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Abstract

A new convolutional neural network (CNN) architecture
for 2D driver/passenger pose estimation and seat belt detec-
tion is proposed in this paper. The new architecture is more
nimble and thus more suitable for in-vehicle monitoring tasks
compared to other generic pose estimation algorithms. The
new architecture, named NADS-Net, utilizes the feature pyra-
mid network (FPN) backbone with multiple detection heads
to achieve the optimal performance for driver/passenger
state detection tasks. The new architecture is validated on
a new data set containing video clips of 100 drivers in 50
driving sessions that are collected for this study. The detec-
tion performance is analyzed under different demographic,
appearance, and illumination conditions. The results pre-
sented in this paper may provide meaningful insights for the
autonomous driving research community and automotive in-
dustry for future algorithm development and data collection.

1. Introduction

A vast majority of vehicle accidents reported worldwide
are caused by distracted driving behaviors [27]. Exam-
ples of distracted driving behaviors include use of smart-
phones/mobile devices, smoking tobaccos, engaging in a
conversation with other passengers, drinking beverages, eat-
ing foods, and such, that are irrelevant to the task of driving
itself. Different forms of distractions such as drowsiness,
fatigues, medication effects, and other medical/physiological
issues can also cause life threatening situations [16].

Another significant automotive safety hazard is caused
by improper/non-use of seat belt, which can cause a serious
injury and fatality. According to the U.S. National Highway
Traffic Safety Administration (NHTSA), 10,428 unbuckled
drivers and passengers died in 2016 on the U.S. roads [22].
Moreover, even if the drivers and passengers are buckled,
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improperly positioned seat belt can cause fatal injuries. Ac-
cording to [8], fatal injuries such as intra-abdominal injury
are caused by improper positioning of seat belt at the time
of crash.

To this end, in-vehicle monitoring systems (IVMS) are
rapidly becoming a standard technology in consumer vehi-
cles as they can play a critical role in preventing and miti-
gating traffic accidents by alerting the distracted driver and
adaptively adjusting the safety mechanisms. Furthermore, in
the upcoming era of autonomous driving, IVMS technolo-
gies are expected to be even more critical [33]. For example,
an IVMS can provide an alert to the driver when the vehicle
system detects an anomaly while in an autonomous driving
mode, so that the driver can take over the control prior to
the system failure [10]. An IVMS could also provide per-
sonalized accommodation to the occupants to maximize the
comfort and safety.

For IVMS, vision-based sensing technologies are at the
core, as they permit non-invasive, non-obstructive means
to monitor and detect in-cabin activities. To this end, vi-
sual cues from face, eye-gaze, head-pose, hand gestures,
and body poses are detected and tracked in IVMS systems
[6, 21, 35, 37, 24]. The goal of vision-based sensing typi-
cally includes recognition of a variety of states, activities,
and aspects of human automobile users, such as the body
posture of the driver and the front row passenger, and cor-
rect donning of seat belt, which are the main objectives of
this paper. More specifically, this paper proposes a new
convolutional neural network (CNN) architecture for 2D
driver/passenger pose estimation and seat belt detection that
is more nimble and, thus, more suitable for in-vehicle moni-
toring tasks compared to other state-of-the-art approaches.
The new architecture, named NADS-Net, utilizes a feature
pyramid network (FPN) [18] backbone with multi-branch
detection heads, namely, a key point detection head, a part-
affinity field [4] detection head, and a seat belt segmentation
head. The new architecture shows similar detection accuracy
in the body pose estimation task compared to the state-of-
the-art algorithm [4], while being more concise and efficient,



and capable of doing more (i.e. seat belt detection). In addi-
tion, we also collected a video data set of 100 drivers in 50
driving sessions to fine-tune the performance of the proposed
model pre-trained on the generic human pose estimation in
the wild data sets. We analyzed the performance of the new
NADS-Net algorithm as well as one of the current state of
the art algorithm proposed by Cao et al. [4] under different
demographic, appearance, and lighting conditions. This may
provide insights for future algorithm design and data collec-
tion to the academic research community and the automotive
industry. The major contribution of this paper is summarized
as follows:

e A new architecture for driver/passenger pose estimation
and seat belt detection is proposed.

o Insights for CNN algorithm design are distilled by con-
trasting the new architecture with other typical generic
pose detection algorithm.

e Performance of the algorithms are analyzed on differ-
ent imaging conditions, providing new insights and
guidelines for future algorithm development and data
collection.

