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Abstract

Deep learning has enabled impressive progress in the

accuracy of semantic segmentation. Yet, the ability to es-

timate uncertainty and detect anomalies is key for safety-

critical applications like autonomous driving. Existing un-

certainty estimates have mostly been evaluated on simple

tasks, and it is unclear whether these methods general-

ize to more complex scenarios. We present Fishyscapes,

the first public benchmark for uncertainty estimation in the

real-world task of semantic segmentation for urban driv-

ing. It evaluates pixel-wise uncertainty estimates towards

the detection of anomalous objects in front of the vehicle.

We adapt state-of-the-art methods to recent semantic seg-

mentation models and compare approaches based on soft-

max confidence, Bayesian learning, and embedding density.

Our results show that anomaly detection is far from solved

even for ordinary situations, while our benchmark allows

measuring advancements beyond the state-of-the-art.

1. Introduction

Deep learning has had a high impact on the precision of

computer vision methods [1–4] and enabled semantic un-

derstanding in robotic applications [5–7]. However, while

these algorithms are usually compared on closed-world

datasets with a fixed set of classes [8, 9], the real-world

is uncontrollable, and a wrong reaction by an autonomous

agent to an unexpected input can have disastrous conse-

quences [10].

As such, to reach full autonomy while ensuring safety

and reliability, decision-making systems need information

about outliers and uncertain or ambiguous cases that might

affect the quality of the perception output. As illustrated

in Figure 1, Deep CNNs react unpredictably for inputs that

deviate from their training distribution. In the presence of

an outlier object (a dog), this is interpolated with available

classes (road) at high confidence. Existing research to de-

tect such behavilour is often labeled as out-of-distribution

(OoD), anomaly, or novelty detection, and has so far fo-
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cused on developing methods for image classification, eval-

uated on simple datasets like MNIST or CIFAR-10 [11–19].

How these methods generalize to more elaborate network

architectures and pixel-wise uncertainty estimation has not

been assessed.

Motivated by these practical needs, we introduce

Fishyscapes1, a benchmark that evaluates uncertainty esti-

mates for semantic segmentation. The benchmark measures

how well methods detect potentially hazardous anomalies

in driving scenes. Fishyscapes is based on data from

Cityscapes [9], a popular benchmark for semantic seg-

mentation in urban driving. Our benchmark consists of

(i) Fishyscapes Static, where images from Cityscapes are

overlayed with objects, and (ii) Fishyscapes Lost & Found,

that builds up on a road hazard dataset collected with the

same setup as Cityscapes [20] and that we supplemented

with labels. To further test whether methods overfit on the

set of anomalous objects in these two datasets, we (iii) intro-

duce the dynamic dataset Fishyscapes Web that updates ev-

ery three months and overlays Cityscapes images with new

objects found on the web.

To provide a broad overview, we adapt a variety of meth-

ods to semantic segmentation that were originally designed

for image classification, with examples listed in Figure 1.

Because segmentation networks are much more complex

and have high computational costs, this adaptation is not

trivial, and we suggest different approximations to over-

come these challenges.

Our experiments show that the embeddings of interme-

diate layers hold important information for anomaly detec-

tion. Based on recent work on generative models, we de-

velop a novel method using density estimation in the em-

bedding space. However, we also show that varying visual

appearance can mislead feature-based, but also other meth-

ods. None of the evaluated methods achieves the accuracy

required for safety-critical applications. We conclude that

these remain open problems, with our benchmark enabling

the community to measure progress and build upon the best

performing methods so far.

To summarize, our contributions are the following:

– The first public benchmark evaluating pixel-wise uncer-

tainty estimates in semantic segmentation, with a dy-
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Figure 1. Example of out-of-distribution (OoD) detection: We evaluate the ability of Bayesian (top) and non-Bayesian (bottom) methods

to segment OoD objects (here a dog) based on a semantic segmentation model. Better methods should assign a high score (dark) to pixels

belonging to the object only, and a low score (white) to in-distribution (background) pixels. The semantic prediction is not sufficient.

namic, self-updating dataset for anomaly detection.

– We report an extensive evaluation with diverse state-

of-the-art approaches to uncertainty estimation, adapted

to the semantic segmentation task, and present a novel

method for anomaly detection.

– We show a clear gap between the alleged capabilities

of established methods and their performance on this

real-world task, thereby confirming the necessity of our

benchmark to support further research in this direction.

