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Abstract

A new convolutional neural network (CNN) architecture

for 2D driver/passenger pose estimation and seat belt detec-

tion is proposed in this paper. The new architecture is more

nimble and thus more suitable for in-vehicle monitoring tasks

compared to other generic pose estimation algorithms. The

new architecture, named NADS-Net, utilizes the feature pyra-

mid network (FPN) backbone with multiple detection heads

to achieve the optimal performance for driver/passenger

state detection tasks. The new architecture is validated on

a new data set containing video clips of 100 drivers in 50

driving sessions that are collected for this study. The detec-

tion performance is analyzed under different demographic,

appearance, and illumination conditions. The results pre-

sented in this paper may provide meaningful insights for the

autonomous driving research community and automotive in-

dustry for future algorithm development and data collection.

1. Introduction

A vast majority of vehicle accidents reported worldwide

are caused by distracted driving behaviors [27]. Exam-

ples of distracted driving behaviors include use of smart-

phones/mobile devices, smoking tobaccos, engaging in a

conversation with other passengers, drinking beverages, eat-

ing foods, and such, that are irrelevant to the task of driving

itself. Different forms of distractions such as drowsiness,

fatigues, medication effects, and other medical/physiological

issues can also cause life threatening situations [16].

Another significant automotive safety hazard is caused

by improper/non-use of seat belt, which can cause a serious

injury and fatality. According to the U.S. National Highway

Traffic Safety Administration (NHTSA), 10,428 unbuckled

drivers and passengers died in 2016 on the U.S. roads [22].

Moreover, even if the drivers and passengers are buckled,
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improperly positioned seat belt can cause fatal injuries. Ac-

cording to [8], fatal injuries such as intra-abdominal injury

are caused by improper positioning of seat belt at the time

of crash.

To this end, in-vehicle monitoring systems (IVMS) are

rapidly becoming a standard technology in consumer vehi-

cles as they can play a critical role in preventing and miti-

gating traffic accidents by alerting the distracted driver and

adaptively adjusting the safety mechanisms. Furthermore, in

the upcoming era of autonomous driving, IVMS technolo-

gies are expected to be even more critical [33]. For example,

an IVMS can provide an alert to the driver when the vehicle

system detects an anomaly while in an autonomous driving

mode, so that the driver can take over the control prior to

the system failure [10]. An IVMS could also provide per-

sonalized accommodation to the occupants to maximize the

comfort and safety.

For IVMS, vision-based sensing technologies are at the

core, as they permit non-invasive, non-obstructive means

to monitor and detect in-cabin activities. To this end, vi-

sual cues from face, eye-gaze, head-pose, hand gestures,

and body poses are detected and tracked in IVMS systems

[6, 21, 35, 37, 24]. The goal of vision-based sensing typi-

cally includes recognition of a variety of states, activities,

and aspects of human automobile users, such as the body

posture of the driver and the front row passenger, and cor-

rect donning of seat belt, which are the main objectives of

this paper. More specifically, this paper proposes a new

convolutional neural network (CNN) architecture for 2D

driver/passenger pose estimation and seat belt detection that

is more nimble and, thus, more suitable for in-vehicle moni-

toring tasks compared to other state-of-the-art approaches.

The new architecture, named NADS-Net, utilizes a feature

pyramid network (FPN) [18] backbone with multi-branch

detection heads, namely, a key point detection head, a part-

affinity field [4] detection head, and a seat belt segmentation

head. The new architecture shows similar detection accuracy

in the body pose estimation task compared to the state-of-

the-art algorithm [4], while being more concise and efficient,



and capable of doing more (i.e. seat belt detection). In addi-

tion, we also collected a video data set of 100 drivers in 50

driving sessions to fine-tune the performance of the proposed

model pre-trained on the generic human pose estimation in

the wild data sets. We analyzed the performance of the new

NADS-Net algorithm as well as one of the current state of

the art algorithm proposed by Cao et al. [4] under different

demographic, appearance, and lighting conditions. This may

provide insights for future algorithm design and data collec-

tion to the academic research community and the automotive

industry. The major contribution of this paper is summarized

as follows:

• A new architecture for driver/passenger pose estimation

and seat belt detection is proposed.

