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Abstract

’Take-overs’ are safety critical events in conditionally

autonomous vehicles. These are cases where vehicle con-

trol is transferred from the autonomous system to a hu-

man driver during failure modes of the system. Safe take-

overs depend on two key factors; the readiness of the driver,

and the complexity of the scene. While prior work has ad-

dressed driver readiness estimation, scene complexity esti-

mation for control transitions remains an unexplored topic.

In this paper, we focus on characterizing the complexity

of driving scenes as perceived by human drivers during

takeover events. To this end, we collect naturalistic driving

data using a conditionally autonomous vehicle, equipped

with cameras and LiDAR sensors. We mine a diverse set

of scenarios using the LiDAR point cloud statistics. We

then collect take-over complexity ratings in these scenarios

assigned by raters with varying degrees of driving experi-

ence. We present an analysis of inter-rater agreement, and

the average rated complexity conditioned on features of the

surrounding environment, detected agents around the ego-

vehicle, and ego-vehicle actions and motion states.

1. Introduction

Conditionally autonomous vehicles are now commer-

cially available. Such vehicles can operate autonomously

under certain traffic constraints, but require a human driver

to serve as backup during failure modes. To ensure safety

of its occupants and surrounding traffic actors during fail-

ure modes, a conditionally autonomous vehicle can employ

one of two courses of action, detailed in Figure 1. The first

option would be to engage active safety features such as

tightening seat-belts, safely exiting the driveable area while

avoiding collisions, or deploying airbags. The second op-

tion would be to transfer control of the vehicle to the hu-

man driver, termed a ‘take-over’. Take-overs can be far less

disruptive for the vehicle’s occupants and the surrounding

traffic, if performed safely. Safe take-overs would hinge on

Figure 1: Motivation: Continuous estimation of the

driver’s take-over readiness and surrounding scene com-

plexity (top). During failure modes, if the surrounding

scene complexity is low and the driver is prepared to take

over, control can be transferred to the driver via a take-over

request (scenario 2, bottom right). If the scene complexity is

high or the driver isn’t prepared, automatic collision avoid-

ance and active safety measures can be employed (scenario

1, bottom left). In this work, we focus on characterizing

scene complexity from the human driver’s perspective.

two factors; the preparedness of the driver to take over con-

trol and the complexity of the surrounding scene. Thus, a

conditionally autonomous vehicle needs the ability to con-

tinuously estimate driver readiness and surrounding scene

complexity for take-overs.

A number of studies have addressed control transitions in

conditionally autonomous vehicles [1, 2, 8, 9, 10, 4, 6, 11,

3]. In particular, recent work has addressed driver readiness

estimation for take-overs [2, 11, 3]. However, scene com-

plexity for take-overs has not been extensively investigated.

Currently, scene complexity is defined in terms of traffic



Figure 2: Examples of diverse scenes generated by our mining algorithm: Top row shows images from our camera, and

the bottom row depicts the corresponding probability distribution (heatmap) with superimposed LiDAR points (in blue).

density as in [10, 4, 6], weather conditions, or road hazards

as in [9, 8]. However, a wider range of factors might affect

the take-over complexity of a scene. While there may be

significant overlap in the definitions, the system boundaries

of the autonomous vehicle are typically well understood by

its designers, manufacturers and even end users, but the lim-

its of a human driver are more ambiguous. In this study we

seek to understand scene complexity from a human driver’s

perspective.

In particular, we collect naturalistic driving data using a

conditionally autonomous vehicle, equipped with cameras

and LiDAR sensors. We mine a diverse set of scenarios us-

ing the LiDAR point cloud statistics. We then collect take-

over complexity ratings in these scenarios assigned by raters

with varying degrees of driving experience. We present an

analysis of inter-rater agreement, and correlation of rated

complexity with features based on the surrounding envi-

ronment, detected agents around the ego-vehicle and ego-

vehicle actions and motion states.

2. Data Collection and Diverse Event Mining

We use the vehicle test bed described in [11] for collect-

ing data. The test bed is built on top of a Tesla Model S,

capable of driving in autonomous mode on highways and

certain urban environments. The test bed is equipped with

6 high resolution cameras synchronously capturing the ve-

hicle’s complete surroundings at 30 fps. Additionally, a 16

layer Velodyne LiDAR captures range data around the ve-

hicle. The complete dataset contains over 150 hours of nat-

uralistic driving data captured on Californian freeways and

urban streets.