2. Related Work

Here we review the most relevant works in semantic seg-

mentation and their benchmarks, and methods that aim at

providing a confidence estimate of the output of deep net-

works.

2.1. Semantic Segmentation

State-of-the-art models are fully-convolutional deep net-

works trained with pixel-wise supervision. Most works [1,

21–23] adopt an encoder-decoder architecture that initially

reduces the spatial resolution of the feature maps, and sub-

sequently upsamples them with learned transposed convo-

lution, fixed bilinear interpolation, or unpooling. Addition-

ally, dilated convolutions or spatial pyramid pooling enlarge

the receptive field and improve the accuracy.

Popular benchmarks compare methods on the segmen-

tation of objects [24] and urban scenes. In the latter case,

Cityscapes [9] is a well-established dataset depicting street

scenes in European cities with dense annotations for a lim-

ited set of classes. Efforts have been made to provide

datasets with increased diversity, either in terms of environ-

ments, with WildDash [25], which incorporates data from

numerous parts of the world, or with Mapillary [26], which

adds many more classes. Like ours, some datasets are ex-

plicitly derived from Cityscapes, the most relevant being

Foggy Cityscapes [27], which overlays synthetic fog onto

the original dataset to evaluate more difficult driving condi-

tions. The Robust Vision Challenge2 also assesses general-

ization of learned models across different datasets.

Robustness and reliability are only evaluated by all these

benchmarks through ranking methods according to their

accuracy, without taking into accounts the uncertainty of

their predictions. Additionally, despite one cannot assume

that models trained with closed-world data will only en-

counter known classes, these scenarios are rarely quanti-

tatively evaluated. To our knowledge, WildDash [25] is

the only benchmark that explicitly reports uncertainty w.r.t.

OoD examples. These are however drawn from a very lim-

ited set of full-image outliers, while we introduce a diverse

set of objects, as WildDash mainly focuses on accuracy.

Bevandic et al. [28] experiment with OoD objects for se-

mantic segmentation by overlaying objects on Cityscapes

images in a manner similar to ours. They however assume

the availability of a large OoD dataset, which is not realis-

tic in an open-world context, and thus mostly evaluate su-

pervised methods. In contrast, we assess a wide range of

methods that do not require OoD data. Mukhoti & Gal [29]

introduce a new metric for uncertainty evaluation and are

the first to quantitatively assess misclassification for seg-

mentation. Yet they only compare few methods on normal

in-distribution (ID) data.

2.2. Uncertainty estimation

There is a large body of work that aims at detecting OoD

data or misclassification by defining uncertainty or confi-

dence estimates.

The softmax score , i.e. the classification probability of the

predicted class, was shown to be a first baseline [13], al-

though sensitive to adversarial examples [30]. Its perfor-

mance was improved by ODIN [31], which applies noise to

2http://www.robustvision.net/



the input with the Fast Gradient Sign Method (FGSM) [30]

and calibrates the score with temperature scaling [32].

Bayesian deep learning [33, 34] adopts a probabilistic

view by designing deep models whose outputs and weights

are probability distributions instead of point estimates. Un-

certainties are then defined as dispersions of such distri-

butions, and can be of several types. Epistemic uncer-

tainty, or model uncertainty, corresponds to the uncertainty

over the model parameters that best fit the training data

for a given model architecture. As evaluating the poste-

rior over the weights is intractable in deep non-linear net-

works, recent works perform Monte-Carlo (MC) sampling

with dropout [35] or ensembles [36]. Aleatoric uncertainty,

or data uncertainty, arises from the noise in the input data,

such as sensor noise. Both have been applied to seman-

tic segmentation [34], and successively evaluated for mis-

classification detection [29], but only on data and not for

anomaly detection. Malinin & Gales [11] later suggested

that epistemic and aleatoric uncertainties are only meaning-

ful for inputs that match the training distribution, and that

a third kind, distributional uncertainty, is required to rep-

resent model misspecification with respect to OoD inputs.

Their approach however was only applied to image clas-

sifications on toy datasets, and requires OoD data during

the training stage. To address the latter constraint, Lee et

al. [37] earlier proposed a Generative Adversarial Network

(GAN) that generates OoD data as boundary samples. This

is however not possible for complex and high-dimensional

data like high-resolution images of urban scenes.