• Insights for CNN algorithm design are distilled by con-

trasting the new architecture with other typical generic

pose detection algorithm.

• Performance of the algorithms are analyzed on differ-

ent imaging conditions, providing new insights and

guidelines for future algorithm development and data

collection.

2. Related works

2.1. Human pose estimation

In the automotive industry, human pose estimation algo-

rithms have gained an increasing interest for their enhanced

capacity in capturing kinematic posture of people without

any sensor instrumentation. The taxonomy of human pose

estimation methods in literature can be broadly categorized

into top-down approaches and bottom-up approaches.

Top-down approaches Top-down approaches detect per-

son bounding boxes first and then break each bounding box

down into body key points and a skeleton. Papandreou et

al. [25] employed Faster R-CNN [30] to first predict per-

son bounding boxes and then utilized the residual network

(ResNet) [13] to predict both dense heat maps and offset vec-

tors within each person bounding box to localize key points.

He et al. [12] proposed Mask R-CNN which extends Faster

R-CNN to support both person instance segmentation and

human key point detection, on top of the Faster R-CNN’s

bounding box detection head. Moreover, they changed the

network backbone to FPN [18], which resulted performance

gain in both accuracy and speed. Chen et al. [5] proposed

cascaded pyramid network (CPN) comprised of two stages:

GlobalNet and RefineNet. The CPN first detects the bound-

ing box of a person and the cropped bounding box is passed

to GlobalNet where key points are predicted with an FPN

backbone. RefineNet then refines the key points predicted by

GlobalNet, which, in turn, achieves more precise detection

of occluded or invisible key points.

Bottom-up approaches Bottom-up approaches detect all

body key points individually, first, and then parse their con-

nections and memberships to construct person instances (i.e.

skeletons). DeepCut [28] is an example of a bottom-up ap-

proach that detects body parts and the relations between

each body parts. These outputs are then used to regress the

spatial offsets of detected parts and to connect person in-

stances. Later, DeeperCut [14] redesigned the original Deep-

Cut algorithm by utilizing a deeper ResNet architecture to

improve the body part detectors and to induce stronger pair-

wise scores between the body parts. However, both DeepCut

and DeeperCut could not achieve a practical inference speed

for real-time applications. Newell et al. [23] introduced a

method that can simultaneously output key point locations

and pixel-wise embeddings to automatically group key point

detection results into individual poses. Cao et al. [4] pro-

posed part affinity fields (PAF) that encompass vector fields

indicating how individual key points should be connected.

They augmented the convolution pose machine [34] algo-

rithm with the PAF prediction head and employed bipartite

graph matching to greedily parse skeleton instances.

In-vehicle human pose estimation Despite the fact that

there have been significant breakthroughs in generic pose

estimation tasks, there are only few pose estimation models

in literature specifically for in-vehicle use. For example,

Okuno et al. [24] proposed a method that predicts both hu-

man posture and face orientation in real-time. Unlike other

generic posture estimation models, their model relies on

a relatively shallow CNN architecture, comprised of only

three convolution layers and two succeeding fully connected

layers that directly regress x and y coordinates of eight body

parts and face orientation angle. Their model was trained

and evaluated on a custom data set comprised of images of

twelve subjects, collected for their study. Yuen et al. [37]

presented a model which modified the PAF model of Cao et

al. [4] that only focuses on detecting the wrists and elbows of

both the driver and the front passenger. They also collected

their own data set that consists of real on-road scenes with

varying lighting conditions to train and test the model. The

method proposed in this paper substantially expands these

previous works towards more comprehensive and reliable

detection performance.

