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Abstract

Human driving behavior understanding is a key ingredi-

ent for intelligent transportation systems. Either developing

self-driving car drives like humans or building V2X systems

to improve human driving experience, we need to under-

stand how humans drive and interact with environments.

Massive human driving data collected by top ride-sharing

platforms and fleet management companies, offers the po-

tential for in-depth understanding of human driving behav-

ior. In this paper, we present DBUS, a real-time driving be-

havior understanding system which works with front-view

videos, GPS/IMU signals collected from daily driving sce-

narios. Unlike previous work of driving behavior analysis,

DBUS focuses on not only the recognition of basic driving

actions but also the identification of driver’s intentions and

attentions. The analysis procedure is designed by mimick-

ing the human intelligence for driving, powered with repre-

sentation capability of deep neural networks as well as re-

cent advances in visual perception, video temporal segmen-

tation, attention mechanism, etc. Beyond systematic driving

behavior analysis, DBUS also supports efficient behavior-

based driving scenario search and retrieval, which is es-

sential for practical application when working with large-

scale human driving scenario dataset. We perform exten-

sive evaluations of DBUS in term of inference accuracy of

intentions, interpretability of inferred driver’s attentions, as

well as system efficiency. We also provide insightful intu-

itions as to why and how certain components work based

on experience in the development of the system.

1. Introduction

Understanding how human drives on the road is essential

for the development of many intelligent transportation sys-

tems, including autonomous driving systems [16], Vehicle

to Vehicle (V2V) and Vehicle to Infrastructure (V2I) sys-
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Figure 1. Overview of DBUS: (a) Human driving scenarios col-

lected via dash-cameras and GPS/IMU sensors. (b) Structured

driving behavior representation (driving action, intention, atten-

tion) inferred from human driving data (videos, GPS/IMU sig-

nals). (c) Behavior-based driving scenarios retrieval via structured

behavior representation.

tems [21], and driving safety monitoring systems [11, 20],

just to name a few. For example, in an autonomous driv-

ing system, understanding human drivers’ behavior is cru-

cial for accurate prediction of surrounding vehicles’ actions,

proposing human-like planning and control strategies, as

well as building a realistic simulator for the extensive au-

tonomous driving virtual test. As for V2V and V2I sys-

tems, understanding driving behavior, especially how hu-

man drivers interact with each other and with transportation

infrastructure, provides insight for an efficient and conve-



nient design of such systems. In term of driving safety, driv-

ing behavior understanding enables real-time driving safety

monitoring as well as constituting a comprehensive driving

safety profile for each driver, which is of top priority for

fleet management and ride-sharing platforms.

On the other hand, real-world traffic is a complicated

multi-agent system in which multiple participants interacts

with each other and with infrastructures. Moreover, each

driver has his/her own driving style. Therefore, there is

a huge diversity in daily driving scenarios and driving be-

haviors, which raises the need for extensive human driving

data to build a comprehensive driving behavior understand-

ing system. In recent years, the emerging of ride-sharing

industry with multi million drivers, offers the potential for

collecting vast volumes of human driving data. Equipped

with on-vehicle sensors such as video cameras, GPS, in-

ertial measurement unit (IMU), millions of drivers could

share their driving data to power the in-depth analysis of

human driving behavior.

However, mining large-scale human driving data for

driving behavior understanding presents significant chal-

lenges in following aspects. First, human driving behavior

is the outcome of the sophisticated human intelligent sys-

tem, including perception of the current traffic scenario, rea-

soning surrounding traffic participants’ intentions, paying

special attention to certain objects, planning ego-trajectory

and finally executing driving actions. Therefore, the fo-

cus of most existing work, e.g. detecting traffic partici-

pants [10, 7] or recognizing basic driving actions such as

braking and steering [9], is only the first step. Toward a

complete driving behavior understanding, we need to an-

alyze human driving data at multiple levels, ranging from

low-level driving action recognition all-the-way to high-

level driver’s intention and cause inference. On the other

hand, human driving data is usually collected from multi-

ple types of sensor simultaneously, including video cam-

era, GPS, IMU etc., capturing different aspect of human

driving behavior. Each type of data has its own properties

and works with different methodologies. For example, IMU

data is the best fit for low-level driving action recognition,

while videos support driver’s attention inference. There-

fore, an integrated system, which not only mining each type

of data properly but also fusion all information together,

is required for comprehensive driving behavior understand-

ing. Moreover, efficiency for such system is of crucial im-

portance for practical deployment, especially when dealing

with massive human driving data collected from millions of

drivers.