2. Related works
2.1. Human pose estimation

In the automotive industry, human pose estimation algo-
rithms have gained an increasing interest for their enhanced
capacity in capturing kinematic posture of people without
any sensor instrumentation. The taxonomy of human pose
estimation methods in literature can be broadly categorized
into top-down approaches and bottom-up approaches.

Top-down approaches Top-down approaches detect per-
son bounding boxes first and then break each bounding box
down into body key points and a skeleton. Papandreou et
al. [25] employed Faster R-CNN [30] to first predict per-
son bounding boxes and then utilized the residual network
(ResNet) [13] to predict both dense heat maps and offset vec-
tors within each person bounding box to localize key points.
He et al. [12] proposed Mask R-CNN which extends Faster
R-CNN to support both person instance segmentation and
human key point detection, on top of the Faster R-CNN’s
bounding box detection head. Moreover, they changed the
network backbone to FPN [18], which resulted performance
gain in both accuracy and speed. Chen et al. [5] proposed
cascaded pyramid network (CPN) comprised of two stages:
GlobalNet and RefineNet. The CPN first detects the bound-
ing box of a person and the cropped bounding box is passed
to GlobalNet where key points are predicted with an FPN
backbone. RefineNet then refines the key points predicted by
GlobalNet, which, in turn, achieves more precise detection
of occluded or invisible key points.

Bottom-up approaches Bottom-up approaches detect all
body key points individually, first, and then parse their con-
nections and memberships to construct person instances (i.e.
skeletons). DeepCut [28] is an example of a bottom-up ap-
proach that detects body parts and the relations between
each body parts. These outputs are then used to regress the
spatial offsets of detected parts and to connect person in-
stances. Later, DeeperCut [14] redesigned the original Deep-
Cut algorithm by utilizing a deeper ResNet architecture to
improve the body part detectors and to induce stronger pair-
wise scores between the body parts. However, both DeepCut
and DeeperCut could not achieve a practical inference speed
for real-time applications. Newell ef al. [23] introduced a
method that can simultaneously output key point locations
and pixel-wise embeddings to automatically group key point
detection results into individual poses. Cao et al. [4] pro-
posed part affinity fields (PAF) that encompass vector fields
indicating how individual key points should be connected.
They augmented the convolution pose machine [34] algo-
rithm with the PAF prediction head and employed bipartite
graph matching to greedily parse skeleton instances.

In-vehicle human pose estimation Despite the fact that
there have been significant breakthroughs in generic pose
estimation tasks, there are only few pose estimation models
in literature specifically for in-vehicle use. For example,
Okuno et al. [24] proposed a method that predicts both hu-
man posture and face orientation in real-time. Unlike other
generic posture estimation models, their model relies on
a relatively shallow CNN architecture, comprised of only
three convolution layers and two succeeding fully connected
layers that directly regress = and y coordinates of eight body
parts and face orientation angle. Their model was trained
and evaluated on a custom data set comprised of images of
twelve subjects, collected for their study. Yuen et al. [37]
presented a model which modified the PAF model of Cao et
al. [4] that only focuses on detecting the wrists and elbows of
both the driver and the front passenger. They also collected
their own data set that consists of real on-road scenes with
varying lighting conditions to train and test the model. The
method proposed in this paper substantially expands these
previous works towards more comprehensive and reliable
detection performance.