2.2. Seat belt

There have been ongoing efforts regarding computer

vision-based detection of seat belt use. Zhou et al. [39]

combined an edge detection method, the salient gradient

map, and the radial basis functions (RBF) into a unified

network architecture to identify whether there is seat belt

present in the image or not. Guo et al. [11] similarly utilized

an edge detection algorithm to detect seat belt from traffic

surveillance cameras. Zhou et al. [38] used AlexNet [17]



Figure 1: First and third columns in the figure are results produced by NADS-Net and second and fourth columns are the

corresponding ground truth annotations.

with batch normalization [15] to identify seat belts. Elihos et

al. [9] proposed a method that crops passenger regions first

using the single shot detector (SSD) [20] and applies a CNN

to detect seat belt non-use. The seat belt detection algorithm

proposed in this paper attempts to add more granularity in

detection results such that, in the future, the detection results

can provide information on, not only use and non-use of

seat belt, but also proper/improper use cases judged by the

relative position of seat belt to the detected body position.

3. Method

In this paper, we propose new NADS-Net architecture for

simultaneous pose estimation and seat belt detection. More

specifically, the main objectives are (1) to estimate 2D body

posture of the driver and (if exists) the front-row passenger;

and (2) to segment image pixels that correspond to seat belts.

3.1. Problem overview

The driver and passenger pose estimation problem is sim-

ilar to the generic 2D human pose estimation in the wild

problem, in a sense that we aim to detect body key points

and skeletons parsing those key points. However, there are

several key differences between the driver/passenger pose es-

timation problem and the generic pose estimation problems

as described below.

Most of the pose estimation models are trained and vali-

dated on publicly available data set such as MS COCO [19]

and PoseTrack [2] data sets. These data sets are, however,

mostly images taken in daytime or bright indoor scenes,

whereas the illumination in vehicles can vary drastically.

Furthermore, in generic data sets, there is no nighttime infra-

red (IR) image, hence the performance of a model trained

on generic data sets is questionable in IVMS settings. This

will be justified later in this paper.

On the other hand, generic data sets contain a variety

of human poses whereas poses of drivers and passengers

in vehicles are quite limited. Moreover, background tex-

ture and the number of people in the generic data sets are

more diverse and the pixel-height of the people can also vary

largely. In contrast, those quantities vary only narrowly in

vehicle environments. From this observation, we hypothe-

size that a shallower model with lesser parameters would

suffice the pose estimation task in IVMS settings. Hence, a

higher computational efficiency can be achieved by reducing

the neural network architecture without compromising the

model performance.

3.2. Data set

One of the main challenges in this study was the lack

of appropriate data sets. As noted above, there are many

publicly available data sets for more generic human pose

estimation problems, but they are not quite suited for in-

vehicle monitoring purposes. Especially, we require seat belt

annotations, diverse demographics, nighttime IR images,

people under dynamic change of illumination as they drive,



Figure 2: Data collection setup for this study.

and human poses and gestures in the context of driving.

Data collection We collected videos of drivers and pas-

sengers in a Volvo XC90 research vehicle through on-road

driving studies. Over 7 months ranging from Spring to Win-

ter, the total of 100 subjects consented to participate in the

study in compliance to the internal review board (IRB) re-

quirements. The subjects were randomly assigned in one

of driving sessions that varied in season, weather, and time

of the day. Each driving session was composed of static

sessions while vehicle was at park where subjects were in-

structed to pose a specific set of predefined gestures, and

on-road driving sessions. During the static gesture sessions,

the subjects were requested to perform certain gestures and

motions such as drinking, using smart phones, exercising,

yawning, sneezing, leaning on the door, putting hands out

the window, searching floor and the center console, adjust-

ing sun visor, and etc. For the safety reasons, no request to

perform a gesture or motion was presented to the subjects

during the on-road driving sessions.

For data collection, we equipped the research vehicle with

IR lights and two cameras. One of the cameras was mounted

below the rear view mirror and another was above the center

media console. IR lights were installed on the dashboard

and behind the sun visors. Figure 2 shows how the vehicle

was instrumented.

Statistics In addition to the driving videos, we also col-

lected demographics information of each subject such as age,

sex, and race through a survey questionnaire. Additionally,

researchers in this study have manually annotated videos to

label clothing and accessory types. These are summarized

Sex Race

Men Women White Black Asian Hisp. N/A∗

53 47 67 11 12 5 5

Age (yr.)

