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Abstract

Making sophisticated, robust, and safe sequential deci-

sions is at the heart of intelligent systems. This is especially

critical for planning in complex multi-agent environments,

where agents need to anticipate other agents’ intentions and

possible future actions. Traditional methods formulate the

problem as a Markov Decision Process, but the solutions

often rely on various assumptions and become brittle when

presented with corner cases. In contrast, deep reinforce-

ment learning (Deep RL) has been very effective at find-

ing policies by simultaneously exploring, interacting, and

learning from environments. Leveraging the powerful Deep

RL paradigm, we demonstrate that an iterative procedure

of self-play can create progressively more diverse environ-

ments, leading to the learning of sophisticated and robust

multi-agent policies. We demonstrate this in a challeng-

ing multi-agent simulation of merging traffic, where agents

must interact and negotiate with others in order to success-

fully merge on or off the road. While the environment starts

off simple, we increase its complexity by iteratively adding

an increasingly diverse set of agents to the agent “zoo” as

training progresses. Qualitatively, we find that through self-

play, our policies automatically learn interesting behaviors

such as defensive driving, overtaking, yielding, and the use

of signal lights to communicate intentions to other agents.

In addition, quantitatively, we show a dramatic improve-

ment of the success rate of merging maneuvers from 63% to

over 98%.

1. Introduction

One of the key challenges for building intelligent sys-

tems is learning to make safe and robust sequential deci-

sions in complex environments. In a multi-agent setting,

we must learn sophisticated policies with negotiation skills

in order to accomplish our goals. Fig. 1 provides an ex-

ample of this in the domain of autonomous driving, where

we wish to learn a policy to safely merge onto the high-

way in the presence of other agents. Merges are considered

complex [33, 5, 26], where behavior planning must accu-

Figure 1: A merge scenario: the green and red vehicles

want to find a gap and merge on, while some of the blue

vehicles want to merge off. For robust decision making, it is

critical to negotiate with other vehicles on the road.

rately predict each other’s intentions and try to act ratio-

nally in a general sum game [2]. Traditional solutions often

tackle these Markov Decision Processes (MDPs) by making

many assumptions and engineering hard-coded behaviors,

often leading to constrained and brittle policies [13, 21, 9].

For example, in lane changes and merges, a typical ap-

proach would first check for a sufficient gap in the adjacent

lane (high-level behavior planning), followed by solving for

the optimal future trajectory (low-level motion planning).

While this is a sensible approach for the majority of sit-

uations, it quickly becomes hard to handle various corner

cases: e.g. multiple vehicles are simultaneously trying to

merge to the same lane. Moreover, it is difficult to reason

about how others will react to our own actions and how we

might react to their reactions and so forth.

In a drastically different approach to solving the prob-

lem, reinforcement learning (RL) can directly learn policies

through repeated interactions with its environment. Ide-

ally, the simulated environment should be diverse and re-



alistic to facilitate real world transfers. The policy function

is usually a general purpose deep neural network, making

no a priori assumptions about the possible solutions. Re-

cently, with the increase in computation power and method-

ological improvements, deep reinforcement learning (deep

RL) has been applied to a variety of MDP problems and

has achieved striking breakthroughs: superhuman perfor-

mances in video games [19], Go [29], and most recently

in StarCraft [32]. However, it is unclear whether or not

these techniques can be easily transferred to driving applica-

tions. Unlike in games, driving is not a zero-sum game and

involves partially observed stochastic environments, where

safety and following traffic laws are paramount.

In this paper, we leverage deep RL and propose an iter-

ative self-play training scheme to learn robust and capable

policies for a multi-agent merge scenario in a simulated traf-

fic environment. We first build a simulation of traffic based

on real road geometry, where the road network is annotated

by aligning with a real “zipper” merge from satellite im-

agery, see Fig. 1. We populate the world densely with rule-

based agents that are capable of lane-following and safe

lane changes. However, it quickly becomes apparent that

simple rule-based policies are insufficient to deal with all of

the complexities of the environment. We can do better by

using RL to train policies in the presence of the basic rule-

based agents. However, the RL policy easily overfits to the

distribution of behaviors of the basic rule-based agents.

To overcome this, we devise an iterative self-play algo-

rithm where previously trained RL policies are mixed with

rule-based agents to create a diverse population of agents.