In this work, we analyze the large-scale human driv-

ing data from one of the top ride-sharing companies and

presents DBUS, Driving Behavior Understanding System.

Through a comprehensive system design, DBUS tackles all

the above challenges. Specifically, equipped with a struc-

tured representation, DBUS analyzes the driving behavior

from three levels: basic driving action, driving intention,

and driving attention which are formally defined in Sec-

tion 3. Beyond structured driving behavior understanding,

DBUS also supports behavior-based driving scenario search

and retrieval, which cannot be achieved by conventional

keywords or objects-based searches. Given a clip of human

driving data, the system could find the most similar driving

scenarios from millions of cases within a second.

DBUS has been deployed to power downstream applica-

tions within the ride-sharing company. Centered around a

structured behavior representation produced from DBUS, a

driver profiling system is built to summarize driving style of

each driver with a special focus on driving safety. As for the

driving scenario retrieval, a key application is for simulation

test of autonomous driving system. Given a certain traffic

scenario of interest, e.g. unprotected left turn with crossing

pedestrians, relevant real-world driving scenarios would be

retrieved automatically and then feed into autonomous driv-

ing simulator.

The main contributions of this work are summarized as

follows:

• A structured representation of human driving behav-

ior is designed with multiple levels of understanding,

including basic driving action, driving intention and

driving attention. This representation lays the foun-

dation for comprehensive human driving behavior un-

derstanding.

• We develop INFER, a deep learning based model pow-

ered with attention mechanism, to jointly infer driver’s

intention and attention and provide interpretable causal

reason behind driving behavior.

• We provides a total solution for mining human driving

behavior through an integrated system DBUS, which

supports multi-type sensors input, structured behavior

analysis, as well as efficient driving scenario retrieval

applicable to large-scale driving data collected from

millions of drivers.

2. Related Work

Driving Behavior Analysis In general, research on

driving behavior analysis can be classified according two

perspectives: i) the target of the research, e.g. basic driving

maneuver recognition, driving intention prediction, aggres-

sive driving detection, driver identification, etc. ii) the data

used for the analysis, e.g. GPS trajectories, IMU signals,

CAN-bus data, dash-cam videos, etc [15] [4]. Early studies

mainly focus on low-level kinetic behavior with CAN-bus

data. For example, [17] asked drivers to perform basic driv-

ing maneuvers and investigate the pattern of recorded CAN-

bus data. In the last decade, with the spread of smart phones,



Table 1. Categories of Structured Behavior Representation

Behavior # of Categories Categories

Driving Action (m) 9
{ left accelerate, left cruise, left brake, straight accelerate, straight cruise,

straight brake, right accelerate, right cruise, right brake }

Driving Intention (w) 8
{ following, left turn, right turn, left lane change, right lane change,

left merge, right merge, U turn }

Driving Attention (aobj) 8 { car, bus, truck, person, bicycle, motorcycle, tricycle, traffic light }

Table 2. Feature Definition and Notation of DBUS
Notation Type Definition

Raw Data (D)

Video (V) v image front-view video frames

GPS/IMU (S)

vs.speed R vehicle speed in GPS signals

vs.acc R forward accelerate in IMU signals

vs.yaw R yaw angular velocity in IMU signals

Perception Result (P)

Objects (O) o mask semantic mask of detected traffic participants and traffic lights

Distance (D) d R distance between ego-vehicle and nearest front traffic participants

Locations (L) l category vehicle’s location on the road based on the lane perception results

Behavior Representation (B)