10-19 20-29 30-39 40-49 50-59 60-69 70-

4 28 17 16 15 17 3

∗Not responded.

Eyewear Facial Hair

None Glasses Sunglasses None Beard

47% 33% 20% 87% 13%

Clothing (Top) Accessories

Short Sleeves Long Sleeves Jacket/Coat Scarf Hat

10% 55% 35% 20% 18%

Table 1: Subject statistics.

in Table 1.

It should be noted that all driving sessions were accom-

panied by a research staff as a safety protocol and, thus,

the videos contain some repeated appearances of a few re-

search staffs. To minimize the potential bias in the data,

the researchers rotated the duty across the driving sessions.

By the safety requirement, the researchers had to sit on the

front passenger seat when the vehicle was in motion, but

while the vehicle was at park, they moved around to different

seat positions as much as possible to minimize the data bias.

Moreover, researchers were asked to wear different clothing

and accessories each time.

Lastly, the route of driving included a good mixture of ru-

ral roads, urban areas, and highways to diversify background

and illumination.

Data annotation For each session, short video clips were

selected manually and diversity in terms of subject demo-

graphics, illumination, and pose was promoted. The annota-

tion process was done manually by human annotators. For

each image, the annotators were instructed to segment all

visible seat belts with a binary mask and to mark x and y
pixel coordinates of body key points, as displayed in Fig-

ure 1, following the common convention in other publicly

available pose estimation data sets such as MS COCO. We

did not track the lower extremities as they were not visible in

most of the frames. The researchers of this study conducted

a final check each time the annotators submitted the job in

order to assure the data quality. Annotation errors were fixed

by the researchers or sent back to the annotators for rework.

Sample annotation results are presented in Figure 1.

3.3. Model

Our algorithm has three heads that generate key point heat

maps, PAF heat maps, and a binary seat belt detection mask,



Figure 3: NADS-Net architecture.

sitting on top of the FPN backbone (Figure 3). Outputs

from the first two heads are used to parse the key point

instances into human skeletons. For the parsing, we employ

the same PAF mechanism with the bipartite graph matching

as proposed in Cao et al. [4]. However, our contribution

is the architecture that generates feature maps faster and

more efficient. More specifically, we reduced the six-stage

architecture of [4] to a single stage architecture. Instead,

we replaced the VGG [32] backbone with a strong multi-

scale FPN backbone to speed up the inference time and to

compensate the reduced staging.

The FPN backbone of NADS-Net is comprised of ResNet-

50 and produces a rudimentary feature pyramid for the later

detection branches. The inherent structure of ResNet can

produce multi-resolution feature maps after each residual

blocks, namely C2, C3, C4, and C5, which are sized 1/4,

1/8, 1/16, and 1/32 of the original input resolution, respec-

tively. For example, for a given 384×384 image input we use

in the NADS-Net implementation, the ResNet-50 backbone

produces four levels of feature pyramid, each sized 96×96,

48×48, and 24×24 and 12×12. Along such, the number

of channels (feature maps) increases from 256 (C2) to 512

(C3), 1,024 (C4), and 2,048 (C5). These are then further con-

volved with 1×1 convolutions, to compress the number of

channels to 256. Lastly, the reduced feature pyramid further

undergoes two more 3×3 convolutions and an upsampling

to produce a concatenated 96× 96× 512 feature map.

Each of the detection branches employs two 3×3 convo-

lutions and a 1×1 convolution to predict a pixel-wise prob-

ability distribution. For the key point head, the pixel-wise

probability indicates the probability of the corresponding

pixel being a certain joint. Since we are interested in detect-

ing joints with background, the key point head produces ten

such probability maps of the size 96 × 96, each of which

corresponds to one of the nine joints we are interested in

detecting and also background. For the PAF head, similar

to [4], we produce vector fields of size 96 × 96 which en-

code pairwise relationships between body joints. Lastly, the

seat belt head produces a probability distribution map of a

size 96× 96 indicating the likelihood of each pixel being a

seat belt. Each pixel-wise probability is then thresholded to

generate a binary seat belt detection mask.