2.2. Seat belt

There have been ongoing efforts regarding computer
vision-based detection of seat belt use. Zhou et al. [39]
combined an edge detection method, the salient gradient
map, and the radial basis functions (RBF) into a unified
network architecture to identify whether there is seat belt
present in the image or not. Guo et al. [1 1] similarly utilized
an edge detection algorithm to detect seat belt from traffic
surveillance cameras. Zhou et al. [38] used AlexNet [17]



Figure 1: First and third columns in the figure are results produced by NADS-Net and second and fourth columns are the
corresponding ground truth annotations.

with batch normalization [15] to identify seat belts. Elihos et
al. [9] proposed a method that crops passenger regions first
using the single shot detector (SSD) [20] and applies a CNN
to detect seat belt non-use. The seat belt detection algorithm
proposed in this paper attempts to add more granularity in
detection results such that, in the future, the detection results
can provide information on, not only use and non-use of
seat belt, but also proper/improper use cases judged by the
relative position of seat belt to the detected body position.

3. Method

In this paper, we propose new NADS-Net architecture for
simultaneous pose estimation and seat belt detection. More
specifically, the main objectives are (1) to estimate 2D body
posture of the driver and (if exists) the front-row passenger;
and (2) to segment image pixels that correspond to seat belts.

3.1. Problem overview

The driver and passenger pose estimation problem is sim-
ilar to the generic 2D human pose estimation in the wild
problem, in a sense that we aim to detect body key points
and skeletons parsing those key points. However, there are
several key differences between the driver/passenger pose es-
timation problem and the generic pose estimation problems
as described below.

Most of the pose estimation models are trained and vali-
dated on publicly available data set such as MS COCO [19]

and PoseTrack [2] data sets. These data sets are, however,
mostly images taken in daytime or bright indoor scenes,
whereas the illumination in vehicles can vary drastically.
Furthermore, in generic data sets, there is no nighttime infra-
red (IR) image, hence the performance of a model trained
on generic data sets is questionable in IVMS settings. This
will be justified later in this paper.

On the other hand, generic data sets contain a variety
of human poses whereas poses of drivers and passengers
in vehicles are quite limited. Moreover, background tex-
ture and the number of people in the generic data sets are
more diverse and the pixel-height of the people can also vary
largely. In contrast, those quantities vary only narrowly in
vehicle environments. From this observation, we hypothe-
size that a shallower model with lesser parameters would
suffice the pose estimation task in IVMS settings. Hence, a
higher computational efficiency can be achieved by reducing
the neural network architecture without compromising the
model performance.

3.2. Data set

One of the main challenges in this study was the lack
of appropriate data sets. As noted above, there are many
publicly available data sets for more generic human pose
estimation problems, but they are not quite suited for in-
vehicle monitoring purposes. Especially, we require seat belt
annotations, diverse demographics, nighttime IR images,
people under dynamic change of illumination as they drive,



Figure 2: Data collection setup for this study.

and human poses and gestures in the context of driving.

Data collection We collected videos of drivers and pas-
sengers in a Volvo XC90 research vehicle through on-road
driving studies. Over 7 months ranging from Spring to Win-
ter, the total of 100 subjects consented to participate in the
study in compliance to the internal review board (IRB) re-
quirements. The subjects were randomly assigned in one
of driving sessions that varied in season, weather, and time
of the day. Each driving session was composed of static
sessions while vehicle was at park where subjects were in-
structed to pose a specific set of predefined gestures, and
on-road driving sessions. During the static gesture sessions,
the subjects were requested to perform certain gestures and
motions such as drinking, using smart phones, exercising,
yawning, sneezing, leaning on the door, putting hands out
the window, searching floor and the center console, adjust-
ing sun visor, and etc. For the safety reasons, no request to
perform a gesture or motion was presented to the subjects
during the on-road driving sessions.

For data collection, we equipped the research vehicle with
IR lights and two cameras. One of the cameras was mounted
below the rear view mirror and another was above the center
media console. IR lights were installed on the dashboard
and behind the sun visors. Figure 2 shows how the vehicle
was instrumented.