Action (M) m category basic driving actions

Intention (W) w category driving intention

Attention (A)
amask mask driving attention mask

aobj category object category of driving attention

large-scale GPS/IMU data collected from smart phone sen-

sors are available for behavior analysis, which enables a se-

ries of tasks that cannot be achieved with CAN-bus data

alone. To name a few, [23] tried to identify different drivers

by analyzing their trajectories, [1] worked on safety risk

analysis based on distractions such turning video, check-

ing cell phones, smart phone sensors data have been cou-

pled with CAN-bus data to isolate basic driving actions like

accelerate, braking and turning events in [22]. Moreover,

smart phone sensors have also beed used to detect aggres-

sive driving [12] and drunk drivers [8].

Driving Video Analysis More recently, the collec-

tion of driving videos, especially front-view videos, be-

come realistic with the emerge of dash-camera and other

driving video recording systems. Given that humans are

able to drive with vision information alone, driving videos

carry massive information and offer the potential to take

our understanding of human driving behavior to the next

level. A few large-scale real-world human driving video

datasets are published to encourage research activity. BDD

dataset is proposed in [14] which includes video sequences,

GPS/IMU data collected from multiple vehicles across three

different cities in the US. Later, a subset of BDD dataset

got human-annotated action descriptions and justifications,

named BDD-X dataset. Recently, an attention dataset is

generated from BDD dataset with human-annotated driver’s

attention at key frames, named BDD-A [24]. Another sim-

ilar dataset, the HDD dataset [18], provides raw data col-

lected not only from sensors including video, GPS/IMU but

also from LiDAR and CAN together with human-annotated

drivers’ attentions and causal reason for driving actions.

Existing work with large-scale driving videos dataset

mainly focus on behavior cloning towards end-to-end learn-

ing for a self-driving system. In general, a deep neural net-

work based driving policy is learned with frame-action pairs

in a supervised manner. For example, [2] present a model

directly maps video frames to steering controls, while [25]

use deep neural networks to predict vehicle’s future mo-

tion given raw pixels and its current state. Although these

end-to-end models have shown their potential of working

with human driving video, lack of interpretability limits

their contribution in term of in-depth understanding of hu-

man driving behavior. Recently, [13] bring explainability to

end-to-end video-to-control models with a visual attention

mechanism and an attention-based video-to-text model to

produce textual explanations of human driving behavior.

3. Problem Formulation

Consider a driving behavior understanding task with

time horizon T . The input is human driving data D =
(V,S) collected from on-vehicle sensors, denoted as a driv-

ing scenario, where V = {vt}
T
t=1

refers frames from front-

view camera videos, S = {vs.t}
T
t=1

denotes GPS and

IMU signals at every time step. The goal is to generate a

three-level structured representation of human driving be-

havior B = (M,W,A) over the whole time horizon T

in a given driving scenario, including basic driving actions

M = {mt}
T
t=1

, driver’s intentions W = {wt}
T
t=1

as well

as driver’s attentions A = {atmask,a
t
obj}

T
t=1

. The proposed

structured representation is exemplified with a driving sce-

nario in Fig. 1.

At each time step, basic driving actions mt and driver’s

intentions wt belongs to one of pre-defined action and in-

tention categories. As for driver’s attention, atmask is the

mask over the video frame vt with pixel-wise attention in-
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Figure 2. System architecture of DBUS

tensity between 0 and 1, while a
t
obj indicates which cate-

gory of detected object the driver is focusing on. We con-

sider 9 basic driving actions, 8 driver’s intentions and 8

driver’s attention object categories, summarized in Table 1.

On the application side, we consider driving scenario

search and retrieval. Specifically, given a structured driv-

ing behavior representation B = (M,W,A) as the query

input, one needs to retrieve the top K relevant driving

scenarios {Dk = (Vk,Sk)}
K
k=1

from a massive scenario

database. Note that the query input could be manually de-

signed representation or unstructured raw driving data.

4. System Architecture

In this section, we describe the architecture of DBUS.

In general, DBUS could be divided into three modules as

shown in Fig. 2:

• Perception: Vision perception and 3D reconstruction

of driving scenarios, including detection, tracking and

segmentation of traffic participants, traffic lights and

signs in front-view driving videos, as well as distance

estimation of traffic participants in driving scenarios.