3.4. Implementation

The proposed NADS-Net was implemented in Keras [7]

with TensorFlow [1] backend and an NVIDIA GeForce GTX

1080 Ti GPU was used for training and testing. For the train-

ing data, 30 driving sessions out of total 50 were used. The

rest were reserved for testing. When selecting 30 sessions of

the training data, we manually selected half of the nighttime

sessions to distribute nighttime IR images equally for both

training and testing data. Rest of the training data sets were

selected randomly. At the end, 10,550 images were used for

training and 7,721 images were used for testing.

We pre-trained the model with MS COCO train2017

data set and the corresponding human key point annotations.

Only the body key point branch and PAF branch were pre-

trained. As reported in the result section, the transfer learning

strategy provided a significant performance gain. Addition-

ally, random image augmentations were applied to training

images, such as rotation, scaling and vertical flipping.

For the final parsing of the skeleton, we strictly followed

the implementation of Cao et al. [4]. That is, non-maximum

suppression was used on the detection confidence maps

which allowed the algorithm to obtain a discrete set of part

candidate locations. Then, bipartite graph was used to group

each person. More details are deferred to [4].



4. Result and discussion

We compare the NADS-Net with the PAF model [4] as a

baseline. For the detection accuracy of the body key points,

we employ the probability of correct key point (PCK) metric

[36] as a criterion. In typical generic human pose estimation

applications, the head size of the person being estimated

is used as a reference of PCK to determine the tolerance

of correctness (PCKh) [3]. This is reasonable for generic

applications where the pixel heights of people vary drasti-

cally within and across images. However, for the specific

in-vehicle monitoring task presented in this paper, we find

such a generic way may prevent precise characterization of

model performance as the head size can greatly vary depend-

ing on the spatial position of the head, while the distance

from the camera to the rest of the body (for example, hands

on the steering wheel) remains unchanged. To this end, we

may benefit by using the headrest size as the reference of

the PCK measure instead. The reason can be that, first of all,

the distance from the camera to the headrest is almost the

same, which allows more stable reference for PCK evalua-

tion. Furthermore, the headrest is about the same size as the

human heads, resulting the similar range of PCK values as

other human pose estimation literature. This enables more

intuitive interpretation of the analysis results. Therefore, we

use a modified PCKh metric (mPCKh) where the diagonal

length of the headrest is used as the reference (Figure 4). It

is worthwhile to note that, although the camera was fixed at

the same position and angle across the entire data collection

sessions, the pixel size of the headrest might change due

to the seat position. However, with respect to the average

diagonal length of the headrest (170 pixels), the variation is

negligible (less than 10 pixels).

For the seat belt detection task, there is no baseline model

available to compare. Instead, we simply report our model’s

sensitivity, specificity, precision, F1 score, and intersection

over union (IOU). As we will discuss below, these are ar-

guably inappropriate ways to characterize the seat belt de-

tection accuracy, but we defer the development of a better

metric to our future work.

4.1. Efficiency

In terms of the total number of parameters, the baseline

model requires 52,311,446 parameters while NADS-Net uses

39,334,301 parameters, which is about 25% lesser despite

the fact that there is an additional seat belt segmentation

head. Given that the skeleton parsing method in NADS-Net

is exactly the same as in [4], the run-time difference is only

a function of the model inference time. The frame rate on an

Intel R© CoreTM i7-7800X 3.50 GHz CPU machine with a

32GB RAM and a NVIDIA GeForce 1080Ti GPU, the bench-

mark model demonstrated 12 fps while NADS-Net showed

18 fps in average. This shall not be directly interpreted as a

definitive speed comparison at their maximal performance

Figure 4: Modified PCKh metric (mPCKh) used for key

point evaluation.

