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Abstract

In autonomous driving scenarios, pose estimation of sur-

rounding vehicles and other objects is required in decision

making and planning. This paper proposes Multi-View Re-

projection Architecture, a flexible, highly accurate archi-

tecture to adopt any 2D detection network and extend it to

regress the orientation of object’s 3D bounding box and its

dimensions. In contrast to previous techniques, our network

incorporates geometric constraints on 3D box imposed by

2D detection box. In particular, we regress dimensions, ori-

entation and reprojected boxes in multi-view obtained from

a novel 3D reconstruction layer using perspective geome-

try. In the 3D reconstruction layer, we use an iterative re-

finement strategy to accurately recover 3D boxes even when

2D boxes are truncated. The proposed architecture is shown

to outperform state-of-the-art methods on the challenging

KITTI car orientation benchmark and obtain top results on

3D detection benchmark while running in real time, making

it suitable for autonomous vehicles.

1. Introduction

Over the last years, deep learning approaches have dra-

matically improved the performance of vision-based 2D ob-

ject detection system. However, object detection as 2D

bounding box in image is not sufficient for autonomous

driving cars to perform planning and decision making. For

a robust perception system in self-driving vehicle, pose es-

timation of surrounding objects is essential. In this paper,

we are interested in heading angle estimation of surround-

ing vehicles from monocular images in the context of self-

driving cars. This is a relevant research field because cur-

rently most cars are equipped with front-facing mono cam-

era. In addition, vehicles have rigid bodies with well-known

geometry, so we are able to recover 3D vehicle information

from monocular images.

In this paper, we propose a flexible, highly accurate

method that estimates the orientation and dimensions of an

object’s 3D bounding box from a 2D detection result and

corresponding image crop. One of the main contributions

of our approach is in the design of Multi-View Reprojec-

tion Architecture called MVRA and the associated training

objective functions for the problem. In particular, the pro-

posed architecture regresses to 3D dimensions, orientation

and novel reprojected 2D boxes in image and bird-eye view

map. This is in contrast to previous techniques that attempt

to simply estimate the 3D box parameters separately.

We leverage the success of mature 2D object detector

and extend it by training a convolutional neural network

(CNN) to regress the orientation of the object’s 3D bound-

ing box and its spatial dimensions. In particular, the pro-

posed architecture encodes geometric constraints on 3D box

imposed by 2D detection window. The idea is to add a 3D

reconstruction layer in which we recover the object’s 3D

bounding box using estimated dimensions and orientation

and the constraints that the perspective projection of a 3D

box should fit tightly into the 2D box in image. Indeed, the

idea of 3D reconstruction is recently introduced in [15] and

used in the post-processing stage to estimate 3D box. In-

spired by their success, we improve this reconstruction idea

and bring it into network itself to better regress orientation

and 3D template (3D dimensions). In contrast to [15], the

projections in image and bird-eye view map obtained from

the recovered 3D box are included in the training target as

well as the 3D object parameters. In order to regress to the

reprojected boxes, we used novel multi-view reprojection

loss. Although conceptually straightforward, our method is

proved to be effective. Our experimental results reveal that

the proposed 3D reconstruction layer improves orientation

regression performance. We also introduce a novel itera-

tive orientation refinement method for handling truncated

2D boxes in the 3D reconstruction layer and demonstrate

that our method is effective.

Another contribution is in the introduction of novel box

augmentation strategy. We use the ground truth 3D infor-

mation and reconstruction idea to automatically produce in-

put 2D boxes for accurate orientation estimation robust to

viewpoint changes and occlusions.

We evaluate our method on the KITTI dataset. On the

KITTI dataset [5], we performed a comparison of our re-

sults to the results of other methods based on various in-



put sources such as monocular and stereo imagery, LiDAR

and sensor fusion. The proposed architecture is shown to

outperform all published state-of-art methods on the chal-

lenging KITTI car orientation estimation benchmark while

running in real time. We also performed a thorough analysis

of our 3D reconstruction layer and multi-view reprojection

loss on the KITTI validation dataset.

Moreover, we note that the 3D box information itself

from our 3D construction layer can be effectively used. In-

deed, our method obtains top results on KITTI 3D object

detection benchmark, being the third best among all monoc-

ular methods that do not use network for either depth esti-

mation or pseudo-LiDAR point cloud.