• Driving Behavior Analysis: The core module

of DBUS which processes perception results and

GPS/IMU signals to generate the 3-level structured be-

havior representation.

• Driving Scenario Retrieval: Efficient behavior-based

retrieval of relevant driving scenarios based on struc-

tured behavior representation.

Before diving into each module, we first provide notations

and their definition in DBUS, summarized in Table 2. We

now details the workflow of DBUS. First, human driving

data D = (V,S) including front-view camera videos V

and GPS/IMU signals S feeds into the Perception mod-

ule to generate perception results P = (O,D,L) where

O = {ot}
T
t=1

denotes semantic masks of detected traffic

participants and traffic lights in video frames, D = {dt}
T
t=1

denotes the distance between ego-vehicle and nearest traf-

fic participants in the front, L = {lt}
T
t=1

vehicle’s relative

location on the road based on the lane perception results.

From this point on, DBUS discards raw videos V and takes

P = (O,D,L) as the representation of full visual infor-

mation. Next, perception results P = (O,D,L) together

with GPS/IMU signals S feed into the Driving Behavior

Analysis module to generate structured behavior represen-

tation B = (M,W,A). On the other hand, the Driving

Scenario Retrieval takes certain behavior representation

B = (M,W,A) and returns top K relevant driving sce-

narios {Dk = (Vk,Sk)}
K
k=1

.

Since Perception itself is a sophisticated independent

sub-system with well-studied methodologies, we omit the

methodology in Perception module and describe imple-

mentation details in Section 7.1. In following sections, we

mainly focus on driving behavior analysis and driving sce-

nario retrieval.

5. Driving Behavior Analysis

In term of the Driving Behavior Analysis module, the

first challenge is how to predict structured representation

properly, given that basic driving actions M, driving inten-

tions W and attentions A are highly correlated with each

other. Generally speaking, a driver’s behavior is switching

between active and passive modes in daily driving scenar-

ios. In the active mode, the driving intention would trigger

all other behavior. For example, when a driver intends to

turn right in an intersection, he/she would firstly slow down

as approaching the intersection, pay attention to the traffic

light and crossing traffic participants, then take a series of

actions to complete the turn. In the passive mode, however,

it is driver’s attention that triggers driving actions and in-

tentions. Imagining there is another vehicle cutting-in from

right-side abruptly, which would first draw the driver’s at-

tention to the cut-in vehicle, then change his/her intention

to left-lane-merge to avoid a collision, and finally trigger a

series of driving actions such as breaking, left wheeling etc.

Therefore, a key idea is to benefit from jointly infer all three

types of driving behavior. On the other hand, the complex-

ities of inferring three levels of driving behavior are differ-

ent. Specifically, driving actions M have simple patterns

and can be accurately inferred from just GPS/IMU signals

S, while driving intentions W and attentions A are rela-

tively challenging to infer due to their own diversity and the

complexity of vision representation, thus raises the need for

sophisticated models.



Therefore, we develop the Driving Behavior Analy-

sis module with two components: rule-based basic driving

action inference, and deep learning based driving intention

and attention inference.

5.1. Basic Driving Action Inference

We infer basic driving actions from on GPS/IMU sig-

nals S in a rule-based manner as follows. We focus on yaw

angular velocity signal {vs.tyaw}
T
t=1

and forward accelerate

signal {vs.tacc}
T
t=1

in GPS/IMU signals, and first smooth the

noisy raw signals with hamming window. Then we clas-

sify each time step into one of three wheeling classes: left

wheeling, right wheeling and going straight, by threshold-

ing the yaw angular velocity {vs.tyaw}
T
t=1

with pre-defined

thresholds. Similarly, we also classify each time step into

one of three accelerate classes: accelerate, brake and cruse

at certain speed, by thresholding the forward accelerate

{vs.tacc}
T
t=1

. By crossing wheeling and accelerate classes,

we end up with classifying each time step into a driving ac-

tion {mt}
T
t=1

where mt belongs to one of 9 possible driving

actions, summarized in Table 1.