In self-play, the policies being learned are also simultane-

ously used to control agents in the simulation. As training

progresses, our agents’ capabilities also evolve, increasing

the diversity and complexity of the environment. In such an

complex environment, a capable policy must learn when to

slow down, when to accelerate and pick the gap to merge

into. It must also learn to communicate intentions to other

agents via turn signals or through its observable behaviors.

Lastly, it needs to estimate the latent goals and beliefs of the

other agents. Towards learning such policies, we demon-

strate the qualitative and quantitative behaviors or our self-

play trained policies in Sec. 6.

While we start with only a particular merge scenario, our

underlying motivation is that once we learn good policies

for all of the challenging scenarios, driving from any lo-

cation A to any other location B can be ‘stitched’ together

from these scenario specific policies, much like how options

are used in hierarchical reinforcement learning. Our main

contributions are as follows:

• A fast 2D simulation environment with realistic topol-

ogy and a kinematics Bicycle motion model.

• Rule-based agents with basic driving abilities: avoid-

ing collisions, making safe lane changes, using turn

signal lights.

• Model-free RL policy learning from a combination of

rasterized state encodings as well as low-dimensional

state variables.

• Quantitatively, we demonstrate that we can improve

the rate of successful merges from 63% to 98% via our

proposed self-play strategy.

• Qualitatively, our self-play trained agents learned hu-

man like behaviors such as defensive driving, yielding,

overtaking, and using turn signals.

2. Related Works

Using reinforcement learning algorithms to solve multi-

agent systems is useful in a wide variety of domains,

including robotics, computational economics, operations

research, and autonomous driving. A comprehensive

overview and survey on existing multi-agent reinforcement

learning (MARL) algorithms is provided by [2]. More re-

cently, an increase of interest in MARL has come from the

perspective of achieving general intelligence, where agents

must learn to interact and communicate with each other in a

shared environment [16, 8]. Game theoretic approaches for

MARL include fictitious play [10] and fictitious self-play,

the latter of which has been recently proposed with deep

neural networks for imperfect information poker games and

shown to converge to approximate Nash equilibria [11].

Policy learning for the driving domain can be formulated

as a MARL problem where each agent is a vehicle and the

environment is the road scene. The most challenging aspect

of this application domain lies in the ability to be robust and

safe [27]. To this end, a method was proposed to improve

functional safety by decomposing the policy function into

two components, a learnable function which is gated by a

hard constraint, a non-learnable trajectory planner [26].

There have also been previous work directly applying

deep reinforcement learning to driving simulations. De-

terministic actor critic [17] has been previously applied to

control the steering and acceleration in a racing game [35],

where the policy mapped pixels to actions. As part of the

CARLA simulator, the authors also released a set of deep

RL baselines results [6]. Deep RL was utilized for an end-

to-end lane keep assist system [23], and also used for navi-

gating a roundabout intersection [3]. For related but non-RL

approaches, conditional imitation learning agents have also

been learned via behavior cloning from expert data [4].

3. Preliminary

Before diving into the details of our algorithms and

framework, we first provide a background on deep rein-

forcement learning and its approach to learning optimal

policies. We will use the Markov Decision Process (MDP)

framework to model our problem [22]. Reinforcement



learning consists of a type of algorithm for solving MDPs

in which the agent repeatedly interacts with a stochastic en-

vironment by executing different actions. The MDP con-

sists of a state space S , an action space A, and a re-

ward function r(s, a) : S × A → R. The model of

the environment is: p(s′|s, a) which specifies the proba-

bility of transitioning to state s′ from state s and execut-

ing action a. The policy function πθ(a|s), parameterized

by θ, specifies the distribution over actions a given a state

s. ρπ(s) denotes the stationary distribution over the state

space given that policy π is followed. We denote the to-

tal discounted reward as rγt =
∑∞

i=t γ
i−tr(si, ai), where

γ ∈ [0.0, 1.0] is the discount factor. The value function is

V π(s) = E[rγ1 |S1 = s, π] and the state-action value func-

tion is Qπ(s, a) = E[rγ1 |S1 = s,A1 = a, π]. Reinforce-

ment learning (RL) consists of class of algorithms which

can be used to find the optimal policy for MDPs [30]. RL

algorithms seek to find the policy (via θ) which maximizes

the average expected total discount reward.