The remainder of this paper is organized as follows. In

the next section, related work is reviewed. Section 3 ex-

plains our proposed method in detail. Experimental results

demonstrating effectiveness of our approach for KITTI cars

are illustrated in Section 4. In the final section, we summa-

rize our contributions.

2. Related work

We highlight some of recent related works on monoc-

ular 3D object detection. Monocular 3D object detection

method can be divided into 3 categories by types of features

used therein. After presenting (1) RGB-only works, we re-

view works utilizing (2) synthetically generated features or

(3) 3D shape information.

RGB data only. Mono3D [4] draws 3D box sam-

ples in the physical world assuming flat ground plane con-

straint. The sampled boxes are scored by semantic seg-

mentation, high level contextual, shape and category spe-

cific features. SubCNN [31] clusters the set of possible

poses into viewpoint-dependent sub-categories. The sub-

categories are obtained by clustering 3D voxel patterns in-

troduced in [30].

Recently, there are some works on single-stage monoc-

ular 3D object detector. SSD-6D [8] extends the popular

SSD [12] paradigm to provide 6D pose of 3D objects by

discretizations of the full rotational space. In [25], a new

CNN architecture inspired by SSD that predicts the 2D im-

age locations of the projected vertices of the object’s 3D

box is proposed. The 6D pose is recovered by PnP algo-

rithm. SS3D [7] framework consists of a CNN, which out-

puts a redundant representation of each object in image with

corresponding uncertainty measures, and a 3D box fitting

optimizer.

Several approaches are based on a two-stage architec-

ture. MonoDIS [23] designs a CNN architecture which dis-

entangles dependencies of different parameters by isolating

and handling parameter groups individually at a loss level.

In Shift R-CNN [16], an adapted Faster R-CNN [20] net-

work regresses 2D box and 3D object properties, a mathe-

matical system of equation is solved using least squares of

the inverse 2D to 3D mapping problem, and the final result

is refined by another network. GS3D [11] modifies Faster

R-CNN framework by adding a new branch of orientation

prediction to obtain a coarse cuboid for each object. In con-

trast to other methods that only use the feature extracted

from the 2D box for box refinement, GS3D exploits fea-

tures from visible surfaces of the projected cuboid on 2D

image to obtain the final 3D pose.

The work that most related to ours is the one utilizing

2D detector’s outputs and regressing 3D model information.

Deep3DBox [15] uses a CNN to regress the 3D box dimen-

sions and orientation. In contrast to our work, they simply

regress 3D object properties separately. Using the estimated

dimensions and orientation, full 3D pose is recovered by

exploiting constraints from projective geometry. The key

idea is that the perspective projection of a 3D box should

fit tightly to at least one side of its corresponding 2D box

detection.

Synthetically generated features. OFTNet [21] intro-

duces an orthographic feature transform which maps image-

based features into an orthographic birds-eye-view, im-

plemented efficiently using integral-image representation.

There are several approaches that take advantage of depth

information. ROI-10D [14] processes input image for 2D

detection and monocular depth prediction networks and

uses the predicted regions of interest (RoIs) to extract fused

feature maps from both networks for 3D box regression.

MonoGRNet [19] consists of four sub-networks for 2D de-

tection, instance depth estimation, 3D local estimation, and

local corner regression. In MonoGRNet, the network first

estimates depth and 2D projection of the 3D box center to

seek for the global 3D location, and then predicts corner

coordinates in local context.

Other works are based on generation of a pseudo-LiDAR

point cloud from image input. MultiFusion [32] estimates

the disparity and infers 3D point cloud, and then fused

features are extracted from RGB image, disparity infor-

mation and the point cloud. In Pseudo-LiDAR [27] and

AM3D [13], generated pseudo-LiDAR point cloud is pro-

cessed in LiDAR-based 3D detection algorithm like Point-

Net [18]. Mono3DPLiDAR [29] mitigates local misalign-

ment and long tail issues of pseudo point cloud by using

bounding box consistency constraint and instance mask.

MonoPSR [9] leverages 3D proposals and shape reconstruc-

tion. The 3D proposals are generated from 2D detection box

using the fundamental relations of a pinhole camera model,

and simultaneously a point cloud is predicted to learn local

scale and shape information.