5.2. Intention and Attention Inference

In this section, we introduce a deep neural network

based model for driving intention and attention infer-

ence, denoted as INFER . INFER takes a set of fea-

tures {ot,dt,mt, lt, vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

as input, in

which {ot}
T
t=1

denotes semantic masks of detected traf-

fic participants and traffic lights, {dt}
T
t=1

denotes the dis-

tance between ego-vehicle and nearest traffic participants

in the front, {lt}
T
t=1

denotes vehicle’s relative location

on the road, {m}Tt=1
refers to basic driving actions, and

{vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

represents yaw angular veloc-

ity, forward accelerate and vehicle speed in GPS/IMU sig-

nals. In a nutshell, INFER consists of two components: (1)

An attention proposal network (APN) which takes above in-

put and produces an attention mask {atmask}
T
t=1

represent-

ing driver’s attention intensity over detected traffic partici-

pants and traffic lights. Note that the resolution of attention

mask is lower than the resolution of semantic mask, to avoid

generating extremely sparse attention mask. In practice, we

find resolution ratio of 100 (each pixel of attention mask

covers 100 pixels of semantic mask) reaches a good com-

promise between attention granularity and sparsity. (2) A

intention inference network works with the same input fea-

ture set, except turning the semantic mask into the attention-

weighted semantic mask by multiplying with the attention

mask generated from APN. The intention inference network

produces probabilities over all intention categories as inten-

tion output {wt}
T
t=1

.

Fully-convolutional CNNs is adopted to embed seman-

tic mask and attention-weighted semantic mask in two net-

works. Temporal information is extracted with LSTM or

bi-LSTM depending on on-line or off-line mode of DBUS.

In this paper, we consider the off-line mode in which data is

collected beforehand and DBUS can leverage information

from whole time horizon T . The structure of INFER is il-

lustrated in Fig. 3. The training procedure has two stages:

i) APN is first pre-trained with attention labels for a decent

initialization. ii) The whole inference system (the intention

inference network together with APN) is trained jointly in

an end-to-end manner with both attention and intention la-

bels.

After driving intention {wt}
T
t=1

and attention mask

{atmask}
T
t=1

being inferred from the INFER model, a post-

process step would match attention mask {atmask}
T
t=1

with

semantic mask ({ot}
T
t=1

to find the category of the object

with highest attention at each time step {atobj}
T
t=1

. Specif-

ically, we get the list of all detected traffic participants and

traffic lights from semantic mask, and calculate the average

attention for each detected object on its all pixels. Then

find the object with the highest average attention intensity

and output its category as a
t
obj . In special, if no detection

has the average attention value above a predefined thresh-

old, we set atobj as a special category to indicate no obvious

attention exists in that frame.

In the end, driving intention wt, attention mask a
t
mask,

attention object category a
t
obj together with driving action

mt over whole time horizon T would be the final output

{mt,wt,a
t
obj ,a

t
mask}

T
t=1

of the driving behavior analysis

module.

6. Driving Scenario Retrieval

Given millions of driving scenarios and powerful behav-

ior models in DBUS, fast retrieval methods is another key to

efficiently conduct data analysis and driving behavior un-

derstanding. We design the Driving Scenario Retrieval

module mainly for two types of retrieval task. First, we

would like to get the most similar scenarios if a new driv-

ing scenario comes. Second, even if we do not have real

data but can formulate our query in the form of the behav-

ior representation B, we can check if any scenario in DBUS

is conceptually similar to what we seek. Searching in the

original video and signal data directly is a straightforward

but inferior solution in terms of both running time and result

quality. Instead, we resort to behavior representations learnt

from the data which provides a structured and compact de-

piction of the scenario embedded in a lower-dimensional

space. Specifically, we take the flattened concatenation of

{wt}
T
t=1

and {atobj}
T
t=1

as the feature vector of that drive

scenario. This step produces a T × (Db+Da)-dimensional

vector for each scenario, where T is the number of times-

tamps, Db is the number of different behaviors, and Da is

the number of different object categories.

