepLab is actually a map of embeddings,
resulting in more than 10,000 kNN queries for each layer,
which is computationally infeasible. We follow [38] and
pick only one layer, selected using the FS Lost & Found
validation set. (ii) The embedding map has a lower reso-
lution than the input and a given training embedding z( 2
is therefore not associated with one, but with multiple out-
put labels. As a baseline approximation, we link zl(l) to
all classes in the associated image patch. The relative den-
> exp (—

sity [38] is then:
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Here, ¢; is the class of z(*) and ¢ is the class of z’ in the
downsampled prediction. In contrast to [38], we found that
the cosine similarity from [12] works well without addi-
tional losses. Finally, we upsample the density of the feature
map to the input size, assigning each pixel a density value.

As the class association in unclear for encoder-decoder
architectures, we also evaluate the density estimation with
k neighbors independent of the class:
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This assumes that an OoD sample x’, with a low density
w.r.t X, should translate into z’ with a low density w.r.t. Z;.

4.2. Learned Embedding Density

We now introduce a novel approach that takes inspiration
from density estimation methods while greatly improving
their scalability and flexibilty.

Density estimation using kNN has two weaknesses. First,
the estimation is a very coarse isotropic approximation,
while the distribution in feature space might be significantly
more complex. Second, it requires to store the embeddings
of the entire training set and to run a large number of NN
searches, both of which are costly, especially for large in-
put images. On the other hand, recent works [17, 39] on
OoD detection leverage more complex generative models,
such as normalizing flows [ ], to directly estimate the
density of the input sample x. This is however not directly
applicable to our problem, as (i) learning generative models
that can capture the entire complexity of e.g. urban scenes
is still an open problem; and (ii) the pixel-wise density re-
quired here should be conditioned on a very (ideally in-
finitely) large context, which is computationally intractable.

Our approach mitigates these issues by learning the den-
sity of z. We start with a training set X drawn from the
unknown true distribution x ~ p*(x), and corresponding
embeddings Z;. A normalizing flow with parameters 6 is
trained to approximate p*(z;) by minimizing the negative
loglikelihood (NLL) over all training embeddings in Z;:

1 i
L(Z;) = 1z Zlogpa(zl( ). (6)

The flow is composed of a bijective function gg that maps
an embedding z; to a latent vector i of identical dimen-
sionality and with Gaussian prior p(n) = N (n;0,I). Its
loglikelihood is then expressed as
det (dg9> ' , @)
dz

and can be efficiently evaluated for some constrained gg. At
test time, we compute the embedding map of an input im-
age, and estimate the NLL of each of its embeddings. In our
experiments, we use the Real-NVP bijector [45], composed
of a succession of affine coupling layers, batch normaliza-
tions, and random permutations.

The benefits of this method are the following: (i) A nor-
malizing flow can learn more complex distributions than the
simple kNN kernel or mixture of Gaussians used by [14],
where each embedding requires a class label, which is not
available here; (ii) Features follow a simpler distribution
than the input images, and can thus be correctly fit with
simpler flows and shorter training times; (iii) The only hy-
perparameters are related to the architecture and the training

log pe(z;) = log p(n) + log

of the flow, and can be cross-validated with the NLL of ID
data without any OoD data; (iv) The training embeddings
are efficiently summarized in the weights of the generative
model with a very low memory footprint.

Input preprocessing [3 1] can be trivially applied to our ap-
proach. Since the NLL estimator is an end-to-end network,
we can compute the gradients of the average NLL w.r.t. the
input image by backpropagating through the flow and the
encoder.

A flow ensemble can be built by training separate density
estimators over different layers of the segmentation model,
similar to [14]. However, the resulting NLL estimates can-
not be directly aggregated as is, because the different em-
bedding distributions have varying dispersions and dimen-
sions, and thus densities with very different scales. We pro-
pose to normalize the NLL N(z;) of a given embedding by
the average NLL of the training features for that layer:

N(Zl) = N(Zl) — E(Zl). (8)

This is in fact a MC approximation of the differential en-
tropy of the flow, which is intractable. In the ideal case
of a multivariate Gaussian, N corresponds to the Maha-
lanobis distance used by [14]. We can then aggregate the
normalized, resized scores over different layers. We exper-
iment with two strategies: (i) Using the minimum detects a
pixel as OoD only if it has low likelihood through all lay-
ers, thus accounting for areas in the feature space that are
in-distribution but contain only few training points; (ii) Fol-
lowing [ 14], taking a weighted average , with weights given
by a logistic regression fit on the FS Lost & Found valida-
tion set, captures the interaction between the layers.

5. Discussion of Results

We show in Table 1 the results of our benchmark for the
aforementioned datasets and methods. Qualitative exam-
ples of the best performing methods are shown in figure 2.

Softmax Confidence. Confirming findings on simpler
tasks [14], the softmax confidence is not a reliable score for
anomaly detection. While training with OoD data clearly
improves the softmax-based detection, it is not significantly
better than Bayesian DeepLab, that does not require such
data.