3D shape information. 3D-RCNN [10] proposes an

inverse-graphics CNN framework for instance-level 3D un-

derstanding. The CNN learns to map image regions to the

full 3D shape and pose of all object instances. In [33],

authors reason jointly about the 3D shape of multiple ob-



Figure 1. Coordinate system of 3D bounding box with respect to

camera coordinate system. Here, orientation corresponds to az-

imuth angle.

jects. DeepMANTA [3] uses 3D CAD models and designs

a many-task CNN architecture that optimizes region pro-

posal, orientation, 2D box regression, part localization, part

visibility, and 3D template prediction simultaneously. In

Mono3D++ [6], a morphable wireframe model for gener-

ating a fine-scaled representation of vehicle 3D shape and

pose is used, and its network is trained to optimize pro-

jection consistency between generated 3D hypotheses and

corresponding 2D pseudo-measurements.

3. MVRA approach

In this section, we describe our proposed approaches

for accurate orientation estimation from monocular images.

Our network architecture has two parts. First, 2D detec-

tion crop is passed through the CNN architecture that out-

puts orientation of object’s 3D bounding box and its di-

mensions. The CNN network architecture is described in

Section 3.3. The second part is a 3D reconstruction layer,

which incorporates 3D geometry imposed by 2D bounding

box into network in order to better regress the dimensions

and orientation. The 3D reconstruction layer is elaborated

in Section 3.1. We also introduce a novel iterative orienta-

tion refinement method in the 3D reconstruction layer for

taking care of truncated boxes in Section 3.2.

3.1. 3D reconstruction layer and multi-view repre-
sentation

The 3D reconstruction layer takes as input dimensions,

orientation and 2D box coordinates and outputs 3D box. In-

deed, we further estimate the 3D location of the object’s

bottom center in camera coordinate in the reconstruction

layer. This reconstruction is based on the representation

of projected 3D box as a function of the spatial dimen-

sions, orientation and original 2D box as in [15]. From

well-known projective geometry, the relation between a 3D

point X = [X,Y, Z, 1]T in object’s (homogeneous) coordi-

nate and its 2D projection x = [x, y, 1]T in (homogeneous)

image coordinate is

x = K
[

R T
]

X, (1)

Figure 2. Point-to-side correspondence. The projected 3D points

that are active constraints in each of the 2D box sides are shown

with a circle.

where (R,T) is the the 3D pose of the object in camera co-

ordinate and K is the camera intrinsics matrix. On the other

hand, assuming the origin of the object’s coordinate frame

is located at the 3D box bottom center, the 3D box cor-

ners are described by its spatial dimensions D = [h,w, l]T :

X0 = [l/2, 0, w/2]T , X1 = [l/2, 0,−w/2]T , X2 =
[−l/2, 0,−w/2]T , X3 = [−l/2, 0, w/2]T and Xi+4 =
Xi + [0, 0,−h]T for i = 0, 1, 2, 3 (see Figure 1). Here, we

assume that 2D detector is trained to produce 2D bounding

boxes of the projected 3D box. The point-to-side correspon-

dence constraint, enforcing each side of 2D bounding box

to be touched by the projection of at least one of the 3D

vertices, results in 4 linear equations from (1) correspond-

ing to 2D side parameters, (xmin, ymin, xmax, ymax), with

3 unknown translation parameters in T = [tx, ty, tz]
T . For

example, if 3D box corners (X2, X5, X1, X1), corresponds

to (xmin, ymin, xmax, ymax), then the closed form expres-

sion of the resulting linear system of equations is given by

⎡

⎢

⎢

⎣

fx 0 cx − xmin

0 fy cy − ymin

fx 0 cx − xmax

0 fy cy − ymax

⎤

⎥

⎥

⎦

T =

⎡

⎢

⎢

⎢

⎣

a
(3)
2 xmin − a

(1)
2

a
(3)
5 ymin − a

(2)
5

a
(3)
1 xmax − a

(1)
1

a
(3)
1 ymax − a

(2)
1

⎤

⎥

⎥

⎥

⎦

(2)

where (fx, fy) and (cx, cy) are focal lengths and principal

points in the camera intrinsic matrix K, and a
(j)
i is jth ele-

ment of vector ai. Here, given rotation matrix R(θ, φ, α),
each ai is calculated by

ai = KRXi. (3)

Therefore, we can recover 3D box (see, e.g., Figure 2) by

solving the over-constrainted system of equations (2) for the

translation T. In order to obtain T, we calculate the 2D

intersection over union (IoU) scores of the initial 2D box

constraint and reprojected 3D box for all possible configura-

tions of the point-to-side constraint and choose the best least

squares solution minimizing the IoU. As commonly done

in vehicle-oriented applications, we assume object pitch φ



Figure 3. Reprojected box in image. (a) illustrates the input 2D

box in red. (b) describes the projected 3D box in green obtained

by point-to-side correspondence constraint. (c) tightly draw 2D

box in yellow fitting projected 3D box. (d) visualizes intersection

over union between yellow and red boxes.

and roll α angles are zeros, and thus the number of possible

configurations is 64. (See [15] and [16] for details.) From

this reconstructed 3D box, we obtain projected 2D boxes

in bird-eye view map and image. Examples of the projected

boxes in image and bird-eye view map are illustrated in Fig-

ure 3(c) and Figure 4(b, d), respectively.