OoD and novelty detection is often tackled by non-

Bayesian approaches, which explicitly do not require ex-

amples of OoD data at training time. As such, feature intro-

spection amounts to measuring discrepancies between dis-

tributions of deep features of training data and OoD sam-

ples, using either nearest neighbour (NN) statistics [12, 38]

or Gaussian approximations [14]. These methods have the

benefit of working on any classification model without re-

quiring specific training. On the other hand, approaches

specifically tailored to perform OoD detection include one-

class classification [15, 16], which aim at creating discrim-

inative embeddings, density estimation [17, 39], which es-

timate the likelihood of samples w.r.t to the true data dis-

tribution, and generative reconstruction [18, 19], which use

the quality of auto-encoder reconstructions to discriminate

OoD samples. Richter et al. [40] apply the latter to simple

real images recorded by a robotic car and successfully de-

tect new environments. Yet all of these methods are only

applied to image classification models for OoD detection

on toy datasets or for adversarial defense. As such, it is

not trivial to adapt these methods to the more complex ar-

chitectures used in semantic segmentation, and to the scale

required by large input images.

3. Benchmark Design

In the following we describe our Fishyscapes bench-

mark: (i) the overall motivations and philosophy; (ii) the

datasets and their creation; and (iii) the metrics used for

comparisons of methods.

3.1. Philosophy

Because it is not possible to produce ground truth for

uncertainty values, evaluating estimators is not a straight-

forward task. We thus compare them on the the proxy clas-

sification task [13] of detecting anomalous inputs. The un-

certainty estimates are seen as scores of a binary classifier

that compares the score against a threshold and whose per-

formance reflects the suitability of the estimated uncertainty

for anomaly detection. Such an approach however intro-

duces a major issue for the design of a public OoD detection

benchmark. With a publicly available ID training dataset

A and OoD inputs B, it is not possible to distinguish be-

tween an uncertainty method that informs a classifier to dis-

criminate A from any other input, and a classifier trained to

discriminate A from B. The latter option clearly does not

represent progress towards the goal of general uncertainty

estimation, but rather overfitting.

To this end, we (i) only release a small validation set

with associated ground truth masks, while keeping larger

test sets hidden, and (ii) continuously evaluate submitted

methods against a dynamically changing dataset. This setup

preserves the uncertainty as to which anomalous objects

might be encountered in the real world. To encourage un-

supervised methods, we stress that the validation set is for

parameter tuning only, and should not be used to train mod-

els. The evaluation is performed remotely using executables

submitted by the participants.

Using these executables, methods submitted to the

benchmark are continuously evaluated on every new version

of the dynamic dataset. This enables us to evaluate methods

on data that was not existent at the time of submission to the

benchmark, assessing their generalization capabilities. In-

dependent from their submission time, methods can always

be compared using the fixed datasets.

While some of the datasets are synthetically generated,

the Lost & Found data allows to check the consistency of

results between real and synthetic data to identify methods

that rather detect processed images than anomalies.

3.2. Datasets

FS Static is based on the validation set of Cityscapes [9].

It has a limited visual diversity, which is important to make

sure that it contains none of the overlayed objects. In ad-

dition, background pixels originally belonging to the void

class are excluded from the evaluation, as they may be

borderline OoD. Anomalous objects are extracted from the



generic Pascal VOC [24] dataset using the associated seg-

mentation masks. We only overlay objets from classes that

cannot be found in Cityscapes: aeroplane, bird, boat, bot-

tle, cat, chair, cow, dog, horse, sheep, sofa, tvmonitor. Ob-

jects cropped by the image borders or objects that are too

small to be seen are filtered out. We randomly size and

position the objects on the underlying image, making sure

that none of the objects appear on the ego-vehicle. Objects

from mammal classes have a higher probability of appear-

ing on the lower-half of the screen, while classes like birds

or airplanes have a higher probability for the upper half.

The placing is not further limited to ensure each pixel in

the image, apart from the ego-vehicle, is comparably likely

to be anomalous. To match the image characteristics of

cityscapes, we employ a series of postprocessing steps sim-

ilar to those described in [41], without those steps that re-

quire 3D models of the objects to e.g. adapt shadows and

lighting.To make the task of anomaly detection harder, we

add synthetic fog [42, 43] on the in-distribution pixels with

a per-image probability. This prevents fraudulent methods

to compare the input against a fixed set of Cityscapes im-

ages. The dataset is split into a minimal public validation

set of 30 images and a hidden test set of 1000 images. It

contains in total around 4.5e7 OoD and 1.8e9 ID pixels.