3.1. Policy Gradients

Policy gradient methods directly optimize the policy pa-

rameters θ and are a popular type of algorithm for contin-

uous control. They directly optimize the expected average

reward function by finding the gradient of the policy func-

tion parameters. The objective function can be written as:

J(πθ) =

∫

S

ρπ(s)

∫

A

πθ(a|s)Q
π(a, s)dads (1)

[24] showed that the gradient can also be in the form of:

∇θJ = E[∇θ log πθ(a|s)A(s, a)], where A is the advan-

tage function. A can also be replaced by other terms such

as the total return, which leads to the REINFORCE algo-

rithm [34]. In addition, based on the Policy Gradient The-

orem, a widely used architecture known as the actor-critic

replaces A with a critic function, which can also be learned

via temporal difference and guides the training of the actor,

or the policy function [31].

3.2. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [25] is an online

policy gradient method which minimizes a new surrogate

objective function using stochastic gradient descent. Com-

pared to traditional policy gradient algorithms where one

typically performs one gradient update per data sample,

PPO is able to achieve more stable results at lower sam-

ple complexity. The surrogate objective is maximized while

penalizing large changes to the policy. Let rt(θ) be the

ratio of probability of the new policy and the old policy:

rt(θ) =
π(at|st)

πold(at|st)
, then PPO optimizes the objective:

L(θ) = Êt

[

min(rt(θ)Ât, clip(rt(θ), 1−ǫ, 1+ǫ)Ât)
]

(2)

Figure 2: Multi-agent zipper-merge simulation environ-

ment. Agents are randomly spawned at lane segments (A,

B, or C) with a goal of arriving at a randomly chosen goal

location (D, E, or F). Agents must also obey traffic laws and

stay on the road.

where At is the estimated advantage function and ǫ is a hy-

perparameter (e.g. ǫ = 0.2). The algorithm alternates be-

tween sampling multiple trajectories from the policy and

performing several epochs of stochastic gradient descent

(SGD) on the sampled dataset to optimize this surrogate

objective. Since the state value function is also simulta-

neously approximated, the error for the value function ap-

proximation is also added to the surrogate objective to form

the overall objective.

Online model-free algorithms such as PPO do not make

use of the experience replay buffer and it is beneficial to

collect experiences in parallel to reduce the variance of the

gradient updates. This can be easily done by simultane-

ously launching N agents in parallel and collect the expe-

riences into a minibatch and update using the average gra-

dient. While we found that PPO fairly stable and efficient,

there are certainly various other alternative algorithms that

one could use instead [17, 12, 7]. We leave experimenting

with different underlying deep RL learning algorithms to

future work.

4. Environment

We begin by first describing our simulation environment,

as all of the subsequent discussions can be better understood

in the context of the environmental details. Fig. 2 shows our

multi-agent zipper merge RL environment, where agents



Scale (m) Init vel. IDM desired vel. # Other agents Spawn pr. Rsuccess Rcollision Rout−of−bounds Rvelocity

340 [0, 5](m/s) [10, 20] (m/s) [0, 10] 1% 100.0 −500.0 −250.0 0.1

Table 1: Zipper merge environment details. Bracketed values are the [min, max] bounds from which we randomly sample.

start at one of (A, B, C) locations with the goal of getting to

one of (D, E, F) destinations. Both starting and destination

locations are chosen at random at the start of each episode.

The action space of the environment consists of accelera-

tion, steering, and turn signals.

Zipper merges, also known as double merges, are com-

monly recognized as a very challenging scenario for au-

tonomous agents [26]. It is challenging as the some of the

agents on the left lane intend to merge right while most of

the right lane agents need to merge left. Signals and subtle

cues are used to negotiate who goes first and which gap is

filled. The planning also has to be done in a short amount

of time and and within a short distance.

To capture the geometry of real roads, we used a satel-

lite image as a reference and annotated polyline-based lanes

to match approximately the different lanes and curvature of

the road (white lines in Fig. 2). Our simulation is in 2D,

which is a reasonable assumption to make as we are more

interested in high-level negotiations as opposed to low-level

dynamic vehicle control. The discretization of our simula-

tion is at 100 milliseconds and the frame rate is 10 Hz. The

state of every agent is updated in a synchronous manner.