Statistics In addition to the driving videos, we also col-
lected demographics information of each subject such as age,
sex, and race through a survey questionnaire. Additionally,
researchers in this study have manually annotated videos to
label clothing and accessory types. These are summarized

Sex Race
Men | Women | White | Black | Asian | Hisp. | N/A*
53 47 67 11 12 5 5
Age (yr.)
10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-
4 28 17 16 15 17 3
*Not responded.
Eyewear Facial Hair
None Glasses Sunglasses | None | Beard
47% 33% 20% 87% 13%
Clothing (Top) Accessories
Short Sleeves | Long Sleeves | Jacket/Coat | Scarf | Hat
10% 55% 35% 20% 18%

Table 1: Subject statistics.

in Table 1.

It should be noted that all driving sessions were accom-
panied by a research staff as a safety protocol and, thus,
the videos contain some repeated appearances of a few re-
search staffs. To minimize the potential bias in the data,
the researchers rotated the duty across the driving sessions.
By the safety requirement, the researchers had to sit on the
front passenger seat when the vehicle was in motion, but
while the vehicle was at park, they moved around to different
seat positions as much as possible to minimize the data bias.
Moreover, researchers were asked to wear different clothing
and accessories each time.

Lastly, the route of driving included a good mixture of ru-
ral roads, urban areas, and highways to diversify background
and illumination.

Data annotation For each session, short video clips were
selected manually and diversity in terms of subject demo-
graphics, illumination, and pose was promoted. The annota-
tion process was done manually by human annotators. For
each image, the annotators were instructed to segment all
visible seat belts with a binary mask and to mark z and y
pixel coordinates of body key points, as displayed in Fig-
ure 1, following the common convention in other publicly
available pose estimation data sets such as MS COCO. We
did not track the lower extremities as they were not visible in
most of the frames. The researchers of this study conducted
a final check each time the annotators submitted the job in
order to assure the data quality. Annotation errors were fixed
by the researchers or sent back to the annotators for rework.
Sample annotation results are presented in Figure 1.

3.3. Model

Our algorithm has three heads that generate key point heat
maps, PAF heat maps, and a binary seat belt detection mask,



Key Point
Head

PAF
Head

Seat Belt
Head

Figure 3: NADS-Net architecture.

sitting on top of the FPN backbone (Figure 3). Outputs
from the first two heads are used to parse the key point
instances into human skeletons. For the parsing, we employ
the same PAF mechanism with the bipartite graph matching
as proposed in Cao et al. [4]. However, our contribution
is the architecture that generates feature maps faster and
more efficient. More specifically, we reduced the six-stage
architecture of [4] to a single stage architecture. Instead,
we replaced the VGG [32] backbone with a strong multi-
scale FPN backbone to speed up the inference time and to
compensate the reduced staging.

The FPN backbone of NADS-Net is comprised of ResNet-
50 and produces a rudimentary feature pyramid for the later
detection branches. The inherent structure of ResNet can
produce multi-resolution feature maps after each residual
blocks, namely C2, C3, C4, and C5, which are sized 1/4,
1/8,1/16, and 1/32 of the original input resolution, respec-
tively. For example, for a given 384 x 384 image input we use
in the NADS-Net implementation, the ResNet-50 backbone
produces four levels of feature pyramid, each sized 96x 96,
48x48, and 24x24 and 12x12. Along such, the number
of channels (feature maps) increases from 256 (C2) to 512
(C3), 1,024 (C4), and 2,048 (C5). These are then further con-
volved with 1x 1 convolutions, to compress the number of
channels to 256. Lastly, the reduced feature pyramid further
undergoes two more 3 x3 convolutions and an upsampling
to produce a concatenated 96 x 96 x 512 feature map.

Each of the detection branches employs two 3 x3 convo-
lutions and a 1x 1 convolution to predict a pixel-wise prob-
ability distribution. For the key point head, the pixel-wise
probability indicates the probability of the corresponding
pixel being a certain joint. Since we are interested in detect-
ing joints with background, the key point head produces ten
such probability maps of the size 96 x 96, each of which
corresponds to one of the nine joints we are interested in

detecting and also background. For the PAF head, similar
to [4], we produce vector fields of size 96 x 96 which en-
code pairwise relationships between body joints. Lastly, the
seat belt head produces a probability distribution map of a
size 96 x 96 indicating the likelihood of each pixel being a
seat belt. Each pixel-wise probability is then thresholded to
generate a binary seat belt detection mask.