The validation set only contains a small disjoint set of pas-

cal objects to prevent few-shot learning on our data creation

method.

FS Web is built similarly to FS Static, but with overlay

objects crawled from the internet using a list of keywords.

Our script searches for images with transparent background,

uploaded in a recent timeframe, and filters out images that

are too small. The only manual process is filtering out im-

ages that are not suitable, e.g. with decorative borders. The

dataset for March 2019 contains 4.9e7 OoD and 1.8e9 ID

pixels and is not publicly released. As the diversity of im-

ages and color distributions for the images from the web is

much greather than those from Pascal VOC, we also adapt

our overlay procedure. In total, we follow these steps, some

of which were however only added for the FS Web June

dataset:

– in case the image does not already have a smooth alpha

channel, smooth the mask of the objects around the bor-

ders for a small transparency gradient

– adapt the brightness of the object towards the mean

brightness of the overlayed pixels

– apply the inverse color histogram of the Cityscapes image

to shift the color distribution towards the one found on

the underlying image (FS Web Mar has a different color

postprocessing)

– radial motion blur (only FS Web June)

– depth blur based on the position in the image (only FS

Web June)

– color noise

– glow effects to simulate overexposure (only FS Web

June)

As indicated, the postprocessing was improved between it-

erations of the dataset. Because the purpose of the FS Web

dataset is to measure any possible overfitting of the meth-

ods through a dynamically changing dataset, we will con-

tinue to refine also this image overlay procedure at every

iteration of the dataset, updating our method with recent re-

search results.

FS Lost & Found is based on the original Lost & Found

dataset [20]. However, the original dataset only included

annotations for the anomalous objects and a coarse anno-

tation of the road. It does not allow for appropriate eval-

uation of anomaly detection, as objects and road are very

distinct in texture and it is more challenging to evaluate the

anomaly score of the objects compared to building struc-

tures. In order to make use of the full image, we add

pixel-wise annotations that distinguish between objects (the

anomalies), background (classes contained in Cityscapes)

and void (anything not contained in Cityscapes classes).

Additionally, we filter out those sequences where the ‘road

hazards’ are children or bikes, because these are part of reg-

ular Cityscapes data and not visual anomalies. We subsam-

ple the repetitive sequences, labelling at least every sixth

image, and remove images that do not contain objects. In

total, we present a public validation set of 100 images and a

testset of 275 images, based on disjoint sets of locations.

While the Lost & Found images were captured with the

same setup as Cityscapes, the distribution of street scenery

is very different. The images were captured in small streets

of housing areas, industrial areas, or on big parking lots.

The anomalous objects are usually very small and are not

equally distributed on the image. Nevertheless, the dataset

allows to test for real images as opposed to synthetic data,

therefore preventing any overfitting on synthetic image pro-

cessing. This is especially important for parameter tuning

on the validation set.

3.3. Metrics

We consider metrics associated with a binary classifica-

tion task. Since the ID and OoD data is unbalanced, metrics

based on the receiver operating curve (ROC) are not suit-

able. We therefore base the ranking and primary evaluation

on the average precision (AP). However, as the number of

false positives in high-recall areas is also relevant for safety-

critical applications, we additionally report the false posi-

tive rate (FPR) at 95% true positive rate (TPR). This metric

was also used in [13] and emphasizes safety.

Semantic classification is not the goal of our benchmark,

but uncertainty estimation and outlier detection should not

come at high cost of performance. We therefore addition-

ally report the mean intersection over union (IoU) of the

semantic segmentation on the Cityscapes validation set.



4. Evaluated Methods

We now present the methods that are evaluated in

Fishyscapes. In a first part, we describe the existing base-

lines and how we adapted them to the task of semantic seg-

mentation. A novel method based on learned embedding

density is then presented. All approaches are applied to

the state-of-the-art semantic segmentation model DeepLab-

v3+ [1].

4.1. Baselines

Softmax score. The maximum softmax probability is a

commonly used baseline and was evaluated in [13] for OoD

detection. We apply the metric pixel-wise and additionally

measure the softmax entropy, as proposed by [37], which

captures more information from the softmax.