Visual Diversity. For most methods, there is a clear per-
formance gap between the data from Lost & Found and the
other datasets. We attribute this to two factors. First, the
dataset contains a lot of images with only very small ob-
jects. This is indicated by the AP of the random classifier,
which equals to the fraction of anomalous pixels. Second,
as also described earlier, the qualitative examples show a
lot of false positives e.g. for the void classifier where the
scene is visually different to the Cityscapes data. This coin-



FS Lost & Found FS Static FS Web Mar 19 FS Web Jun 19 requires requires Cityscapes
method score AP1 FPRys | | APT FPRys | | AP+ FPRys | | APT FPRys | | retraining  OoD data mloU
Random random uncertainty | 00.3 95.0 02.5 95.0 02.6 95.0 02.8 95.0 x x 80.3
Softmax max-probability 01.8 44.8 12.9 39.8 17.7 33.6 17.8 38.1 " " 30.3

entropy 02.9 44.8 154 39.8 23.6 334 23.8 37.8
OoD training mz?x—enLro'py 01.7 30.6 27.5 23.6 33.8 21.8 43.9 20.6 v v 79.0
void classifier 10.3 22.1 45.0 19.4 52.9 133 56.8 14.7 70.4
Bayesian DeepLab ~ mutual information 09.8 38.5 48.7 15.5 52.1 15.9 54.7 153 v x 73.8
Dirichlet DeepLab  prior entropy 34.3 474 31.3 84.6 27.7 93.6 43.6 78.2 v v 70.5
KNN Embedding dens?ly ‘ 03.5 30.0 44.0 20.2 50.4 13.7 36.5 33.1 % x 203
relative class density | 00.8 - 15.8 20.4 - 16.1 -
Learned single-layer NLL 03.0 329 40.9 21.3 61.2 10.8 30.4 34.6 x
Embedding logistic regression 04.7 24.4 57.2 134 73.2 6.0 40.4 26.5 x v 80.3
Density minimum NLL 043 472 | 621 174 | 789 9.3 419 471 x

Table 1. Benchmark Results. The gray columns mark the primary metric of the benchmark. For relative class density, 95% TPR was not

reached and therefore FPRgs5 could not be evaluated.

cides also with wrong predictions of the DeepLabv3+ clas-
sifier. Nevertheless, the nature of this data shows a clear
advantage of the Dirichlet DeepLab, which in the qualita-
tive examples shows a distinction between anomalies and
these ‘novel’ visual appearances. This supports the idea of
disentangled distributional uncertainty developed in [11].

Semantic Segmentation Accuracy. The data in table 1
additionally illustrates a tradeoff between anomaly detec-
tion and segmentation performance. Methods like Bayesian
DeepLab or Void Classifier are consistently among the best
methods on all datasets, but need to train with special losses
that reduce the segmentation accuracy by up to 10% mloU.

Embedding based methods come without such a trade-
off, but their performance varies greatly between the differ-
ent datasets, indicating that they are sensitive to visual ap-
pearance. This is for example indicated by the performance
drop from FS Web March to FS Web June, where we im-
proved the post-processing of the object overlay, but also
by the performance gap between synthetic and real data.
However, scores on FPRgs5 suggest that embedding based
methods can be relevant for safety-critical applications, as
their false positive rate is comparably low for conservative
detection thresholds.

Method Variants. The comparison for training on
Cityscapes void shows that a separate void class is con-
sistenly better than maximizing the softmax entropy. A
comparison between different embedding methods shows
that flow-based density estimation outperforms kNN based
methods on all datasets, indicating that the flow can capture
better the true data distribution. Our results also indicate
that a combination of multiple layers is beneficial.

Challenges in Method Adaptation. The results reveal
that some methods cannot be easily adapted to semantic
segmentation. For example, retraining required by special
losses can impair the segmentation performance, and we

found that these losses (e.g. for Dirichlet DeepLab) were
often unstable during training or did not converge. Other
challenges rise from the complex network structures which
complicate the translation of class-based embedding meth-
ods such as deep k-nearest neighbor [12] to segmentation.
This is illustrated by the performance of our naive imple-
mentation.

6. Conclusion

In this work, we introduced Fishyscapes, a benchmark
for anomaly detection in semantic segmentation for urban
driving. Comparing state-of-the-art methods on this com-
plex task for the first time, we draw multiple conclusions:

The softmax output from a standard classifier is a bad
indicator for anomaly detection.

Most of the better performing methods required special
losses that reduce the semantic segmentation accuracy.

— Learning anomaly detection from fixed OoD data is on
par with unsupervised methods for most of the datasets.

The proposed Learned Embedding Density is a promis-
ing direction for safety-critical applications, but shows
clear performance gaps.

Overall, anomaly detection is an unsolved task. To safely
deploy semantic segmentation methods in autonomous cars,
further research is required. As a public benchmark,
Fishyscapes supports the evaluation of new methods on ur-
ban driving scenarios.
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