3.4. Implementation

The proposed NADS-Net was implemented in Keras [7]
with TensorFlow [ 1] backend and an NVIDIA GeForce GTX
1080 Ti GPU was used for training and testing. For the train-
ing data, 30 driving sessions out of total 50 were used. The
rest were reserved for testing. When selecting 30 sessions of
the training data, we manually selected half of the nighttime
sessions to distribute nighttime IR images equally for both
training and testing data. Rest of the training data sets were
selected randomly. At the end, 10,550 images were used for
training and 7,721 images were used for testing.

We pre-trained the model with MS COCO train2017
data set and the corresponding human key point annotations.
Only the body key point branch and PAF branch were pre-
trained. As reported in the result section, the transfer learning
strategy provided a significant performance gain. Addition-
ally, random image augmentations were applied to training
images, such as rotation, scaling and vertical flipping.

For the final parsing of the skeleton, we strictly followed
the implementation of Cao et al. [4]. That is, non-maximum
suppression was used on the detection confidence maps
which allowed the algorithm to obtain a discrete set of part
candidate locations. Then, bipartite graph was used to group
each person. More details are deferred to [4].



4. Result and discussion

We compare the NADS-Net with the PAF model [4] as a
baseline. For the detection accuracy of the body key points,
we employ the probability of correct key point (PCK) metric
[36] as a criterion. In typical generic human pose estimation
applications, the head size of the person being estimated
is used as a reference of PCK to determine the tolerance
of correctness (PCKh) [3]. This is reasonable for generic
applications where the pixel heights of people vary drasti-
cally within and across images. However, for the specific
in-vehicle monitoring task presented in this paper, we find
such a generic way may prevent precise characterization of
model performance as the head size can greatly vary depend-
ing on the spatial position of the head, while the distance
from the camera to the rest of the body (for example, hands
on the steering wheel) remains unchanged. To this end, we
may benefit by using the headrest size as the reference of
the PCK measure instead. The reason can be that, first of all,
the distance from the camera to the headrest is almost the
same, which allows more stable reference for PCK evalua-
tion. Furthermore, the headrest is about the same size as the
human heads, resulting the similar range of PCK values as
other human pose estimation literature. This enables more
intuitive interpretation of the analysis results. Therefore, we
use a modified PCKh metric (mPCKh) where the diagonal
length of the headrest is used as the reference (Figure 4). It
is worthwhile to note that, although the camera was fixed at
the same position and angle across the entire data collection
sessions, the pixel size of the headrest might change due
to the seat position. However, with respect to the average
diagonal length of the headrest (170 pixels), the variation is
negligible (less than 10 pixels).

For the seat belt detection task, there is no baseline model
available to compare. Instead, we simply report our model’s
sensitivity, specificity, precision, F1 score, and intersection
over union (IOU). As we will discuss below, these are ar-
guably inappropriate ways to characterize the seat belt de-
tection accuracy, but we defer the development of a better
metric to our future work.

4.1. Efficiency

In terms of the total number of parameters, the baseline
model requires 52,311,446 parameters while NADS-Net uses
39,334,301 parameters, which is about 25% lesser despite
the fact that there is an additional seat belt segmentation
head. Given that the skeleton parsing method in NADS-Net
is exactly the same as in [4], the run-time difference is only
a function of the model inference time. The frame rate on an
Intel® Core™ i7-7800X 3.50 GHz CPU machine with a
32GB RAM and a NVIDIA GeForce 1080Ti GPU, the bench-
mark model demonstrated 12 fps while NADS-Net showed
18 fps in average. This shall not be directly interpreted as a
definitive speed comparison at their maximal performance

Correctly located if withilk)';
radius (0.5 x seat head size)

Figure 4: Modified PCKh metric (mPCKh) used for key
point evaluation.