Training with OoD. While we generally strive for methods

that are not biased by data, learning confidence from data

is an obvious baseline and was explored in [44]. As we

are not supposed to know the true known distribution, we

do not use Pascal VOC, but rather approximate unknown

pixels with the Cityscapes void class. In our evaluation, we

(i) train a model to maximise the softmax entropy for OoD

pixels, or (ii) introduce void as an additional output class

and train with it. The uncertainty is then measured as (i) the

softmax entropy, or (ii) the score of the void class.

Bayesian DeepLab was introduced by Mukhoti &

Gal [29], following Kendall & Gal [34], and is the only un-

certainty estimate already applied to semantic segmentation

in the literature. The epistemic uncertainty is modeled by

adding Dropout layers to the encoder, and approximated by

T MC samples, while the aleatoric uncertainty corresponds

to the spread of the categorical distribution. The total un-

certainty is the predictive entropy of the distribution y,

Ĥ [y|x] = −
∑

c

(

1

T

∑

t

ytc

)

log

(

1

T

∑

t

ytc

)

, (1)

where ytc is the probability of class c for sample t. The

epistemic uncertainty is measured as the mutual informa-

tion (MI) between y and the weights w,

Î [y,w|x] = Ĥ [y|x]−
1

T

∑

c,t

ytc log y
t
c. (2)

Dirichlet Prior Networks [11] extend the framework

of [33] by considering the predicted logits z as log con-

centration parameters α of a Dirichlet distribution, which

is a prior of the predictive categorical distribution y. In-

tuitively, the spread of the Dirichlet prior should model the

distributional uncertainty, and remain separate from the data

uncertainty modelled by the spread of the categorical distri-

bution. To this end, Malinin & Gales [11] advocate to train

the network with the objective:

L(θ) = Epin [KL [Dir(µ|αin)||p(µ|x;θ)]]

+ Epout [KL [Dir(µ|αout)||p(µ|x;θ)]]

+ CrossEntropy(y, z).

(3)

The first term forces ID samples to produce sharp priors

with a high concentration αin, computed as the product of

smoothed labels and a fixed scale α0. The second term

forces OoD samples to produce a flat prior with αout = 1,

effectively maximizing the Dirichlet entropy, while the last

one helps the convergence of the predictive distribution to

the ground truth. We model pixel-wise Dirichlet distribu-

tions, approximate OoD samples with void pixels, and mea-

sure the Dirichlet differential entropy.

kNN Embedding. Different works [12, 38] estimate un-

certainty using kNN statistics between inferred embedding

vectors and their neighbors in the training set. They then

compare the classes of the neighbors to the prediction,

where discrepancies indicate uncertainty. In more details,

a given trained encoder maps a test image x′ to an embed-

ding z′l = fl(x
′) at layer l, and the training set X to a set

of neighbors Zl := fl(X). Intuitively, if x′ is OoD, then

z′ is also differently distributed and has e.g. neighbors with

different classes. Adapting these methods to semantic seg-

mentation faces two issues: (i) The embedding of an inter-

mediate layer of DeepLab is actually a map of embeddings,

resulting in more than 10,000 kNN queries for each layer,

which is computationally infeasible. We follow [38] and

pick only one layer, selected using the FS Lost & Found

validation set. (ii) The embedding map has a lower reso-

lution than the input and a given training embedding z
(i)
l

is therefore not associated with one, but with multiple out-

put labels. As a baseline approximation, we link z
(i)
l to

all classes in the associated image patch. The relative den-

sity [38] is then:

D(z′) =

∑

i∈K,c′=ci

exp
(

− z
′
z
(i)

|z′| |z(i)|

)

∑

i∈K

exp
(

− z
′
z
(i)

|z′| |z(i)|

) . (4)

Here, ci is the class of z(i) and c′ is the class of z′ in the

downsampled prediction. In contrast to [38], we found that

the cosine similarity from [12] works well without addi-

tional losses. Finally, we upsample the density of the feature

map to the input size, assigning each pixel a density value.

As the class association in unclear for encoder-decoder

architectures, we also evaluate the density estimation with

k neighbors independent of the class:

D(z′) =
∑

i∈K

exp

(

−
z′z(i)

|z′| |z(i)|

)

. (5)



This assumes that an OoD sample x′, with a low density

w.r.t X, should translate into z′ with a low density w.r.t. Zl.

4.2. Learned Embedding Density

We now introduce a novel approach that takes inspiration

from density estimation methods while greatly improving

their scalability and flexibilty.