Tab. 1 details the parameters of our learning environment.

4.1. Dynamics

We use the discrete time Kinematics Bicycle model [15]

to model vehicle dynamics in our environments. The non-

linear continuous time equations that describe the dynamics

in an inertial frame are given by:

ẋ = v cos(ψ + β), ẏ = v sin(ψ + β) (3)

ψ̇ =
v

lr
sin(β), v̇ = a (4)

where x, y are the coordinate of the center-of-mass of

the vehicle, ψ is the inertial heading and v is the velocity of

the vehicle. lr and lf are the distance of the center of the

mass to the front and the rear axles. β is the angle of the

current velocity relative to longitudinal axis of the vehicle.

In an effort to be realistic, we bound the acceleration to be

between [−6 to 4] m/s2.

4.2. Road Network

The road network of our environment consists of a 2D

graph of straight, curved, and polyline lanes. Straight lanes

are modeled by a left boundary line and a right boundary

line. Curved lanes are modeled using Clothoids [18] with

a specified lane width. Finally, arbitrary shaped lanes are

modeled by separate left and right lane boundaries. In our

2D graph, each lane is a node is this graph and connected

by incoming and outgoing edges. The direction of the edge

indicates the direction of travel.

4.3. IDM Agents

As part of the environment, we have rule-based agents

of differing “intelligence”. Also known as intelligent driv-

ing models (IDMs) [14], the simplest agents perform lane-

keeping starting from a specified lane using adaptive cruise

control (ACC): slowing down and speeding up accordingly

with respect to the vehicle in front. Building on top of these

simple ACC agents, we add lane change functionality by us-

ing gap acceptance methods [13], so that merge can be done

in a safer manner. We also vary the desired and starting ve-

locities and accelerations to create a population of different

IDM agents (they will drive a little differently from each

other). To differentiate between the IDM agents, we will

refer to the agent/vehicle that we are learning to control as

the ego vehicle.

5. Model Architecture

In this section, we describe in detail our deep RL frame-

work for self-play, which is used to learn sensible negoti-

ation policies in the aforementioned zipper merge environ-

ment. We will explain the architecture of the policy net-

work, the observation space and the cost function used for

learning. At the core, our learning is a distributed form of

the PPO policy gradient algorithm, where multiple environ-

ments are simulated in parallel to collect experiences. After

first training a single deep RL agent with an environment

populated with other rule-based IDM agents, we initiate

self-play by replacing a portion of the agents with previ-

ously learned RL agents. As self-play training progresses,

we iteratively add more RL agents with updated parameters

to the training agent population.

5.1. Observations and State Encodings

The road geometry, state of other agents, and the

goal/destination of the ego vehicle are all important for de-

cision making. The observations from our RL agent’s per-

spective consist of a combination of two components. The

first is a top down rasterization view in ego-centric frame:

see examples of this rasterization in Fig. 3 (top left). This

rasterization captures the lane geometry, the route informa-

tion, and the poses of all vehicles, essentially capturing the

context of the scene. The rasterization is an RGB image of

128 × 128 × 3. Rasterization is a simple encoding scheme
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Figure 3: Architecture diagram of the policy function. In-

puts consist of two types. The first is a rasterized top-down

image of the scene, with the ego vehicle in the center. The

second is the low-dimensional precise measurements of rel-

ative distances, velocities and accelerations of other vehi-

cles with respect to the ego vehicle. These inputs are passed

through convolutional and fully connected layers to gener-

ate three actions: steering, acceleration and turn signals.

that renders the scene into a sequences of image frames.

The rasterized input contains all of the geometric relation-

ships in metric space. As we will discuss later, state encod-

ing will then be extracted by a convolutional neural network

(CNN). We use OpenGL for efficient rasterization. Besides

rasterization, we also use a 76 dimensional vector which

is composed of the position, velocity, acceleration, orien-

tation, and turn signal states of the 8 closest neighboring

vehicles to ego. In the real world, these inputs can be given

by the output of object tracking. We also encode ego’s ideal

reference route and provide it as a part of the 76 dimen-

sional vector. Temporal history of two frames (200 ms) is

used to provide temporal contextual information.