Figure 5: Seat belt detection result (leftf) in comparison
with the ground truth (right). With human inspection, the
prediction result is of good quality as it correctly marks the
seat belt area. However, IOU for this particular example was
46%, justifying the need for a better evaluation metric.

but, in fact, further optimization may dramatically change
the frame rate. However, the result still serves as a weak
but convincing evidence that the NADS-Net performs more
efficiently than the baseline model.

4.2. Key point detection

We compared mPCKh scores of NADS-Net model and
the baseline model for each individual key point location.
As reported at the bottom of Table 2, the baseline model
scored the average mPCKh of 82% over all key points while
NADS-Net model scored 84%. Unlike the baseline model,
NADS-Net does not have refining stages and have fewer
parameters, but PCK-wise, shows a similar or slightly better
performance. This demonstrates that the multi-resolution
feature pyramid produced by the FPN backbone is enough
for the driver/passenger pose estimation task and can re-
place multiple refining stages of generic pose estimation
algorithms. Some qualitative results are given in Figure 1.

4.3. Seat belt detection

The seat belt detection head produces a probability den-
sity function defined over the image domain, indicating the
likelihood of a pixel being a seat belt. The probability distri-
bution is then thresholded to obtain a binary seat belt segmen-
tation mask (see Figure 1). We evaluate the quality of seat



Cao et al. [4] NADS-Net (Ours)
MC* MC | ND** | AlI"*"
Drivers 80% 81% | 75% 88%
Front Passengers 85% 89% | T8% 90%
Men 84% 87% | T79% 90%
Women 79% 81% | 73% 88%
White 83% 86% | 77% 89%
Black 75% 77% | 70% 87%
Asian 85% 87% | 80% 91%
Glasses 83% 83% | 75% 89%
Sunglasses 78% 82% | T2% 85%
Short Sleeves 84% 85% | T7% 89%
Long Sleeves 85% 87% | T8% 90%
Jacket/Coat 79% 81% | 75% 88%
Scarf 82% 84% | 78% 91%
Hat 82% 84% | T7% 90%
Beard 82% 87% | 81% 90%
Daytime 85% 86% | T7% 89%
Nighttime 74% 77% | 75% 88%
Overall 82% 84% | 77% 89 %

* Trained with MS-COCO data set only.
** Trained with new driving data set only.
*** Trained with both data sets combined.

Table 2: Accuracy evaluation with mPCKh@0.5.

belt segmentation using five metrics: sensitivity, specificity,
precision, F1 score, and IOU as reported in Table 3.

The high specificity of the model indicates that the model
can correctly classify non-seat belt pixels with a high confi-
dence. However, the other metrics are poor, where the sen-
sitivity, precision, and F1-score were 63.51%, 63.58%, and
63.55%, respectively, and IOU was only 47%. A possible in-
terpretation of this result is that, first of all, NADS-Net model
is highly conservative and predicts seat-belt only when there
is a high certainty. This can be justified from the strong
contrast between the sensitivity and specificity. Furthermore,
even if the seat belt detection is correct, just because the
predicted seat belt is thinner than the actual ground truth
annotation, metrics such as sensitivity and IOU drops signifi-
cantly as they penalize the thin subset of seat belt that are not
detected. Lastly, we also noticed that the manual annotation
of seat belt contained a few inconsistencies, which we could
not resolve in this study. For example, there was an incon-
sistency among the annotators where some people discerned
the seat belt buckles as a part of the seat belt while the others
exclusively labeled the fabric part of the seat belt. These are
possible sources of low sensitivity, precision, F1-score, and
IOU and need to be addressed in future work.

However, more fundamentally, it is worthwhile to note
the lack of suitable evaluation metrics. We inspected the
seat belt segmentation results image by image and noticed
that most of the error indeed comes from seat belt predicted
thinner than the ground truth annotation (e.g. Figure 5). A

Sensitivity ‘ Specificity ‘ Precision ‘ F1-Score ‘ 10U
63.51% | 99.28% | 63.58% | 63.55% | 46.57%

Table 3: Seatbelt Evaluation

] for the ‘right

Figure 6: Saliency map visualization [
wrist’ class. Note visual cues from the face have significant
contribution to the prediction.

possible solution to this is to skeletonize the seat belt mask
and compare the distances between the curves. Another
potential solution is a metric such as optimal transport [29].
These will also be the potential venues for future study.