Density estimation using kNN has two weaknesses. First,

the estimation is a very coarse isotropic approximation,

while the distribution in feature space might be significantly

more complex. Second, it requires to store the embeddings

of the entire training set and to run a large number of NN

searches, both of which are costly, especially for large in-

put images. On the other hand, recent works [17, 39] on

OoD detection leverage more complex generative models,

such as normalizing flows [45–47], to directly estimate the

density of the input sample x. This is however not directly

applicable to our problem, as (i) learning generative models

that can capture the entire complexity of e.g. urban scenes

is still an open problem; and (ii) the pixel-wise density re-

quired here should be conditioned on a very (ideally in-

finitely) large context, which is computationally intractable.

Our approach mitigates these issues by learning the den-

sity of z. We start with a training set X drawn from the

unknown true distribution x ∼ p∗(x), and corresponding

embeddings Zl. A normalizing flow with parameters θ is

trained to approximate p∗(zl) by minimizing the negative

loglikelihood (NLL) over all training embeddings in Zl:

L(Zl) = −
1

|Zl|

∑

i

log pθ(z
(i)
l ). (6)

The flow is composed of a bijective function gθ that maps

an embedding zl to a latent vector η of identical dimen-

sionality and with Gaussian prior p(η) = N (η; 0, I). Its

loglikelihood is then expressed as

log pθ(zl) = log p(η) + log

∣

∣

∣

∣

det

(

dgθ

dz

)∣

∣

∣

∣

, (7)

and can be efficiently evaluated for some constrained gθ . At

test time, we compute the embedding map of an input im-

age, and estimate the NLL of each of its embeddings. In our

experiments, we use the Real-NVP bijector [45], composed

of a succession of affine coupling layers, batch normaliza-

tions, and random permutations.

The benefits of this method are the following: (i) A nor-

malizing flow can learn more complex distributions than the

simple kNN kernel or mixture of Gaussians used by [14],

where each embedding requires a class label, which is not

available here; (ii) Features follow a simpler distribution

than the input images, and can thus be correctly fit with

simpler flows and shorter training times; (iii) The only hy-

perparameters are related to the architecture and the training

of the flow, and can be cross-validated with the NLL of ID

data without any OoD data; (iv) The training embeddings

are efficiently summarized in the weights of the generative

model with a very low memory footprint.

Input preprocessing [31] can be trivially applied to our ap-

proach. Since the NLL estimator is an end-to-end network,

we can compute the gradients of the average NLL w.r.t. the

input image by backpropagating through the flow and the

encoder.

A flow ensemble can be built by training separate density

estimators over different layers of the segmentation model,

similar to [14]. However, the resulting NLL estimates can-

not be directly aggregated as is, because the different em-

bedding distributions have varying dispersions and dimen-

sions, and thus densities with very different scales. We pro-

pose to normalize the NLL N(zl) of a given embedding by

the average NLL of the training features for that layer:

N̄(zl) = N(zl)− L(Zl). (8)

This is in fact a MC approximation of the differential en-

tropy of the flow, which is intractable. In the ideal case

of a multivariate Gaussian, N̄ corresponds to the Maha-

lanobis distance used by [14]. We can then aggregate the

normalized, resized scores over different layers. We exper-

iment with two strategies: (i) Using the minimum detects a

pixel as OoD only if it has low likelihood through all lay-

ers, thus accounting for areas in the feature space that are

in-distribution but contain only few training points; (ii) Fol-

lowing [14], taking a weighted average , with weights given

by a logistic regression fit on the FS Lost & Found valida-

tion set, captures the interaction between the layers.

5. Discussion of Results

We show in Table 1 the results of our benchmark for the

aforementioned datasets and methods. Qualitative exam-

ples of the best performing methods are shown in figure 2.

Softmax Confidence. Confirming findings on simpler

tasks [14], the softmax confidence is not a reliable score for

anomaly detection. While training with OoD data clearly

improves the softmax-based detection, it is not significantly

better than Bayesian DeepLab, that does not require such

data.