5.2. Policy Network

The policy function (Fig. 3) is represented by a deep neu-

ral network (CNN) which takes the state encoding of the en-

vironment (vehicle poses, lanes, etc.) as input and outputs

steering, acceleration and turn signal commands for the ego

vehicle. Our policy function is “end-to-end” in that it by-

passes traditional trajectory planning and feedback control.

Our policy has two streams of inputs, which are combined

via late fusion at the third fully-connected (FC3) layer. The

two streams are complementary to each other as rasteriza-

tion provides spatial context but it is discretized and lossy.

The low dimensional relative measurements are highly pre-

cise but do not capture road information. A 3-layer con-

volution neural network is used to process the rasterization

stream. The layers of the CNN have a receptive field size

of 4 with a stride of 2 to process the input channels. Af-

ter 3 convolution layers, a fully connected layer embeds the

scene into a 128 dimensional vector. In the other stream,

two fully connected layers of dimension 64 encode the 76
dimensional input. The output of the two streams are con-

catenated into a single layer and an additional fully con-

nected hidden layer is used to predict the actions. The ac-

tion space is 3 dimensional: steering, acceleration, and turn

signals.

5.3. Reward Function

The reward function, or cost function, is critical for guid-

ing the search for the desired optimal policy. We define

collision as the intersection of the bounding boxes of two

vehicles, with a −500.0 reward. A vehicle goes out-of-

bounds when its centroid is more than 0.75× the lane width

from the center-line of any lane. The cost incurred for out-

of-bounds is −250.0. Successfully completing the zipper

merge gains a +100.0 reward. There are also penalties of

−0.1 whenever the turn signal is turned on to prevent the

policy from constantly having the turn signal lights on. Ve-

hicle velocity up to the speed of 15 m/s is rewarded with a

scaling of 0.1. In order to reward a vehicle for remaining

in the center of its lane, a lane center offset penalty of −0.1
is applied for every meter off the center line. Finally, we

also penalize for non-smooth motion by a penalty of −2.0
multiplied with the change in steering angle.

It is also critical to introduce reward shaping [20] to

make learning easier. Specifically, we linearly anneal

the crash and out-of-bounds loss from −100.0 to their fi-

nal value of −500.0 and −250.0, respectively, as training

progress from 0 to 1000 updates. These hyperparameters

are selected manually to ensure sensible performance. A

better approach would be to find these values from real data,

we leave this to future work.

5.4. Training

We began by training a single RL policy using PPO with

a batch size of 32, learning rate of 0.0025, entropy coef-

ficient of 0.001, and the number of environment steps be-

tween parameter updates is 1024. Distributional learning

uses 32 separate processes to step through 32 environments

in parallel. For each episode, roughly up to 10 agents are

launched, each having their own random destination loca-

tion. An episode is terminated when either one of several

situations occurs: destination is reached, collision, ego go-

ing out of bounds, or after 1000 timesteps.

5.5. Multi-agent Self-play

Reinforcement learned policies are well known for their

ability to exploit the training environment. In the case of our

multi-agent environment, it is prone to overfit to the specific

behaviors of the “sparring” IDM agents. For example, if the

IDM agents have a tendency to brake suddenly and always

yield to another merging vehicle, then the RL policy will

learn to exploit this by being ultra aggressive. However, this



Figure 4: Training during self-play. For ego (green), the

sparring agent population consists of two types of agents,

the IDM agents (blue) and other RL agents (red).

could be dangerous in environments with agents that do not

always yield. Additionally, it is suboptimal to train only

with IDM agents as it is hard to manually tune IDM agents’

parameters. For example, we noticed that IDM agents are

to blame in most collisions involving IDM and RL agents.

Self-play is a very broad and general technique for in-

creasing the complexity of the environment and learning

better policies [1, 28, 11]. At a high level, self-play iter-

atively adds the latest of the learned policies back to the en-

vironment, increasing the diversity and perhaps realism of

the environment. For our application, starting from a sim-

ple road network and a handful of rule-based IDM agents,

self-play allows us to learn complex policies capable of a

diverse set of behaviors.

Fig. 4 shows a scene of self-play training with a mixed

set of agents. Rule-based IDM agents are in blue while the

RL agents are in red. The green ego agent is also an RL

agent. The ego and RL agents share the same policy, but

their input representation is normalized to be the center of

the world (see the insets pointed to by the white arrows).