Given all the feature vectors, we apply ball tree for fast

nearest neighbor search to retrieve the most similar scenar-
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ios given a query, which is also in the form of {wt,a
t
obj}

T
t=1

and is either extracted from a query video or directly created

by users. We take L1 distance between two vectors as the

distance metric. Since the original behavior and category

vectors are both one-hot encoded, to speedup the tree build-

ing and the query steps, we instead convert them to cate-

gorical values and use Hamming distance as the metric. As

shown in the experiments, this keeps the distance order and

significantly reduced the time and space cost.

7. Experiments

In this work, to provide a comprehensive understand-

ing of the effectiveness of the proposed DBUS, we con-

duct the experiments on a real-world large-scale human

driving dataset from a top ride-sharing company to demon-

strate that our DBUS can provide a total solution of mining

human driving behavior with efficient and accurate analy-

sis of human driving scenarios. Through the experiments,

we answer the following questions: (1) How we utilize the

learned multi-level representations from human driving sce-

narios? (2) How good is our proposed INFER model when

provides driving intention and attention inference? (3) How

we integrate multiple types of sensor data in DBUS to ac-

quire a better perspective for analyzing human driving be-

haviors? In the remainder of this section, we illustrate the

perception module, dataset, experimental design, quantita-

tive results, etc., to answer the questions mentioned above.

7.1. Perception

In this section, we discuss some details of pre-trained

Perception module of our DBUS, and show how we uti-

lize the powerful perception models to get the perception

results.

Table 3. Evaluations of traffic participants detection.

Car detection Pedestrian detection

AP 0.893 0.762

Recall 0.924 0.852

Table 4. Evaluations of traffic lights detection.

AP Recall

Traffic light detection 0.662 0.805

Table 5. Evaluations of lane detection.

Within 10 meters Within 50 meters

Precision 0.918 0.753

Recall 0.891 0.732

Object detection We leverage the power of YOLOv3

model [19] for the traffic participants (e.g., car, person, etc.)

detection and traffic lights detection. For the clarity, Table 3

only shows the performance of our pre-trained YOLOv3

model for car and pedestrian detections since these two

parts play a crucial role in traffic participant detection. Fur-

thermore, Table 4 shows the evaluations of traffic light de-

tections. We report all the results in terms of average pre-

cision (AP) and recall only for the detected objects which

have the intersection over union (IoU) larger than 0.5 with

the true objects.

For each frame v of the video V, we convert all its origi-

nal traffic participants detections to a single-channel seman-

tic mask and convert its traffic lights detection results to an-

other single-channel semantic mask. Then, we concatenate

these two masks to a 2-channel semantic mask. To reduce

the computational complexity of DBUS, we resize the 2-

channel semantic mask from original size 1920× 1080× 2
to 160× 90× 2 as the final objects o of frame v.

Lane detection We trained DeepLabv3 model [5] to

detect lanes for each frame v of the video V. Table 5 shows

the evaluations of lane detection in terms of precision and

recall. Note that, we only keep the detected lanes if they

have the detection error less than 20cm.

Since the lane detection results are much more sparse

than the traffic participants detections and traffic lights de-

tections, we generate the vehicle location feature l (which

shows in Table 2) for each frame v of video V according

to the lane detection results instead of using them directly.

The categorical feature l denotes the vehicle’s location on

the road, which represents one of the four categories: {in

the middle of the road, on the left side of the road, on the

right side of the road, and unknown location}.



3D reconstruction It can help us to rebuild the 3D co-

ordinates of all detected traffic participants in video V of

driving scenario D. We make use of the reconstructed 3D

coordinates of nearest front traffic participants to get the

estimations of the following distance d of ego-vehicle for

each frame v. Since the accumulation of errors from video

V, signals S, etc., within 50 meters, we have distance esti-

mation error as ±5 meters.

7.2. Dataset

The human driving data D was collected by vehicle

front-view cameras equipped with GPS/IMU sensors from

millions of active service vehicles on a top ride-sharing plat-

form. For each driving scenario D, the length of raw video

is around 25 to 30 seconds, the average FPS (frame per sec-

ond) is 25, and the resolution of raw video is 1920× 1080.

Meanwhile, the GPS sensor samples latitude, longitude,

bearing, speed, etc., per second (1Hz) and the IMU sensor

retrieves the 3-axis forward accelerate signal {vs.acc}
T
t=1

,

3-axis yaw angular velocity signal {vs.yaw}
T
t=1

with the re-

trieval frequency as 30Hz. For each human driving sce-

nario D = (V,S) and its labeled human driving behavior

B = (M,W,A), T equals to 25 and sampling rate is 5Hz.

We acquired 2759 human driving scenarios from the 975

selected original driving scenarios.

7.3. Experimental Design

Task and Evaluation Metrics As we mentioned in pre-

vious sections, the human driving behavior understanding

task takes driving data D as input and outputs the repre-

sentation of human driving behavior B. Considering the

attention A = {atmask,a
t
obj}

T
t=1

, we could obtain a
t
obj by

mapping the a
t
mask with ot. Furthermore, since M is triv-

ial and its generation process is heuristic, we mainly focus

on inferring intention W and attention masks {atmask}
T
t=1

given D. Specifically, in this work, the INFER model

will take the collection of features as input and predict

the corresponding intention and attention mask simultane-

ously. Due to the types of outputs of INFER model, we use

Mean Squared Error (MSE) to evaluate the inferred atten-

tion mask {atmask}
T
t=1

and apply the Categorical Accuracy

(ACC) to assess the prediction of intention W.

Baselines We compare our INFER with the following

baselines to show that our proposed INFER could provide

accurate predictions of attention masks A and intention W

at the same time.

• SVM, support vector machine [3]. It

concatenates all the numerical features

{dt,mt, lt, vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

together

for each time step as the input and ignores the se-

mantic masks {ot}
T
t=1

. Since the {atmask}
T
t=1

are

inferred mainly based on {ot}
T
t=1

, the SVM predicts

the driving intentions only.

• XGBoost [6]. Similarly, it concatenates

{dt,mt, lt, vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

together

for each time step as the input as well and ignores the

semantic masks {ot}
T
t=1

. The XGBoost predicts the

driving intentions only.

• INFER-NO-SM, this model has the similar

structure as the INFER does, but only takes

{dt,mt, lt, vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

as inputs

without using semantic masks {ot}
T
t=1

of detected

traffic participants and traffic lights. Conceivably, in

order to generate a relatively reasonable outputs of

{atmask}
T
t=1

, it only infers driving intentions when it

doesn’t take {ot}
T
t=1

as the part of input.

• INFER-ONLY-SM, this model only takes se-

mantic masks {ot}
T
t=1

as input without using

{dt,mt, lt, vs.tyaw, vs.tacc, vs.tspeed}
T
t=1

. Note that

this model can still predict both attention masks

{atmask}
T
t=1

and driving intentions {wt}
T
t=1

.

• INFER-NO-ATTN, this model takes all the features as

the inputs but does not utilize and infer the attention

mask {atmask}
T
t=1

during the training process. Note

that this model can purely output intention predictions.

7.4. Quantitative Results

Table 6. Results of attention prediction and intention prediction

MSE (Attention masks) ACC (Intentions)

SVM - 0.193

XGBoost - 0.258

INFER-NO-SM - 0.276

INFER-ONLY-SM 0.032 0.693

INFER-NO-ATTN - 0.628

INFER 0.025 0.772

Table 6 shows the attention mask prediction and in-

tention prediction results in terms of mean squared error

(MSE) and Categorical Accuracy (ACC) respectively. Our

proposed INFER model outperforms all baselines. The re-

sults demonstrate that semantic masks and other features

all play the crucial roles for attention mask predictions and

intention predictions, especially for semantic masks. Addi-

tionally, we could see that attention can help our model to

improve the performance of the intention inference.

Fig. 4 shows the confusion matrix based on the INFER’s

predictions of intentions on the held-out test set. For a better

view, we normalize the rows accordingly. Under most cir-

cumstances, the INFER can infer the intentions accurately.