Our goal is to define a metric for take-over complexity

in scenes based on subjective ratings provided by human

observers. The complete dataset is too large to be rated by

multiple human raters. In order to generate a diverse subset

of the data to be rated, we propose an automated approach

for mining diverse events.

We use LiDAR point cloud maps for mining diverse

events. We estimate the probability distribution of the Li-

DAR points projected in the birds eye view. We use bi-

variate Kernel Density Estimation (KDE) at each point,

given by:

f̂H(x) =
1

n

n
∑

i=1

KH(x− xi), (1)

where,

• xi are the LiDAR points in the bird’s eye view.

• K is the bi-variate normal kernel density function

KH(x) =
1

2π
√

|H|
e−

1

2
x
T
H

−1
x. (2)

• H is the 2×2 bandwidth (smoothing) matrix given by

σ2
I, where σ2 is experimentally determined.

This estimate is then smoothed to produce a bi-variate

probability distribution representative of objects in a driv-

ing scene. Figure 2 shows examples of the smoothed prob-

ability distributions.

We select a diverse set of frames from the dataset us-

ing the Kullback-Leibler divergence (seen in Equation 3)

of their estimated probability distributions. We first sample

the complete dataset for frames at 5 second intervals and

randomize the order of the sampled frames. We then iter-

ate over these sampled and randomized frames to generate a

subset of selected frames. A frame is added to this subset if

its K-L divergence with respect to existing selected frames

is greater than a threshold.

DKL(P ||Q) = −
∑

x∈X

P (x)log(
Q(x)

P (x)
) (3)

A total of 3128 diverse frames are selected using this

process. We consider 2 second video clips centered at the



Figure 3: Rating tool: Screenshot from the tool used for

rating of 2s video clips.

selected frames to obtain a diverse set of scenarios to be

rated for scene complexity.

3. Scene Complexity Ratings

We chose a pool of 6 human raters with driving experi-

ence and working knowledge of the Tesla autopilot system

to assign subjective ratings to the selected video clips. The

raters were shown video feed from the forward facing cam-

era. Figure 3 shows the interface used for collecting ratings.

The raters were given the following prompt, “ You’ll now

be shown video clips of a vehicle operating in autonomous

mode. Rate on a scale of 1 to 5 the difficulty involved in tak-

ing over control from the vehicle at the end of each clip.”.

We chose a discrete rating scale rather than a continuous

scale to minimize rater confusion. Each rater rated a com-

mon set of 90 video clips. We use the common set to nor-

malize for rater bias and to analyze rater agreement. The

remaining 3038 video clips, termed the expansion set, were

divided across the raters. We use the expansion set to ana-

lyze the effect of cues from the surrounding scene and ego-

vehicle on the assigned scene complexity rating.

3.1. Normalizing for rater bias

One source of noise in the assigned ratings is rater bias.

Raters can be strict or lax, and can use a varying range of

values. We normalize for rater bias using a percentile based

approach. We use the common set for normalization of the

ratings. We pool and sort ratings provided by each rater on

the common set to obtain rater specific look-up tables. We

then pool and sort ratings of all raters to obtain a combined

look-up table. To normalize a specific raters ratings, we

find the percentile range of the assigned value in the raters

lookup table. We then replace it with the average of all val-

ues in that percentile range in the combined look-up table.

This percentile based lookup can be applied to the entire

dataset, including the expansion set.

Table 1: ICC values for annotator ratings

Normalization ICC(C, 1) ICC(A, 1) ICC(A, k)

✗ 0.522 0.232 0.644

✓ 0.517 0.520 0.866

4. Analysis of Ratings

4.1. Inter-rater agreement

We use intra-class correlation co-efficients (ICCs) as for-

mulated by McGraw et. al. [7], to evaluate inter-rater agree-

ment. We model the human ratings as a two-way random-

effect model without interaction, assuming n observations

and k raters. Under this model, the rating xij assigned by

rater j to clip i can be expanded as,

xij = µ+ ri + cj + eij , (4)

where, µ is the global average rating, ri’s are the deviations

based on the content of the rated clips, and cj’s are the de-

viations due to rater bias. The ri’s and cj’s are independent,

with mean 0 and variance σ2
r and σ2

c respectively. And fi-

nally, eij is the normally distributed measurement error with

zero mean and variance σ2
e . We report the following ICC

values for the normalized and unnormalized ratings, as de-

fined in [7]:

ICC(C, 1) =
σ2
r

σ2
r + σ2

e

, (5)

ICC(C,1) can be interpreted as the degree of consistency

of the rating values. This is independent of the rater bias,

and has a high value if the trend of ratings across raters is

consistent.