For each episode, there is a mix of IDM and RL agents with

different policy parameters.

We divide our self-play training in 3 stages. In the 1st

stage, the RL policy is trained in the sole presence of rule-

based IDM agents. In stage 2, self-play is trained in the

presence of 30% IDM agents, 30% RL agents from stage

1, and the other 40% are controlled by the current learning

policy. In stage 3, we additionally train with the agents from

stage 2. See Tab. 2 for the percentage1 of agents in different

populations. Alg. 1 further details the learning algorithm.

6. Experimental Results

We perform experiments with the aforementioned learn-

ing environment and deep reinforcement learning using a

1These numbers are not exact as vehicles are spawned continuously and

would-be vehicles occupying the same regions are not spawned.

Population Agent Types

Population IDM RL SP1 SP2

Popul. 1 100% 0% 0% 0%

Popul. 2 50% 50% 0% 0%

Popul. 3 30% 30% 40% 0%

Popul. 4 10% 20% 30% 40%

Table 2: Training agent population distribution of agent

types for different self-play training and testing stages.

Algorithm 1: Self-play multi-agent RL training

Input: Environment E , S stages, Nidm IDM agents, Nrl

self-play agents.

Initialize: Randomly initialize policy π.

1 for stage s = 1 to S do

2 Choose the % mix of agents to create population, (see

Tab. 2).

3 Reset all envs with the new agent population.

4 set I updates for this stage.

5 for i = 0 to I do

6 Launch K parallel threads to gather experiences

{st, at, rt, st+1, . . . , sτ}k from all K envs Ek.

7 Batch B ← {st, at, rt, st+1, . . . , sτ}k for all K.

8 Update policy network parameters by training on

data B (using Eq. 2).

9 end

10 end

distributed learning system which simultaneously stepped

through environments in parallel to collect experiences. An

NVIDIA Titan X GPU is used to accelerate the learning

of the policy function. Training is performed over roughly

10M environment update steps, which corresponds to about

278 hours of real time experience.

6.1. Quantitative Results

We plot performance measure in terms of the percentage

of success2, collision rates, and out-of-bounds rates during

training. Fig. 5 shows these statistics with respect to accu-

mulated parameter updates across all three stages. Results

are averaged over 4 random trials. Performance dips at the

start of every stage as new agents are introduced. By the

end of stage 3, performance peaks against a diverse set of

sparring agents.

In Tab. 3, we quantify various testing success and colli-

sion rates for policies learned at different stages. The eval-

uation, with standard errors, is over 250 random trials with-

out adding exploration noise. As we can see from Tab. 3, the

success rate of the IDM agents is very poor at 63%. This is

mainly due to the fact that they are governed by rules and

2A successful merge is when an agent arrives at its desired destination

location, randomly chosen at the start of the episode.



Training Testing Success rate % ( Collision rate %)

Stage Agents Train w/ Population Test w/ Popul. 1 Popul. 2 Popul. 3 Popul. 4

0 IDM N/A 62.8±3.1 (0.8±0.6) - - -

1 RL (Popul. 1) IDM 94.8±1.4 (4.0±1.2) 77.2±2.7 (12.4±2.1) - -

2 SP1 (Popul. 3) IDM+RL+SP1 96.0±1.2 (3.6±1.2) 91.2±1.8 (4.4±1.3) 95.2±1.4 (3.2±1.1) -

3 SP2 (Popul. 4) IDM+RL+SP1+SP2 93.2±1.6 (6.0±1.5) 94.8±1.4 (4.8±1.4) 95.2±1.4 (4.4±1.3) 98.2±0.8 (1.4±0.7)

Table 3: Quantitative performance (successful completion and collisions) of various agents against different population of

agents. Reported numbers are in success percentage (collision percentage). SP1/2 denote the self-play trained agents.

Sta
ge1

Sta
ge2

Sta
ge3

Figure 5: Different statistics as a function of parameter up-

dates: success rate, collision rate, and out-of-bounds rate.

There are 1024 environment steps between weight updates.

Arrows denote self-play stages (Sec. 5.5).

gap acceptance theory [13], which is too simplistic. Next,

in row two, we can see that RL trained agents can dramat-

ically improves success rates (95%) against the population

of IDM agents. However, performance decreases to (77%)

when tested against a mix of IDM and RL agents, demon-

strating severe overfitting. Using three stages of self-play,

we can improve the success rate up to 98% against a diverse

population of other agents: IDMs, RL, Self-Play1, and Self-

Play2 agents3.

