
Can Generative Adversarial Networks Teach Themselves Text Segmentation?

Mohammed Al-Rawi, Dena Bazazian, Ernest Valveny

Computer Vision Center, Universitat Autonoma de Barcelona, Spain

ms.alrawi@gmail, {dena.bazazian,ernest}@cvc.uab.es

Abstract

In the information age in which we live, text segmentation

from scene images is a vital prerequisite task used in many

text understanding applications. Text segmentation is a dif-

ficult problem because of the potentially vast variation in

text and scene landscape. Moreover, systems that learn to

perform text segmentation usually need non-trivial annota-

tion efforts. We present in this work a novel unsupervised

method to segment text at the pixel-level from scene images.

The model we propose, which relies on generative adversar-

ial neural networks, segments text intelligently; and does

not therefore need to associate the scene image that con-

tains the text to the ground-truth of the text. The main ad-

vantage is thus skipping the need to obtain the pixel-level

annotation dataset, which is normally required in training

powerful text segmentation models. The results are promis-

ing, and to the best of our knowledge, constitute the first

step towards reliable unsupervised text segmentation. Our

work opens a new research path in unsupervised text seg-

mentation and poses many research questions with a lot of

trends available for further improvement.

1. Introduction

There has been non-trivial efforts to bring machine intelli-

gence to the level of human intelligence. Humans can learn

in an unsupervised manner, and they can understand the

world around them in several ways. The simplest exam-

ple of this unsupervised intelligence is how humans have

a good perception of text, as they can learn the alphabets,

words and sentences, and can later detect text irrelevant to

the text they viewed during basic supervised learning. In ad-

dition, humans can learn text written on blank background,

yet, they can spot and detect text that appear in scene im-

ages without the need for any correspondence with what

they have learned / taught and the scene images. For ma-

chines, and up to writing this paper, the learning is typi-

cally supervised by having some form of correspondence

between the scene text images ground-truth data, which are

usually marked as bounding-box or pixel-wise annotations.

Because the ultimate aim of scene text tasks usually con-

cludes to reading up the text, the pixel-level text segmen-

tation can provide more accuracy to the task of text recog-

nition in comparison with the bounding box detection ap-

proach. However, text segmentation based on supervised

learning has two implications 1) non-trivial efforts have to

be dedicated to annotate the data and 2) machines (or com-

puter vision systems) will lack true intelligence compared

to humans. This work aims at achieving a new level of ma-

chine intelligence by addressing the problem of text seg-

mentation using deep neural networks in an unsupervised

manner.

Text segmentation in scene images is the key step for

end-to-end scene text recognition systems. The aim of text

segmentation is to detect text at the pixel level, i.e. extract-

ing all text pixels of an image. While this may seem a sim-

ple problem, previous works have shown otherwise; this is

because text usually appear in unconstrained scene environ-

ments, with various text shape and formation, scale, orienta-

tion, font, color, and complex background. These variations

can lead to endless scene text combinations. Text segmen-

tation from scene images is therefore a difficult task and is

considered a challenging computer vision problem.

We propose in this work a novel idea to segment text

from scene images based on Generative Adversarial Net-

works (GANs). Figure 1 illustrates the supervised and un-

supervised learning aimed at text segmentation. The contri-

bution of this paper can be folded as follows; 1) investigate

the use of (GANs) for text segmentation from scene images,

2) propose an unsupervised text segmentation approach, 3)

compare text segmentation based on Deep Convolutional

Neural Networks (DCNNs) and the proposed GAN method,

4) propose a method to handle the segmented text via Cycle-

GANs in cases of dark text, and 5) propose a novel method,

based on F1 score, to measure the performance of text seg-

mentation. The remainder of the article is organized as fol-













,





















,





















,











.
.
.



































































































.

.

.



































































































,



































































































.

.