3.2. Iterative orientation refinement method

We note that truncated initial 2D box may result in incor-

rect 3D reconstruction (see e.g., Figure 5). This difficult sit-

uation often happens in driving scenarios when some parts

of vehicles are out of camera field of view. To ensure safe

driving, we must deal with this issue properly. In this sec-

tion, we will illustrate a novel iterative method of improving

the reconstruction performance for this case.

As commonly done, we regress to the local orientation,

which is the observation angle, instead of regressing to the

global orientation (see e.g., [11], [15] and [16]). Figure 6

shows a relationship between local orientation and global

orientation. This is due to the well-known fact that the local

orientation is directly related to the appearance of the ob-

ject in image. Assuming the center of crop goes through the

actual center of 3D box, we are able to estimate the global

orientation easily by summing the ray angle from the cam-

era origin to the center of image crop and predicted local

orientation. That is, θ = θl + θray where θray is an angle

between two vectors of ((xcenter − cx)/fx, 1) and camera

x-axis. However, truncated detection box in image may lead

to incorrect estimation of ray angle and global orientation,

and in turn leads to incorrect 3D box reconstruction as de-

scribed in Figure 5.

We now propose a novel iterative method for accurately

estimating ray angle when one of 2D box parameters is out

of the image plane and is clipped inside the image. Each

iteration consists of 4 main steps: (1) Discretize the global

orientation in a pre-specified range (e.g., [0, π]) with some

resolution (e.g., π/8). (2) With these candidate global ori-

entations and estimated dimensions, reconstruct 3D boxes

using the method described in Section 3.1. Here, we do

not include the clipped parameter in the point-to-side con-

straints equation (2) and compute T for each candidate

global orientation value. (3) We then pick the best T that

minimizes the reprojection error with respect to the initial

2D box. (4) Finally, calculate the ray angle directly from

the selected T and recover the global orientation by com-

bining it with the local orientation estimate. Repeat the

same procedures described above with new global orienta-

tion candidates until convergence. The new candidates are

selected with a finer resolution (e.g., π/32) and centered at

the global orientation estimate in the final step of the pre-

vious iteration. In our experiment, we repeat the four-step

procedures twice and are able to get sufficiently accurate

3D reconstructions. A qualitative illustration of our itera-

tive method is in Figure 5. We also evaluated the global

orientation accuracy to demonstrate the effectiveness of the

proposed iterative method in Section 4.3.

3.3. Network architecture

We now present our multi-view reprojection architecture

for regressing the orientation and object spatial dimensions.

The network is constructed based on Deep3DBox [15] net-

work with improvement. In particular, we encode geomet-

ric constraints imposed by 2D box in the network by adding

the 3D reconstruction layer. The proposed CNN architec-

ture is shown in Figure 7. There are three branches: two for

orientation regression head and one branch for dimension

regression head. The objective function for training con-

sists of three losses: one for angle, another for 3D template,

and the other for projected boxes. All branches follow after

the shared convolutional feature layers, and the total loss is

the weighted sum of the three loss functions:

Ltotal = α1Lmultibin + α2Ldim + α3LMVR. (4)

Here, the first and second terms are the MultiBin loss and

3D dimensions loss of [15]. As mentioned in Section 3.2,

the regression target for orientation estimation is the local

orientation. Again, at inference time, global orientation is

determined by considering the ray angle. Also, if the de-

tected boxes are located near the boundary of image, we

can apply the iterative method described in Section 3.2 to

obtain accurate global orientation. MultiBin loss consists

of classification loss and cosine loss:

Lmultibin = Lconf + α4Lcos, (5)



Figure 4. Reprojected box in bird-eye view map. (a) and (c) describe the projected 3D box in green obtained by point-to-side correspon-

dence constraint. (b) and (d) describe the projected ground truth box in red and reprojected box in green.

where Lconf is the softmax loss and Lcos is the cosine loss.