Figure 5: Seat belt detection result (left) in comparison

with the ground truth (right). With human inspection, the

prediction result is of good quality as it correctly marks the

seat belt area. However, IOU for this particular example was

46%, justifying the need for a better evaluation metric.

but, in fact, further optimization may dramatically change

the frame rate. However, the result still serves as a weak

but convincing evidence that the NADS-Net performs more

efficiently than the baseline model.

4.2. Key point detection

We compared mPCKh scores of NADS-Net model and

the baseline model for each individual key point location.

As reported at the bottom of Table 2, the baseline model

scored the average mPCKh of 82% over all key points while

NADS-Net model scored 84%. Unlike the baseline model,

NADS-Net does not have refining stages and have fewer

parameters, but PCK-wise, shows a similar or slightly better

performance. This demonstrates that the multi-resolution

feature pyramid produced by the FPN backbone is enough

for the driver/passenger pose estimation task and can re-

place multiple refining stages of generic pose estimation

algorithms. Some qualitative results are given in Figure 1.

4.3. Seat belt detection

The seat belt detection head produces a probability den-

sity function defined over the image domain, indicating the

likelihood of a pixel being a seat belt. The probability distri-

bution is then thresholded to obtain a binary seat belt segmen-

tation mask (see Figure 1). We evaluate the quality of seat



Cao et al. [4] NADS-Net (Ours)

MC∗ MC ND∗∗ All∗∗∗

Drivers 80% 81% 75% 88%

Front Passengers 85% 89% 78% 90%

Men 84% 87% 79% 90%

Women 79% 81% 73% 88%

White 83% 86% 77% 89%

Black 75% 77% 70% 87%

Asian 85% 87% 80% 91%

Glasses 83% 83% 75% 89%

Sunglasses 78% 82% 72% 85%

Short Sleeves 84% 85% 77% 89%

Long Sleeves 85% 87% 78% 90%

Jacket/Coat 79% 81% 75% 88%

Scarf 82% 84% 78% 91%

Hat 82% 84% 77% 90%

Beard 82% 87% 81% 90%

Daytime 85% 86% 77% 89%

Nighttime 74% 77% 75% 88%

Overall 82% 84% 77% 89%

∗ Trained with MS-COCO data set only.
∗∗ Trained with new driving data set only.
∗∗∗ Trained with both data sets combined.

Table 2: Accuracy evaluation with mPCKh@0.5.

belt segmentation using five metrics: sensitivity, specificity,

precision, F1 score, and IOU as reported in Table 3.

The high specificity of the model indicates that the model

can correctly classify non-seat belt pixels with a high confi-

dence. However, the other metrics are poor, where the sen-

sitivity, precision, and F1-score were 63.51%, 63.58%, and

63.55%, respectively, and IOU was only 47%. A possible in-

terpretation of this result is that, first of all, NADS-Net model

is highly conservative and predicts seat-belt only when there

is a high certainty. This can be justified from the strong

contrast between the sensitivity and specificity. Furthermore,

even if the seat belt detection is correct, just because the

predicted seat belt is thinner than the actual ground truth

annotation, metrics such as sensitivity and IOU drops signifi-

cantly as they penalize the thin subset of seat belt that are not

detected. Lastly, we also noticed that the manual annotation

of seat belt contained a few inconsistencies, which we could

not resolve in this study. For example, there was an incon-

sistency among the annotators where some people discerned

the seat belt buckles as a part of the seat belt while the others

exclusively labeled the fabric part of the seat belt. These are

possible sources of low sensitivity, precision, F1-score, and

IOU and need to be addressed in future work.

However, more fundamentally, it is worthwhile to note

the lack of suitable evaluation metrics. We inspected the

seat belt segmentation results image by image and noticed

that most of the error indeed comes from seat belt predicted

thinner than the ground truth annotation (e.g. Figure 5). A

Sensitivity Specificity Precision F1-Score IOU

63.51% 99.28% 63.58% 63.55% 46.57%

Table 3: Seatbelt Evaluation

Figure 6: Saliency map visualization [31] for the ‘right

wrist’ class. Note visual cues from the face have significant

contribution to the prediction.

possible solution to this is to skeletonize the seat belt mask

and compare the distances between the curves. Another

potential solution is a metric such as optimal transport [29].