ICC(A, 1) =
σ2
r

σ2
r + σ2

c + σ2
e

. (6)

ICC(A,1) is the degree of absolute agreement of rater val-

ues, and has a high value only if the raters are in agreement

in terms of the actual value of the ratings.

ICC(A, k) =
σ2
r

σ2
r +

σ2
c
+σ2

e

k

. (7)

ICC(A,k) can be interpreted as the reliability of the average

rating provided by k different raters. In our case, k = 6.

All ICC values are bounded between 0 and 1. The σ

values are estimated using two-way analysis of variances

(ANOVA). Koo and Li [5] prescribe that ICC values less

than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and

greater than 0.90 are indicative of poor, moderate, good, and

excellent reliability, respectively. Table 1 shows the ICC

values with and without normalization. As expected, the



Figure 4: Effect of environment and ego-vehicle cues on assigned ratings: Variation in average ratings conditioned on

environment class (top-left), ego-vehicle action (bottom-left), traffic density (top-middle and bottom-middle), distance to the

nearest vehicle (top-right), and ego-vehicle speed (bottom-right)

ICC(C,1) values are higher than the ICC(A,1) values due

to the rater bias term σ2
c in the denominator for ICC(A,1).

However, we note that normalization considerably improves

the ICC(A,1) values without affecting the ICC(C,1) values.

This shows that the normalization maintains the trend (σ2
r )

of the ratings while reducing rater bias (σ2
c ). Finally, the

last column shows the ICC(A,k) values, which represent

the reliability of the average rating provided by all raters.

ICC(A,k) also considerably improves after normalization.

4.2. Effect of environment and ego-vehicle cues on
ratings

We analyze the effect of cues from the ego-vehicle and

its environment on the assigned ratings. In particular, we

consider the following features:

Environment class: We bin the data into 6 different en-

vironment classes shown in Figure 4 (top-left). The envi-

ronment class for each video clip is manually annotated.

We note that environment classes involving impending de-

cisions or maneuvers, such as on ramps and intersections,

have high ratings. Environment classes having fewer im-

pending decisions and maneuvers such as parking lots and

off ramps have low ratings.

Ego-vehicle action: We also manually annotate the ego ve-

hicle’s action for each video clip. We consider lane keep-

ing, left and right lane changes, left and right turns, braking

and reversing. Figure 4 (bottom-left) shows the average rat-

ings conditioned on ego-vehicle action. We note that lane

changes and left turns have high complexity ratings, since

these maneuvers often involve interaction of surrounding

traffic agents. On the other hand right turns and reversing

correspond to low ratings.

Traffic density: We detect vehicles and pedestrians in front

of the vehicle using the monocular vision based 3-D detec-

tor described in [12]. We note from Figure 4 (top-middle

and bottom-middle), that a higher number of detected vehi-

cles and pedestrians correspond to a higher rating.

Distance to the nearest vehicle: We also observe a trend in

the average rating with respect to distance to the nearest ve-

hicle, with lower distances corresponding to higher ratings,

seen in Figure 4 (top-right). This seems reasonable, due to

the higher collision risk with other vehicles close by.

Ego-vehicle speed: Finally, somewhat surprisingly, we

note that the ego-vehicle speed does not seem to affect the

assigned rating as seen in Figure 4 (bottom-right). This

might be due to the raters underestimating the speed of the

vehicle while observing the videos, or due to lower traffic

densities when the ego-vehicle is moving at high speeds.

5. Concluding Remarks

We presented an approach to characterize scene com-

plexity for control transitions in autonomous vehicles using

subjective ratings provided by human raters viewing camera

feed from a conditionally autonomous vehicle. We analyzed

the agreement across raters in terms of intra-class correla-

tion coefficients. Finally, we analyzed the variation in av-

erage ratings with cues from the ego-vehicle and its envi-

ronment. Future work would focus on utilizing the normal-

ized ratings as the ground truth for training machine learn-

ing models to estimate scene complexity for take-overs.
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