(We call localization loss of [15] cosine loss.) The first term

estimates the probability that the local orientation lies inside

each bin, and the second estimates corresponding residual

offset from the center ray of the bin. As suggested in [15],

we use bin size equal to 2. The 3D object height, width and

length are also regressed using L2 loss. As usual, the regres-

sion target for each dimension is the residual relative to the

mean parameter value computed over the training dataset:

Ldim =
1

n

∑

(D∗ − D̄ − δ)2, (6)

Figure 5. Truncated detection box example. Yellow line is the

2D detection box, and xmin is clipped to zero. Green line illus-

trates the reconstructed 3D box using the iterative method. Red

line is the reconstructed 3D box obtained from all 2D box param-

eters. If we use the clipped value of xmin = 0, the ray vector is

((0.5xmax − cx)/fx, 1).

where D∗ are the ground truth dimensions of the box, D̄ are

the mean dimensions of objects of a certain category.

In order to incorporate geometric properties into net-

work, we regress to reprojected boxes obtained in 3D re-

construction layer. In particular, the regression target is the

reprojected boxes in image and bird-eye view map. In con-

trast to other methods, we use novel multi-view reprojection

(MVR) loss for these box regression defined by

LMVR = Lpersp + α5Lbev. (7)

We calculate perspective IoU loss with respect to the origi-

nal 2D box for the reprojected box in image (see Figure 3):

Lpersp = 1− IoU(true2Dbox, reprojected2Dbox). (8)

Figure 6. Relationship between global orientation and local orien-

tation. Global orientation of the car θ is equal to θl + θray .



Figure 7. Proposed multi-view reprojection architecture.

The loss for the bird-eye view representation is reflected in

L2 loss for translation T of the recovered 3D box:

Lbev =
1

n

∑

(T ∗ − T )2, (9)

where T ∗ are ground truth 3D box bottom center locations.

Here, the (x, z)-terms in T are associated with the center

location of the reprojected box on the bird-eye view map,

and the y-term is associated with the height of the box from

ground. The Lbev adjusts the center of the box on the bird-

eye view map while preventing from a fluctuation of the

box’s height location from ground. We note that (w, l)-
terms of (6) and (x, z)-terms of (9) are associated with the

regression of the axis-aligned bird-eye view representation.

In particular, it amounts to a 2D box regression after rotat-

ing the estimated bird-eye view 2D box such that its yaw

angle matches with the ground truth. During training, we

also monitored the IoU score of the reprojected box on the

bird-eye view map for checking the entire boundary of the

box. The design choices of the proposed MVR loss are de-

scribed in Section 4.3.

4. Experiments

4.1. Implementation details

Dataset. We performed our experiment on the KITTI

dataset dedicated to autonomous driving [5]. This dataset

consists of 7481 training set and 7518 test set. The cali-

bration matrices are given. We evaluated the proposed ap-

proach on two different training/test splits. We used all

available training images to report results on the official

KITTI test set, and the results are illustrated in Section 4.2.

Since the ground truth annotations for the test set are not

available, we use a train/validation split in [3, 15, 30, 31] to

compare our approach to other methods for tasks which are

not evaluated on the KITTI benchmark. Evaluation on the

validation set is described in Section 4.3.

Network training. We trained a Faster R-CNN [20]

variant network, to produce 2D boxes and then estimated

the dimensions and orientation. For regressing the angle

and dimensions, we use pre-trained VGG16 [24] features

up to conv5 layers followed by 1x1 convolutional layers for

dimension reduction to half and add 3 branches as shown in

Figure 7. In our parameter estimation module, the fully con-

nected (FC) layers have 256 dimensions for dimension re-

gression, and the other two branches have 128 dimensional

FC layers. During training, each 2D bounding box crop is

resized to 112x112, and the network is trained with stochas-

tic gradient descent using a batch size of 8 and a fixed learn-

ing rate of 0.0001. The training is run for 200 epochs and

the best model is chosen.

Data augmentation strategy. In order to make the net-

work more robust to 2D detection, viewpoint changes and

occlusions, we used a novel box augmentation technique by

applying Section 3.1’s point-to-side correspondence con-

straints to the ground truth information. To be specific, we

use ground truth 2D box parameters, dimensions and orien-

tation to obtain all possible 64 reprojected 2D boxes in im-

age and pick the ones with sufficiently small reprojection er-

rors; e.g., 1− IoU ≤ 0.03. Of course, we adjust the ground

truth local orientation of each generated box to account for

the movement of the center ray of the crop. Figure 8 il-

lustrates an example of our box augmentation method. In

addition to the box augmentation, brightness augmentation

and mirroring of images are applied.