6.2. Qualitative Results

Our policies are able to learn a variety of interesting driv-

ing behaviors with self-play. These behaviors include over-

taking to merge, emergency braking, using turning signals,

and defensive yielding. They showcase various multi-agent

interactions and diverse behaviors exhibited by the agents

during merges. The resulting policies also learned to be

flexible within the confines of the road, deviating from the

center of the lane when necessary. Figs. 6, 7, 8, 9 show

temporal snapshots of testing episodes. The ego agent is in

green, RL and self-play agents are red, and the rule-based

IDM agents are blue.

3See Tab. 2 for different training and testing population agent types.

(a) t=0.0s (b) t=4.8s (c) t=6.0s

Figure 10: A failure case (rear-end). Ego (green) success-

fully brakes, however the vehicle behind it also brakes but

not quickly enough, resulting in a rear ended collision.

(a) t=0.0 s (b) t=1.0 s (c) t=3.4 s

Figure 11: Emergency stop example. Ego vehicle (green)

brakes hard due to the sudden deceleration of the vehicle in

front. Instead of only braking, the policy learned to turn its

wheels to the side as well, reducing chances of collisions.

Note that this is done without violating the right lane.

6.3. Emergency and Failure Cases

Our algorithm is not perfect, whether it is due to unob-

servable intentions of other agents, information loss due to

temporal discretization, or an inadequately scaled reward

function, we still observe collisions in simulation. We ana-

lyzed some of these failure cases here. The most common

cause of collisions is due to a sudden stop of the vehicle in

front of ego. While the RL policy will try to brake, it is

sometimes inadequate and results in a collision. In Fig. 10,

while ego stops in time, unfortunately, the vehicle behind

ego was unable to stop in time and caused a collision.

Another interesting example is an emergency braking sit-

uation shown in Fig. 11. Here, the IDM vehicle in front of

ego abruptly stops. As ego decelerates, it also steers towards

the right side4. This is interesting as it loosely correlates

4We hypothesize and speculate that it was useful to increase the dis-



(a) t=2.0 s (b) t=2.7 s (c) t=3.5 s (d) t=4.0 s (e) t=4.5 s (f) t=9.0 s

Figure 6: Turn Signal + Wait and Merge: Ego learned to use its turn signal and waited until the adjacent vehicle in the

entrance lane accelerated before merging.

(a) t=0.0 s (b) t=4.8 s (c) t=6.0 s (d) t=6.4 s (e) t=6.8 s (f) t=7.2 s

Figure 7: Overtaking and finding a gap: Ego cannot safely merge due to another vehicle merging to the right from the

left-most lane at the same time. Instead, it accelerates to overtake and then merges.

(a) t=0.0 s (b) t=4.8 s (c) t=6.0 s (d) t=6.4 s (e) t=6.8 s (f) t=7.2 s

Figure 8: Yielding: Ego braked suddenly to yield due to the extremely aggressive behavior of the blue IDM agent.

(a) t=0.0 s (b) t=4.8 s (c) t=6.0 s (d) t=6.4 s (e) t=6.8 s (f) t=7.2 s

Figure 9: Defensive: Ego cautiously decides to sway back to the right portion of the lane at around the 6.0 secs mark.

with what is observed in some human behaviors in similar

emergency breaking situations.

7. Discussions

In this paper we proposed an algorithm towards tack-

ling the challenging problem of multi-agent robust decision

making in a simulated traffic merge environment. Start-

ing with a geometrically realistic environment but populated

tance traveled the wheel until the front made contact with the vehicle in

the front. Interestingly, it does not go across the right ego lane boundary.

with only simple rule-based agents, we iteratively increased

the diversity of the agent population by using self-play to

add more and more capable RL-based agents. We empir-

ically showed that three stages of self-play can dramati-

cally increase the success rate while also keeping failure

rates low. In addition, qualitatively, the learned policies ex-

hibit some interesting and human-like behaviors. For future

work, it is critical to drive the collision rates to zero. Re-

ward shaping and modeling the future uncertainties are also

two possible avenues for the future.
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