However, since the intention U turn occurs less frequently,

the accuracy of its inference is slightly worse compared

with other intentions.

7.5. Evaluations on Driving Scenario Retrieval

We evaluate our Driving Scenario Retrieval in terms

of the running time in practice. We compare the proposed
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Figure 4. Confusion matrix for intention predictions on the test set
using INFER.

Table 7. Timing onDriving Scenario Retrievalwith different data
size. Time unit: second.

Brute-forceSearch Ball-Tree

DistanceMetric L 1 Hamming L 1 Hamming

N = 2759
Tree-built Time Š Š 0.122 0.006
SearchTime 0.188 0.189 0.118 0.110

N = 10000
Tree-built Time Š Š 0.643 0.025
SearchTime 0.181 0.181 0.103 0.102

N = 50000
Tree-built Time Š Š 16.96 0.564
SearchTime 0.730 0.618 0.173 0.118

N = 285766
Tree-built Time Š Š 656.7 6.168
SearchTime 0.993 0.719 0.403 0.288

Ball-tree structure with Hamming distance with brute-force
search and/orL 1 distance. We varyN from 2759, which
is the number of our “ltered labeled samples, to 285766,
in which all scenario clips are included, to test the perfor-
mance and the potential of these methods. For eachN , we
randomly choose ten queries and test these queries in dif-
ferent algorithm and metric settings, and report the average
time. As shown in Table 7, using ball-tree is more ef“cient
than brute-force search, and taking Hamming distance sig-
ni“cantly reduces time to build the ball-tree and further im-
proves search speed. Especially when all 285766 samples
are included, the proposed method can still “nish one query
within 0.3 seconds. For ball-tree evaluations, the time is
evaluated with ten parallel threads for tree building.

8. Case Study

Some concrete examples are shown in Fig. 5. These ex-
amples demonstrateDBUScan accurately infer drivers• at-
tention in various driving scenarios, including intersection
crossing, lane-following and highway cruising. As for the
top-row scenario, the driver mainly focuses on the cluster of
a bicyclist and a black car close to ego-vehicle in the front.
A retrieval process for a scenario similar to the top-row sce-
nario is illustrated in Fig. 6.

Original frame Human labeled attention Predicted attention mask
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Figure 5. Examples of driver•s attention inferred byDBUS. Top
row: the ego-vehicle is approaching an intersection when a bicy-
clist is in the near front and a black car tends to cut-in.Middle
row: the ego-vehicle is going to enter a single lane road with a
white SUV parked illegally on the roadside.Bottom row: the ego-
vehicle is passed by speeding SUV from the left side in a highway.

Accelerate

Q
ue

ry
 v

id
eo

A
ct

io
n Right 

wheeling
Brake Accelerate CruiseLeft 

wheeling
StraightLeft 

wheeling
Accelerate

In
te

nt
io

n

Right lane change Right turn Following

A
tte

nt
io

n

Right side 
person

Front 
vehicle

Right side 
vehicle

Front 
vehicle

Right side 
vehicle

Front 
vehicle

Right side 
vehicle Front vehicle

R
et

rie
ve

d 
vi

de
o

Figure 6. An example of retrieved driving scenario with query and
its corresponding structured behavior representation.

9. Conclusion

In this paper, we presentedDBUS, an integrated system
for human driving behavior understanding. Built upon a
novel structured behavior representation, powerful vision
perception and behavior analysis modules,DBUS enables
an in-depth understanding of human driving behaviors in
term of basic driving actions, driving intentions and driv-
ing attentions, take a step forward towards intelligent trans-
portation systems.DBUSalso supports ef“cient behavior-
based driving scenario search and retrieval, which is essen-
tial for practical application with driving scenarios collected
from millions of drivers. Experiments on daily driving sce-
narios demonstrate its ability to recognize a driving inten-
tion and infer driving attention, as well as ef“ciently retrieve
relevant driving scenario from a large-scale database. The
system has been deployed to analysis daily human driving
data collected in a top ride-sharing company and powers
several downstream applications.