4.2. KITTI test set evaluation

Evaluation metric. The official metric of KITTI 2D

and 3D detection benchmark is the mean Average Precision

(mAP) with overlapping criteria of 0.7 for vehicle. Also,



Figure 8. Box augmentation example. Ground truth 2D box, di-

mensions and global orientation are used to obtain all possible 64

reprojected 2D boxes in image and pick the ones with reprojection

IoU with respect to the ground truth box is greater than 0.97.

the difficulty (easy, moderate and hard) is measured by the

minimal pixel of 2D box’s height and truncation and oc-

clusion levels. To measure the orientation performance, the

Average Orientation Similarity (AOS), which multiplies the

AP of the 2D detector with the average cosine distance sim-

ilarity, is used (see [5] for precise definition).

KITTI orientation accuracy. We are the first among all

submissions for car examples on the KITTI leaderboard [1].

Our results of 2D detection and orientation estimation on

the test set are summarized in Table 1. We can see that the

proposed architecture outperforms all the methods on the

orientation estimation for cars in the moderate setting. Al-

though DeepMANTA [3] outperforms our method on the

other settings, DeepMANTA requires complex preprocess-

ing and heavily relies on templates of 3D models corre-

sponding to several types of vehicles, making it hard to gen-

eralize to classes where such template does not exist. More-

over, compared to DeepStereoOP [17], which uses stereo

information, or F-ConvNet [28], HRI-VoxelFPN [26] and

MMLab-PointRCNN [22], which even use 3D information

from LiDAR, our method is shown to be more effective. In

terms of runtime, our approach is fastest among monocular

state-of-the-arts methods. The runtime including 2D detec-

tor is 0.18 seconds per frame using Titan X and cuDNN v6

with Intel Xeon CPU E5-2620 v3 @ 2.40GHz, and the in-

ference time of our proposed architecture except for the 2D

detector’s time is 0.02 seconds per frame, which is shown

to be real time.

KITTI 3D detection accuracy. The 3D box from our

3D reconstruction layer is also evaluated on the KITTI 3D

detection metric. Again, we use car class only. As we can

see in Table 2, our method obtains top results on KITTI

3D obejct detection benchmark among monocular meth-

ods. AM3D [13], Mono3D PLiDAR [29], and MonoGR-

Net [19] outperform our methods. However, their inference

engines are complicated because they rely on network for

either depth estimation or pseudo-LiDAR point cloud. Our

method is the third best among all monocular methods that

do not use the synthetically generated features.

4.3. Analysis on KITTI validation set

Multi-view reprojection loss analysis. We performed

an ablation study of the proposed multi-view reprojection

loss on the KITTI cars in the moderate setting. (For com-

parison, we reproduce the baseline, which is [15].) Table 3

shows the effect of adding each loss on the KITTI valida-

tion set performance. Adding Lpersp loss improves AOS by

0.41. We can see that AOS increases 0.59, and the best per-

formance is achieved when we use the proposed multi-view

reprojection loss. This verifies importance and effectiveness

of incorporating 3D properties into the network architecture

and our proposed training objective for better orientation es-

timation.

3D template analysis. We also evaluate 3D template

prediction as our network training is based on 3D box re-

construction and our network outputs dimensions of the 3D

box. We use the metric suggested by DeepMANTA [3] in

order to measure the prediction performance. In partic-

ular, the 3D template prediction is evaluated by compar-

ing the three predicted dimensions (w, h, l) to the ground

truth 3D box dimensions (wgt, hgt, lgt) provided by KITTI

dataset. Given the correct 2D detection, the predicted value

(w, h, l) is considered correct if |(wgt − w)/wgt| < 0.2,

|(hgt − h)/hgt| < 0.2 and |(lgt − l)/lgt| < 0.2. Table 4

shows the performance comparison to other methods. In or-

der to measure the performance of Deep3DBox [15], we use

the estimated 3D boxes on the validation results available

online at http://bit.ly/2oaiBgi. As shown in Ta-

ble 4, our approach outperforms other methods in moderate

and hard settings. Admittedly, DeepMANTA outperforms

our method in easy setting. However our method does not

rely on 3D CAD models in contrary to DeepMANTA.

Iterative orientation refinement analysis. We demon-

strate the effect of iterative method for accurately estimating

ray angle in case where detection boxes are truncated. We

compare the proposed iterative method with baseline where

the global orientation is obtained simply from the sum of lo-

cal orientation and ray angle without adjustment. Here, we

measure global orientation accuracy to evaluate the effec-

tiveness of our method. We define a metric called Average

Global Orientation Similarity (AGOS) where orientation in

AOS is replaced with global orientation. Table 5 presents

better performances for the proposed iterative method over

baseline in all settings.

5. Conclusion

In summary, the main contributions of our paper include:

1) design of a flexible, highly accurate network architec-

ture for orientation estimation incorporating geometric con-

straints and associated training strategy of the network. In

contrast to the previous state-of-the-art methods, our ap-



Rank Method Sensor Time(s)
Easy Moderate Hard

AOS(%) AP(%) AOS(%) AP(%) AOS(%) AP(%)

1 MVRA+I-FRCNN+ mono 0.18 90.60 90.78 89.93 90.36 79.78 80.48

2 DeepMANTA [3] mono 0.70 97.19 97.25 89.86 90.03 80.39 80.62

4 F-ConvNet [28] mono, LiDAR 0.47 90.41 90.44 89.60 89.79 80.39 80.66

10 HRI-VoxelFPN [26] LiDAR 0.02 90.43 90.66 89.27 89.89 80.31 80.97

11 MMLab-PointRCNN [22] LiDAR 0.10 90.73 90.74 89.22 89.32 85.53 85.73

24 Deep3DBox [15] mono 1.50 90.39 90.47 88.56 88.86 77.17 77.60

28 SubCNN [31] mono 2.00 90.61 90.75 88.43 88.86 78.63 79.24

36 Shift R-CNN [16] mono 0.25 90.27 90.56 87.91 88.90 78.72 79.86

37 MonoPSR [9] mono 0.20 89.88 90.18 87.83 88.84 70.48 71.44

47 DeepStereoOP [17] stereo 3.40 89.01 90.34 86.57 88.75 77.13 79.39

52 Mono3D [4] mono 4.20 89.00 90.27 85.83 87.86 76.00 78.09

Table 1. Results for 2D vehicle detection (AP) and orientation (AOS) on the KITTI test set from leaderboard [1]

Method Time(s)
Car AP(%)

Easy Moderate Hard

AM3D [13] 0.40 21.48 16.08 15.26

M3D-RPN [2] 0.16 20.65 15.70 13.32

MonoDIS [23] 0.10 11.81 15.12 12.71

Mono3D PLiDAR [29] 0.10 17.12 13.44 12.38

MonoGRNet [19] 0.04 11.29 12.90 11.34

MVRA+I-FRCNN+ 0.18 12.92 11.01 10.45

MonoPSR [9] 0.20 12.57 10.85 9.06

ROI-10D [14] 0.20 12.30 10.30 9.39

SS3D [7] 0.048 11.74 9.58 7.7

GS3D [11] 2.00 7.69 6.29 6.16

Shift R-CNN [16] 0.25 8.13 5.22 4.78

OFT-Net [21] 0.50 3.28 2.50 2.27

Table 2. Results for 3D monocular vehicle detection (AP) on the KITTI test set from leaderboard [1]

Option Lmultibin Ldim Lpersp Lbev AOS(%)

Baseline � � 95.47

Baseline+Lpersp � � � 95.88

Ours � � � � 96.06

Table 3. Ablation study of adding losses from baseline on KITTI

validation set

Template(%) Easy Moderate Hard

DeepMANTA [3] 94.04 86.62 78.72

Deep3DBox [15] 86.45 86.55 75.28

Ours 88.97 88.36 82.78

Table 4. 3D template prediction evaluation on KITTI validation set

proach is real time and does not require complex inference

engines or 3D shape datasets. 2) A novel box augmenta-

tion technique based on projective geometry is proposed. 3)

An experimental evaluation demonstrating the superiority

of our approach for KITTI car orientation estimation and

AGOS(%) Easy Moderate Hard

Baseline 98.19 95.95 79.72

Ours 98.23 96.07 79.86

Table 5. Global orientation accuracy evaluation on KITTI valida-

tion set

3D detection is illustrated. 4) A thorough analysis of our

proposed methods is provided.
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