4.4. Appearances

Performance on different demographics In Table 2,
evaluation of the model performance on different demo-
graphic parameters is reported. For women, the overall per-
formance was lower than men for all four experiments—the
baseline model trained only on MS COCO data set; NADS-
Net model trained only on MS COCO data set; NADS-Net
model trained only on the new driving data set; and NADS-
Net model pretrained on MS COCO data set and then trans-
ferred to the new driving data set. Considering the fact that
women-to-men ratio was 1:1, one hypothesis we can derive
from this observation is that the appearance variance among
women is larger than men, because of larger diversities in
hairstyle, accessories, clothing patterns, etc. among female
populations. Therefore, it is more advisable to include more
female subjects in data collection in the future.

Race-wise, the model performance was slightly better
on Asian populations followed by white populations. Per-
formance on people with darker skin tone was noticeably
lower, reconfirming the bias of computer vision data sets
and algorithms as pointed out by Zou and Schiebinger [40].
We believe the new driving data set collected in this study
also can suffer from the same bias. The primary reason was
the geographical location where the study was conducted,
whose population was predominantly white. Furthermore,
coincidentally 60% of black subjects participated in the study
during the nighttime, which could also worsen the perfor-
mance evaluation on this demographic group. The future
work, therefore, needs to include more subjects with darker
skin tones, to overcome the bias in performance and a more
rigorous and controlled analysis.



Clothing/accessories Table 2 reports the model perfor-
mance on nine different clothing/accessory categories. The
numbers reveal that there is no significant influence of cloth-
ing/accessories, except for sunglasses. We failed to reach
a convincing explanation on this, but a weak hypothesis on
this might be that many of the visual cues to a CNN-based
pose estimation model come from the facial area. As demon-
strated in the saliency map visualization in Figure 6, even for
the detection of right wrist, for example, which is relatively
far from the face, we can notice the detection relies largely
on the visual cues coming from the face, not just the wrist
and the arm area. Although this is beyond the scope of this
paper, it should be worth investigating this in future work,
to deepen our understanding of how pose estimation models
perceive and process the visual cues.

Another noticeable fact was that the model performance
was poor on people wearing jackets/coats, when the model
was trained on MS COCO data set only, but the performance
improved significantly when transferred to the new driving
data set. This might suggest that MS COCO data set is
biased to lighter clothing but confirming this hypothesis by
examining the data set image by image should be beyond
the objective of this study.

Ilumination We could observe a significant drop of per-
formance in nighttime data when the model was trained on
MS COCO data set only. This could be easily improved by
transferring the model to the new driving data set. We can
conclude that there is not much of fundamental differences
between daytime images and nighttime IR images in terms
of visual cues available for the detection of body parts. In-
stead, the drop of performance mostly comes from the lack
of nighttime data in MS COCO data set, not an inherent
deficiency of CNNs.

5. Conclusion and future work

In this paper, we proposed a new CNN architecture called
NADS-Net for the purpose of driver and passenger pose
estimation and seat belt detection in vehicles. NADS-Net is
capable of estimating body pose together with seat belt seg-
mentation with the similar accuracy than the state of the art
baseline [4], while requiring fewer parameters and demon-
strating a faster inference time. We broke the performance
down and provided in-depth analyses in different aspects,
including sex, race, clothing, and illumination. These results
may provide practical insights to future academic research
and to industrial product development.

For the future work, one of the clear challenges is the bias
of data set. One trivial solution could be to enlarge the scale
of data collection study by including more diverse group of
subjects and other imaging parameters. However, practically,
this may not be viable in many aspects. To this end, one
potential direction we are exploring towards is the creation

of a synthetic data set and randomizing imaging conditions
virtually. In addition, the current status of our work is limited
to a frame-by-frame detection, while, arguably, it is more
desirable to take temporal aspects (e.g. optical flow) into
account as in recent works such as [26].
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