Visual Diversity. For most methods, there is a clear per-

formance gap between the data from Lost & Found and the

other datasets. We attribute this to two factors. First, the

dataset contains a lot of images with only very small ob-

jects. This is indicated by the AP of the random classifier,

which equals to the fraction of anomalous pixels. Second,

as also described earlier, the qualitative examples show a

lot of false positives e.g. for the void classifier where the

scene is visually different to the Cityscapes data. This coin-



FS Lost & Found FS Static FS Web Mar 19 FS Web Jun 19 requires

retraining

requires

OoD data

Cityscapes

mIoUmethod score AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

Random random uncertainty 00.3 95.0 02.5 95.0 02.6 95.0 02.8 95.0 � � 80.3

Softmax
max-probability 01.8 44.8 12.9 39.8 17.7 33.6 17.8 38.1

� � 80.3
entropy 02.9 44.8 15.4 39.8 23.6 33.4 23.8 37.8

OoD training
max-entropy 01.7 30.6 27.5 23.6 33.8 21.8 43.9 20.6

� �
79.0

void classifier 10.3 22.1 45.0 19.4 52.9 13.3 56.8 14.7 70.4

Bayesian DeepLab mutual information 09.8 38.5 48.7 15.5 52.1 15.9 54.7 15.3 � � 73.8

Dirichlet DeepLab prior entropy 34.3 47.4 31.3 84.6 27.7 93.6 43.6 78.2 � � 70.5

kNN Embedding
density 03.5 30.0 44.0 20.2 50.4 13.7 36.5 33.1

� � 80.3
relative class density 00.8 - 15.8 - 20.4 - 16.1 -

Learned

Embedding

Density

single-layer NLL 03.0 32.9 40.9 21.3 61.2 10.8 30.4 34.6

�

�

80.3logistic regression 04.7 24.4 57.2 13.4 73.2 6.0 40.4 26.5 �

minimum NLL 04.3 47.2 62.1 17.4 78.9 9.3 41.9 47.1 �

Table 1. Benchmark Results. The gray columns mark the primary metric of the benchmark. For relative class density, 95% TPR was not

reached and therefore FPR95 could not be evaluated.

cides also with wrong predictions of the DeepLabv3+ clas-

sifier. Nevertheless, the nature of this data shows a clear

advantage of the Dirichlet DeepLab, which in the qualita-

tive examples shows a distinction between anomalies and

these ‘novel’ visual appearances. This supports the idea of

disentangled distributional uncertainty developed in [11].

Semantic Segmentation Accuracy. The data in table 1

additionally illustrates a tradeoff between anomaly detec-

tion and segmentation performance. Methods like Bayesian

DeepLab or Void Classifier are consistently among the best

methods on all datasets, but need to train with special losses

that reduce the segmentation accuracy by up to 10% mIoU.

Embedding based methods come without such a trade-

off, but their performance varies greatly between the differ-

ent datasets, indicating that they are sensitive to visual ap-

pearance. This is for example indicated by the performance

drop from FS Web March to FS Web June, where we im-

proved the post-processing of the object overlay, but also

by the performance gap between synthetic and real data.

However, scores on FPR95 suggest that embedding based

methods can be relevant for safety-critical applications, as

their false positive rate is comparably low for conservative

detection thresholds.

Method Variants. The comparison for training on

Cityscapes void shows that a separate void class is con-

sistenly better than maximizing the softmax entropy. A

comparison between different embedding methods shows

that flow-based density estimation outperforms kNN based

methods on all datasets, indicating that the flow can capture

better the true data distribution. Our results also indicate

that a combination of multiple layers is beneficial.

Challenges in Method Adaptation. The results reveal

that some methods cannot be easily adapted to semantic

segmentation. For example, retraining required by special

losses can impair the segmentation performance, and we

found that these losses (e.g. for Dirichlet DeepLab) were

often unstable during training or did not converge. Other

challenges rise from the complex network structures which

complicate the translation of class-based embedding meth-

ods such as deep k-nearest neighbor [12] to segmentation.

This is illustrated by the performance of our naı̈ve imple-

mentation.

6. Conclusion

In this work, we introduced Fishyscapes, a benchmark

for anomaly detection in semantic segmentation for urban

driving. Comparing state-of-the-art methods on this com-

plex task for the first time, we draw multiple conclusions:

– The softmax output from a standard classifier is a bad

indicator for anomaly detection.

– Most of the better performing methods required special

losses that reduce the semantic segmentation accuracy.

– Learning anomaly detection from fixed OoD data is on

par with unsupervised methods for most of the datasets.

– The proposed Learned Embedding Density is a promis-

ing direction for safety-critical applications, but shows

clear performance gaps.

Overall, anomaly detection is an unsolved task. To safely

deploy semantic segmentation methods in autonomous cars,

further research is required. As a public benchmark,

Fishyscapes supports the evaluation of new methods on ur-

ban driving scenarios.
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