.



































































































fi ti F T

Paired data UnPaired data

Figure 1. In supervised text segmentation learning (left), paired

training data are considered, consisting of training examples

{fi, ti}
N
i=1 containing source image fi and its target (ground-

truth) ti, where the one-to-one correspondence between fi and

ti exists. In unsupervised text segmentation learning (right), we

consider unpaired training data, consisting of a source set {fi}
N
i=1

(fi ∈ F ) and a target set {ti}
N
i=1 (ti ∈ T ), with no information

provided as to which source matches which target. Best viewed in

color.

lows; the next section reviews the related works, Section 3

describes the GAN that we will use to perform text segmen-

tation, then present the experimental results and conclusions

in Sections 4 and 6, respectively.

2. Related Works

Text segmentation can be simply solved through thresh-

olding of document images [10, 24]. Thresholding tech-

niques, however, cannot be directly used to segment text

in the scene images due to variations in the size and ori-

entation of text that often appeases on a cluttered back-

ground. Nonetheless, some works have used threshold-

ing techniques for segmenting text in scene images us-

ing a Gaussian Mixture Model to model color distributions

that may have various foregrounds and background colors

[21]. Drifting from thresholding techniques, text polarity

and stroke width estimation based on gradient local correla-

tion have been used in [2]. The approach in [27] extracted

a binary mask from the image, by sampling the image in

a row-by-row fashion such while testing each row for text

existence, using a 1D adaptation of the MSER algorithm.

Moreover, in [26] a multi-level MSER technique has been

used to extract text candidates from scene images, based on

four factors of stroke width, boundary curvature, character

confidence and color constancy, which led to an improved

segmentation. Recently, DCNNs have been implemented in

semantic image segmentation [16, 4]. With regard to seg-

menting text via DCNNs, [25] performed text segmentation

through three stages by performing extraction, refinement

and classification.

Generative Adversarial Networks (GANs) [7] are mag-

ical machine learning systems that can be used for unsu-

pervised machine learning and they are considered now the

cutting edge of Artificial Intelligence. They are basically

made up of two competing models that run in competition

with one another and are able to capture and copy variations

within a dataset, making them great tools for image genera-

tion and manipulation. GANs have been used to build mod-

els for a large number of applications, for example, cracking

passwords [9], encryption [1], apparel and fashion industry

[6], etc. A comparison of general semantic segmentation

with GAN has been investigated in [18], but nothing relates

to text segmentation. Furthermore, there are also some other

works that have applied GANs in textual images, but not

text segmentation, as in [20] which used GANs for Chinese

calligraphy synthesis, and [28] which is to synthesize scene

text images. To the best of our knowledge, the literature still

lacks the use of GANs in text segmentation in an unsuper-

vised manner, which is the main contribution of this work.

The CycleGAN has been proposed as an innovative model

that can be used for unsupervised Image-to-Image transla-

tion [30]. While text segmentation can be treated as a paired

data problem, the unsupervised approach have great advan-

tages, as aforementioned.

3. Methods

3.1. Supervised text segmentation using DCNNs

Semantic segmentation works by understanding an image at

the pixel level, then assigning a label to every pixel in the

image. Therefore, pixels with the same label should share

certain characteristics. In this work, we use DeepLabV3+

[4], which is considered as one of the most promising

semantic segmentation techniques used mainly for gen-

eral object segmentation. Furthermore, DeepLabV3+ is

an extended version of DeepLabV3 [5], but the robust-

ness of DeepLabV3+ stems from applying several parallel

atrous convolution, with different rates (called Atrous Spa-

tial Pyramid Pooling, or ASPP) that capture the contextual

information at multiple scales. This is very important for

detecting text in scene images because in pixel-wise text

segmentation techniques, the deconvolution layer will de-

grade some spatial information such as FCN [16]. The use

of atrous convolution will assist preserve the spatial infor-

mation, which is necessary to capture the scale and orien-

tation that appears frequently in text. We will take into ac-

count that the results obtained using DeepLabV3+ as the



baseline to compare with the results we obtain from GANs.

3.2. Cycle-consistency GAN

The hypothesis of this work is that a CycleGAN can learn

the mapping function between scene image and text image

domains, F and T , given unpaired training samples and tar-

gets defined as {fi}
N
i=1 and {ti}

M
i=1, where (fi ∈ F ) and

(ti ