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Figure 1. Simulated scenes and metadata. An ISE3d generated scene with sky maps measured in (A) early afternoon and (B) late

afternoon. The simulation creates pixel-level labeled images including (C) a panoptic segmentation, and (D) a depth map. (E) A simulated

scene with superimposed graphs showing the spectral radiance at different image locations (circles). The spectral irradiance is used by the

camera simulation to account for the wavelength effects of the lens and color filters.

Abstract

Imaging systems are increasingly used as input to con-

volutional neural networks (CNN) for object detection; we

would like to design cameras that are optimized for this pur-

pose. It is impractical to build different cameras and then

acquire and label the necessary data for every potential

camera design; creating software simulations of the camera

in context (soft prototyping) is the only realistic approach.

We implemented soft-prototyping tools that can quantita-

tively simulate image radiance and camera designs to cre-

ate realistic images that are input to a convolutional neural

network for car detection. We used these methods to quan-

tify the effect that critical hardware components (pixel size),

sensor control (exposure algorithms) and image processing

(gamma and demosaicing algorithms) have upon average

precision of car detection. We quantify (a) the relationship

between pixel size and the ability to detect cars at different

distances, (b) the penalty for choosing a poor exposure du-

ration, and (c) the ability of the CNN to perform car detec-

tion for a variety of post-acquisition processing algorithms.

These results show that the optimal choices for car detec-

tion are not constrained by the same metrics used for image

quality in consumer photography. It is better to evaluate

camera designs for CNN applications using soft prototyp-

ing with task-specific metrics rather than consumer photog-

raphy metrics.

1. Introduction

An imaging system should be evaluated with respect to

a task. For example, we judge the image quality of digital

cameras by how pleasing the final images appear to con-

sumers. Medical imaging systems are evaluated by how

well they differentiate biological substrates and diagnose

a disease. One of the most critical aspects for automotive

imaging systems is performance on object detection tasks.

The enormous diversity of biological eyes is strong evi-

dence that different tasks are best served by different image

system designs [20]. Even a single biological system, such

as human vision, is comprised of multiple subsystems spe-

cialized for low and high light levels (rods, cones) or for

high acuity tasks versus invoking attention (fovea, periph-

ery) [32]. Just as there is no optimal biological visual sys-

tem for all tasks and conditions, no single camera design



will be optimal.

Designing and building an imaging system for ob-

ject detection is expensive, collecting image data is time-

consuming, and annotating the images is labor-intensive.

Hence, an empirical design-build-test loop is impractical

for co-design of imaging systems and neural networks, and

soft prototyping is required to reduce the time and expense.

A prototyping system must combine quantitative computer

graphics for creating accurate scene radiance with quanti-

tative methods for simulating the imaging system. Such a

system can simulate realistic camera images with accurate

labels at each pixel (Figure 1); these images can be used to

train neural networks for object recognition and detection

[33, 24].

In this paper, we perform computational experiments to

assess specific co-designs of cameras and a convolutional

neural network for car detection. We first quantify how av-

erage precision measured for car detection varies with a key

parameter of the camera hardware: pixel size. Next, we an-

alyze performance for variations in a critical sensor control

algorithm: exposure duration. Finally, we compare system

performance for different choices of the image processing

system: gamma correction and demosaicing.

2. Related work

A number of groups have described the value in using

computer graphics to create realistic images for machine-

learning (ML). Two approaches have been used to gener-

ate training images: repurposing game engines [15, 19] and

using physically based ray tracing methods [31, 34, 1, 24].

Game engines have the advantage of speed and the ability to

efficiently produce video sequences. The ray-tracing meth-

ods have the ability to produce quantitatively realistic scene

spectral radiance that can be coordinated with camera simu-

lations. Given our objective, we use quantitative ray-tracing

for our application.

Previous publications described an initial implementa-

tion of ISET3d, which includes procedural methods for gen-

erating complex automotive scenes [1, 24]. These scenes

are rendered into images using a version of PBRT [26] and

ISETCam. Those papers included preliminary evaluations

of how camera design impacts CNN performance for pixel

size and sensor type. We advance that work in several ways.

The paper by [1] did not include procedural modeling and

was restricted to relatively simple scenes; rendering was

based on a version of PBRT [26] that was subsequently im-

proved with regards to material modeling. The paper by

[24] used Faster RCNN that was pre-trained using camera

data from BDD100k [36] and tested on ISET3D synthetic

data. The work described here uses (a) a much larger and

more complex collection of synthetic scenes, (b) network

training with the appropriate synthetic data, (c) a new net-

work, Mask R-CNN with a ResNet backbone, and (d) more

extensive camera algorithm analyses.

There are alternative approaches to creating synthetic

data. For example, it is possible to use a game engine and

then apply domain adaptation methods to make the images

more realistic [35, 6]. The realism is evaluated by assessing

how well training on the synthetic dataset generalizes to a

camera dataset. Domain randomization introduces random

variations into the synthetic image with the hope that such

perturbations force the network to focus on critical infor-

mation [30]. Domain stylization uses photorealistic image

style transfer algorithms to transform synthetic images so

that an independent network cannot discriminate synthetic

and measured images [7, 22, 37]. Neither of these meth-

ods represent the scene spectral radiance, which is required

to account for the impact of wavelength-dependent compo-

nents, including the optics and sensors [1]. This severely

limits the value of this approach for evaluating camera de-

sign.

To assess the impact of the image processing pipeline on

CNN performance, [2] used RGB images and an invertible

model of the image processing pipeline to create a nominal

sensor image. This approach does not account for optics

and sensor properties, such as pixel size or exposure algo-

rithm.

Data augmentation can improve the generalization be-

tween synthetic and camera images. In this approach, a set

of synthetic images are transformed by image processing

operations that approximate camera effects, including blur,

chromatic aberration, and color processing [3, 4]. The net-

work becomes less sensitive to camera differences with aug-

mented data. Data augmentation is complementary to our

goal, which is to explore camera design to provide optimal

network performance.

Finally, there is a standardization effort by the IEEE-

P2020 to address attributes that contribute to image quality

for automotive Advanced Driver Assistance Systems appli-

cations, as well as identifying existing metrics relating to

these attributes [16, 38]. Multiple metrics are under review,

including consumer photography metrics such as signal-to-

noise (SNR) and spatial frequency measures (MTF50). The

soft prototyping environment we describe here clarifies lim-

itations in using such metrics for assessing imaging systems

designed for car detection by neural networks.

3. Methods

3.1. Automotive scene simulation

Simulated scene radiance data and sensor irradiance

were generated for a collection of about 5000 city scenes

using the ISET3d open-source software [24]. The scenes

were assembled stochastically from a database of nearly

100 car shapes, 3 bus shapes, 8 truck shapes, 80 pedestri-

ans, 10 bicycles, more than 50 different static objects(trees,
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Figure 2. The computational pipeline. (A) A three-dimensional scene, including objects and materials, is defined in the format used by

Physically Based Ray Tracing (PBRT) software [26]. (B) The rays pass through a lens modeled as a series of surfaces with wavelength-

dependent indices of refraction and a Monte Carlo based model of diffraction [14, 28]. (C) Using the sensor specifications, ISETCam

converts the spectral irradiance into an array of pixel voltages and then digital values [13, 11]. (D) Sensor data are converted into images

by demosaicing and image processing. (E) The images with pixel level annotation are used to train and evaluate the car detection network.

trash cans, traffic signs, billboards, etc.), four city blocks,

suburban and more than 200 buildings. The scenes are ren-

dered with skymaps captured from 7:00 am to 7:00 pm at

one minute intervals [21]. The source code for creating

the images is available in the ISET3d package (https:

//github.com/iset/iset3d). The ray-tracing soft-

ware is based on the Physically Based Ray Tracing [26] and

is available as a Docker container.