These will also be the potential venues for future study.

4.4. Appearances

Performance on different demographics In Table 2,

evaluation of the model performance on different demo-

graphic parameters is reported. For women, the overall per-

formance was lower than men for all four experiments—the

baseline model trained only on MS COCO data set; NADS-

Net model trained only on MS COCO data set; NADS-Net

model trained only on the new driving data set; and NADS-

Net model pretrained on MS COCO data set and then trans-

ferred to the new driving data set. Considering the fact that

women-to-men ratio was 1:1, one hypothesis we can derive

from this observation is that the appearance variance among

women is larger than men, because of larger diversities in

hairstyle, accessories, clothing patterns, etc. among female

populations. Therefore, it is more advisable to include more

female subjects in data collection in the future.

Race-wise, the model performance was slightly better

on Asian populations followed by white populations. Per-

formance on people with darker skin tone was noticeably

lower, reconfirming the bias of computer vision data sets

and algorithms as pointed out by Zou and Schiebinger [40].

We believe the new driving data set collected in this study

also can suffer from the same bias. The primary reason was

the geographical location where the study was conducted,

whose population was predominantly white. Furthermore,

coincidentally 60% of black subjects participated in the study

during the nighttime, which could also worsen the perfor-

mance evaluation on this demographic group. The future

work, therefore, needs to include more subjects with darker

skin tones, to overcome the bias in performance and a more

rigorous and controlled analysis.



Clothing/accessories Table 2 reports the model perfor-

mance on nine different clothing/accessory categories. The

numbers reveal that there is no significant influence of cloth-

ing/accessories, except for sunglasses. We failed to reach

a convincing explanation on this, but a weak hypothesis on

this might be that many of the visual cues to a CNN-based

pose estimation model come from the facial area. As demon-

strated in the saliency map visualization in Figure 6, even for

the detection of right wrist, for example, which is relatively

far from the face, we can notice the detection relies largely

on the visual cues coming from the face, not just the wrist

and the arm area. Although this is beyond the scope of this

paper, it should be worth investigating this in future work,

to deepen our understanding of how pose estimation models

perceive and process the visual cues.

Another noticeable fact was that the model performance

was poor on people wearing jackets/coats, when the model

was trained on MS COCO data set only, but the performance

improved significantly when transferred to the new driving

data set. This might suggest that MS COCO data set is

biased to lighter clothing but confirming this hypothesis by

examining the data set image by image should be beyond

the objective of this study.

Illumination We could observe a significant drop of per-

formance in nighttime data when the model was trained on

MS COCO data set only. This could be easily improved by

transferring the model to the new driving data set. We can

conclude that there is not much of fundamental differences

between daytime images and nighttime IR images in terms

of visual cues available for the detection of body parts. In-

stead, the drop of performance mostly comes from the lack

of nighttime data in MS COCO data set, not an inherent

deficiency of CNNs.

5. Conclusion and future work

In this paper, we proposed a new CNN architecture called

NADS-Net for the purpose of driver and passenger pose

estimation and seat belt detection in vehicles. NADS-Net is

capable of estimating body pose together with seat belt seg-

mentation with the similar accuracy than the state of the art

baseline [4], while requiring fewer parameters and demon-

strating a faster inference time. We broke the performance

down and provided in-depth analyses in different aspects,

including sex, race, clothing, and illumination. These results

may provide practical insights to future academic research

and to industrial product development.

For the future work, one of the clear challenges is the bias

of data set. One trivial solution could be to enlarge the scale

of data collection study by including more diverse group of

subjects and other imaging parameters. However, practically,

this may not be viable in many aspects. To this end, one

potential direction we are exploring towards is the creation

of a synthetic data set and randomizing imaging conditions

virtually. In addition, the current status of our work is limited

to a frame-by-frame detection, while, arguably, it is more

desirable to take temporal aspects (e.g. optical flow) into

account as in recent works such as [26].
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