3.2. Camera simulation

The ISETCam software converts the sensor spectral irra-

diance to RGB images (Figure 2) [13, 11, 12]. The sensor

parameters for the simulations reported in this paper were

based on the MT9V024 sensor manufactured by ON Semi-

conductor. This sensor is configured with 6-micron pix-

els, providing relatively high light sensitivity and signal-to-

noise with a linear dynamic range of 55 dB. The MT9V024

is designed for automotive machine vision applications with

options for monochrome, RGB Bayer and RCCC color filter

arrays. This sensor is used in commercial ADAS systems

(e.g., MobilEye 630).

We modeled a range of pixel sizes, starting with a con-

figuration that is typical for automotive sensors (1280×720

pixels, RGB Bayer configuration). The sensor dye size is

2.1 x 3.85 mm. We analyzed system performance over a

range of pixel sizes and scene brightness levels. For the

pixel size experiments, we simulated a sensor with a fixed

field-of-view (dye size). Consequently, the number of pix-

els varies inversely with the square of pixel size. The cam-

era lens for these simulations was a wide angle (112 degree)

multi-element design with 6 mm focal length. The on-axis

point spread of the lens has a full-width at half maximum of

approximately 1.5 µm, which was sufficient to support the

smallest RGGB superpixel size (3.0 µm) in our simulations.

3.3. Soft prototyping validation

Full system validation is not practical: this would require

that we collect and label images with a simulated sensor and

then synthesize scenes that match the collected images. It

is possible, however, to validate quantitatively critical com-

ponents of the soft-prototyping system, and we have done

so.

Sensor simulations were validated using a scene whose

lights and surfaces were measured with a spectroradiome-

ter and compared predicted data with data from a camera

whose lens and sensor were modeled [10, 5]. The accu-

racy of the optics simulations were validated by comparing

the simulated data with physical laws (diffraction-limited,

Snells Law) and compared with Zemax calculations based

on multi-element lens designs [23]. The geometry and



materials models, in particular the light-surface interaction

function captured in the bidirectional reflectance distribu-

tion function (BRDF), were derived from measurements of

real materials. The 3D car models are derived from 3D

scans or CAD designs of real cars. The spectral character-

istics of the sky maps used to simulate daylight were mea-

sured using a multispectral lighting capture system and are

also validated [21].

3.4. Object Detection Network and Training

For car detection on the camera, we chose Mask R-CNN

[9] with ResNet50-FPN as the network backbone. Mask

R-CNN is a state-of-the-art region-proposed convolutional

neural network(R-CNN) designed to solve instance seg-

mentation problems in computer vision [17]. It extends

Faster R-CNN [27], by adding a third branch that outputs

the pixel level segmentation. Mask R-CNN also includes an

ROIAlign layer to extract the feature map; the addition of

this layer significantly improves detection accuracy. In this

paper, we evaluate detection performance by measuring the

overlap of the bounding box from Mask R-CNN with the

bounding box of the labeled image data.

A pretrained model can be useful in some contexts, but to

investigate the impact of camera design it is best to train the

network from scratch using the simulated camera data (e.g.,

pixel size, exposure algorithm, post-processing algorithm).

Hence, the neural network only learns to interpret images

from a specific camera under the specific imaging condi-

tions. The sensor images were calculated from the spec-

tral irradiance simulations using ISET3d and the ISETCam

camera model. We divided the sensor images obtained from

the scenes into three independent groups used for training,

validation, and testing. We used 3000 sensor images for

training, 700 held-out sensor images for validation at each

checkpoint, and 750 held-out sensor images to measure sys-

tem performance.

We trained the network for 60 epochs, saving the check-

point every 5 epochs. We evaluated the network using the

validation images at each of 12 checkpoints and we use the

network parameters from the checkpoint with highest score.

We then run this network on the test dataset at this check-

point. We trained on 4 Nvidia P100 GPUs with batch size

equal to 8 and evaluated on 1 GPU with batch size equal to

4. We started training with the learning rate set to 0.02, and

we decreased the learning rate to 0.002 after 30 epochs. The

model is trained and evaluated with only one class: car.

3.5. Object detection metrics

Car detection performance was assessed using the PAS-

CAL AP@0.5IOU [8], which we refer to as average pre-

cision (AP). When the network identifies a car within a

bounding box, and that box overlaps with at least half of the

area of a bounding box of the labeled pixels, we score the

detection as correct (a hit), and otherwise the box is scored

as an error (false alarm). The AP combines these two values

and is equivalent to measuring the area under the receiver

operating characteristic defined in classic signal detection

theory [29].

In many cases we measure AP as a function of distance

between the camera and the car. We can obtain this func-

tion because the soft-prototyping tools provide both the

instances labels and a depth map of the scene for every

pixel(Figure 1). We use the label (car) and depth (meters)

to sort the cars in the test dataset. We trace the curve by

calculating the AP for all the cars within a 10 meter range.

The distance (meters) at which the AP curve crosses 0.50 is

a scalar summary value which we denote as the OD50.

4. Experiments

4.1. Pixel size

To assess how pixel size impacts the car detection AP, we

simulated sensors with a range of pixel sizes that are typical

for automotive applications: 1.5 µm to 6.0 µm. The simu-

lation labels the pixels arising from any car within 150m.

The number of image pixels labeled as ’car’ depends sig-

nificantly on pixel size, occlusions, and distance to the car.

There are roughly 33,000 labeled cars in the collection of

training images. The number of labeled cars decreases with

distance (Figure 3, histogram), but is the same for all cam-

era pixel sizes. As the pixel size increases, however, the

number of labeled pixels per car decreases (Figure 3, im-

ages).

1.5 μm

3 μm

6 μm

Figure 3. Number of cars for network training at different dis-

tances The histogram represents the number of cars in the training

set at each distance. The images at the right show simulations of

a clear view of a car at 150m for each of the pixel sizes. The

simulated pixel sizes span the range of typical modern day CMOS

sensors; 3 and 6 µm pixel sizes are common for current automotive

sensors.

We trained the network separately using images from

each pixel size, and we measured how AP declines with



distance (Figure 4). Detection performance using different

pixel sizes declines gradually with distance. The rate of de-

cline depends on pixel size. The distance where detection

reaches 0.50 increases non-linearly with pixel size, varying

from 55m to 110m.

Figure 4. Car detection for cameras with different pixel sizes.

The solid curves shows the PASCAL AP@0.5IOU for car detec-

tion as a function of the distance between the camera and the car.

Each curve simulates a different pixel size. The corresponding col-

ored arrows indicate the object distance for 50% detection (OD50).

The gradual decline with distance is likely to be a conse-

quence of the reduction in the number of pixels correspond-

ing to each car: more distant cars occupy less of the field of

view. This principle is similar to the Johnson criterion that

is used to summarize device resolution [18].

The choice of pixel size may be more significant for

some applications than others. For example, if the appli-

cation is to survey cars within a distance between 1 and 40

meters (e.g., at a toll booth), pixel size may not be a signifi-

cant factor. We make extensive use of the AP as a function

of distance in this paper; it will be necessary to consider

other task-specific metrics in future work.

4.2. Exposure algorithms

The following experiments differ from the pixel size

evaluations in two ways. First, we simulate a fixed 3 µm

pixel size. Second, we change the labeling policy to align

with the conventional practice based on single camera data.

The pixel size analysis used the knowledge from the simula-

tion to label pixels: every car was labeled at every pixel size.

Modern applications based on camera data typically label a

pixel only if a human observer perceives the pixel as be-

longing to a car. We implemented this visibility constraint

by labeling pixels only if they are part of a group of pixels

with a bounding box of 10 x 15 pixels, big enough for a per-

son to recognize. Including perception as a criterion of the

labeling policy removes 24% of the car instances from the

training and evaluation data but only 0.14% of labeled pix-

els. These are mainly distant or highly occluded cars. This

(A)

(B)

500 Lux

10 Lux

Figure 5. Exposure duration has a significant impact on de-

tection performance. Average precision (AP) for car detection

plotted as a function of the distance between the camera and the

car with exposure time (12ms, 0.12ms, 12 µs) as the parameter.

AP data are calculated for networks trained on sensor data with

mean illuminance of 500 lx (top) or with mean sensor illuminance

of 10 lx (bottom).

restriction brings the evaluation into compliance with cur-

rent practice and increases network performance (AP and

OD50) by removing difficult-to-detect cars from the evalu-

ation data.

Exposure value algorithms adjust the integration time

and lens aperture to bring pixel responses into their oper-

ating range: pixel responses should be above the dark noise

level and below the saturation level. In this section, we an-

alyze the impact of exposure-controlling algorithms on car

detection, when the lens aperture is fixed. We measure the

impact using the average precision of CNN car detection in

experiments with simulate scenes. The scenes are modeled

at different times of the day and with a range of mean lumi-

nance levels, from extremely bright sunlight (500 cd/m2)

to very dark late afternoon (10 cd/m2). Under these con-

ditions, the sensor illuminance of an f/# 4 lens ranges from

10-500 lux. The diversity of surfaces and illumination in

the simulated scenes generates images with dynamic ranges

of 2-3 log units.
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Figure 6. Comparison of center-weighted and exposure-

bracketing exposure algorithms. (A) Average precision for de-

tecting cars in sensor images captured using a center-weighted

auto-exposure algorithm, plotted as a function of the distance be-

tween the camera and the car for different sensor illuminance lev-

els (B) Histogram of center-weighted exposure times for scenes

with different sensor illuminance levels. (C) Average precision

for detecting cars in sensor images captured using exposure-

bracketing algorithms, plotted as a function of object distance for

different sensor illuminance levels.

We quantified the performance of CNN models trained

on images processed with two different exposure duration

algorithms. The first is a center-weighted algorithm - the

exposure duration is set so that a central region of the scene,

about 100th of the whole image, falls within the pixel oper-

ating range. We impose a 16ms upper bound based on an

assumption that images are acquired at a rate of 60 frames

per second (fps). The second is an exposure-bracketing al-

gorithm - we combine the data from three frames with dif-

ferent exposure times (12ms, 0.12ms, 12 µs). These im-

ages are combined by selecting the highest value prior to

saturation, accounting for the exposure duration. The ex-

posure bracketing method with these durations extends the

sensor dynamic range by two orders of magnitude.

Selecting an appropriate exposure duration has a signif-

icant impact on average precision; performance is signifi-

cantly reduced when the algorithm chooses a poor exposure

time (Figure 5). The curves in the two panels quantify the

impact of choosing too long an exposure for a bright scene

(Figure 5A) or too short an exposure in a dark scene (Figure

5B). The penalty for choosing a poor exposure duration in

the bright scene can be measured in terms of the OD50. The

best duration (0.12ms) has an OD50 of about 140 m, while

the OD50 for the longer and shorter exposures are 125 m

and 100 m. Under the low light conditions, the best expo-

sure duration (12ms) OD is about 130 m and choosing the

wrong duration incurs an even larger penalty, with OD50

values of just 35 m and worse.

During informal experiments, we found that the region

of interest of the exposure algorithm is important. Choosing

a poor region or using the entire image led to poor results.

The images used typically have a dynamic range of about

500:1, which fills up most of the pixel response range. Sub-

optimal choice of the exposure duration puts part of the im-

age beyond the pixels response range. For example, if one

uses the entire scene a short exposure time is often chosen

to avoid saturation from the bright sky, and this choice re-

duces the visibility of cars within a shadowed portion of the

image. A center-weighted algorithm reduces the chance of

an exposure duration error that impacts car detection. The

exposure-bracketing algorithm reduces the chances of set-

ting the wrong exposure duration: the algorithm acquires

multiple captures at the cost of reading multiple frames and

assembling the data into a single output at video rate. The

three exposure durations used in the simulation were chosen

to leave enough time for reading and assembling the output

at 60Hz. We compared the center-weighted algorithm and

exposure bracketing for the collection of simulated images.

We plot car detection performance for scene illumination

levels ranging from 10 lx to 500 lx (Figure 6). The average

performance on car detection does not differ substantially

between the exposure-bracketing algorithm and the best ex-

posure duration (0.12ms for panel A: yellow curve; and

12ms for panel B: red curve). The center-weighted expo-

sure algorithm chooses many different exposure durations

at each mean illumination level (see inset histograms).

The center-weighted algorithm chooses an appropriate
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Figure 7. The impact of image processing parameters on CNN performance. (A) Average precision for detecting cars by networks

trained on raw sensor data (blue) compared to average precision for networks trained on processed (sRGB) sensor data (red) plotted as a

function of the distance between the camera and the car. (B) Average precision for networks trained on processed sensor data rendered

with different gamma values plotted as a function of object distance. (C) Images of unprocessed sensor data (left image), and processed

sensor data rendered with different gamma settings.

exposure time for the scenes in our collection with sensor

illumination ranging between 10 and 500 lx (Figure 6). On

average, these choices bring the image information about

the cars into the pixel response range and car detection per-

formance is not significantly different from the exposure-

bracketing algorithm. While the averages agree, in certain

cases using exposure-bracketing to increase the image dy-

namic range should have an advantage. Below we examine

one such edge case - for example system performance in

specific cases such as a highly reflective (specular) surface

in the middle of the road.

4.3. Image processing

Consumer photography imaging incorporates many

post-acquisition processing algorithms to render sensor

data. The algorithms include demosaicing, conversion of

sensor data to a calibrated color space, illuminant correction

algorithms, noise reduction methods, and mapping for dy-

namic range and color gamut. The goal of these algorithms

is to make an image that is pleasing to humans. Preliminary

studies have begun to assess whether designing systems for

these image quality measures improves CNN performance.

Because these algorithms take time and can be energy con-

suming, understanding their impact is likely to be an ongo-

ing topic of investigation. To date there are no firm conclu-

sions about their impact [2, 1].

It is straightforward to implement image processing al-

gorithms as part of the prototyping system, and we have

quantified several post-acquisition processing steps with re-

spect to car detection. Figure 7 compares the average pre-

cision of car detection in two cases. In both cases we com-

pare performance with a standard image processing pipeline

(demosaicing, sensor conversion) that transforms the sensor

data to JPEG format in sRGB space [25]). The first alterna-

tive eliminates the processing stream and the second alters

the parameters of the processing.

Neither alternative post-processing has a significant im-

pact on the car detection performance in daytime. Re-

sults are very similar when the network is trained with an

sRGB image or the unprocessed sensor mosaic data (center-

weighted exposure algorithm, Figure 7A). Maintaining the

processing pipeline but using two different power functions

(gamma mapping) to adjust the sRGB data also had no sig-

nificant effect Figure 7B). One method applied a fixed value

(0.1) that brightened the high dynamic range images. The

second method chose gamma adaptively so that the mean

value of the sensor data raised to a power (gamma) equals

20% of the voltage swing. The CNN training achieved the

same performance level in each of these cases. This finding

differs from [2], but they began with a network pre-trained

on RGB images to evaluate the different image processing

pipelines. These post-acquisition transformations produce

images that are extremely different to the human eye (Fig-

ure 7C) and yet they had no effect on the precision of CNN
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Figure 8. Examining individual cases. Images of the same scene

captured with center-weighted (top) and exposure-bracketed (bot-

tom) algorithms. Magenta bounding boxes indicate the locations

of cars in the scene (ground truth) and green bounding boxes over-

lay the locations of cars that were detected.

car detection. Measures of image quality are not a good

guide for predicting image system performance for car de-

tection.

4.4. Edge cases

For driving applications, the high cost of certain errors

make relatively rare events very problematic. Hence, it is

important to consider specific cases in addition to average

precision. Soft prototyping tools enable us to isolate and

analyze conditions that require special attention.

An important case that arises in our simulations is shown

in Figure 8. A white car in the center of the scene has a shiny

(specular) surface that falls within the center-weighted re-

gion of interest. On the right side there is a darker (red)

car within a shadow cast by a building. The overlaid

green bounding box indicates that the car is detected by

the CNN when using the exposure-bracketing algorithm but

not the center-weighted algorithm. The reasons is that the

center-weighted algorithm selects a brief exposure duration

and renders a noisy image in the shadowed region. The

exposure-bracketing algorithm avoids this problem. This

situation does not arise often enough to reduce the average

precision in our simulations, but such cases can be identified

by searching for examples where the exposure-bracketing

performance is better than center-weighted performance.

5. Discussion and summary

The design-build-test loop for automotive image systems

is expensive and complex and this makes a soft prototyping

tool necessary. Additionally, it is typically impossible to

know how variations in an isolated component will impact

system performance. These requirements call for an end-

to-end prototyping environment. Such a system can greatly

speed innovation of image system architectures including

choice of lens, sensors, and camera placement by measuring

whole system performance on the relevant task.

The open-source and freely available prototyping tools in

ISET3d enables us to perform simulations that span scene

definition, camera design, and network design. Our fo-

cus is on camera design and the experiments carried out

in this paper explore aspects of the sensor hardware (pixel

size), sensor control algorithms (exposure algorithms) and

post-processing (demosaicing and gamma correction). Us-

ing the quantitative measure of average precision of car de-

tection, and the summary measure of OD50, we quanti-

fied system performance. These experiments show that car

detection algorithms identify cars at a distance approach-

ing 115 meters for small (1.5 µm) pixels and 98 meters for

larger (3 µm) pixels. Further experiments with lens and sen-

sor design might lead to improved performance. Center-

weighted exposure produced good average precision, but

exposure-bracketing algorithms have higher reliability and

handle certain edge cases that are problematic for the single-

exposure center-weighted acquisition. Finally, we found no

advantage for post-acquisition image processing for detect-

ing cars in daytime conditions. When the network is trained

from scratch on the relevant data, performance is nearly

identical whether using digital values directly from the sen-

sor mosaic or RGB values after post-acquisition processing.

The consumer photography industry has developed

many image quality tools, including SNR and MTF50. In

principle these metrics might be used to assess image sys-

tems for car detection. We find, however, that there is a

divergence between image quality metrics and CNN detec-

tion performance. Images that would be intolerable in con-

sumer photography - with extreme gamma values or with-

out any post-acquisition processing - are effective inputs to

CNN systems for car detection. End-to-end prototyping is

preferable to using perceptual image quality metrics when

predicting CNN performance.

The diversity of biological systems inspires us to design

and test increasingly specialized cameras. Soft prototyp-

ing can support experimentation with cameras optimized

for motion, certain colors or shapes. It can also support

experimentation using camera arrays with wide baselines

that are specialized for depth estimation, or cameras that in-

corporate data about vehicle motion to identify still from

moving objects and to use parallax to estimate depth. We

hope that using end-to-end simulations in combination with

task-specific performance metrics will yield insights that

improve image system designs for this new generation of

imaging systems.
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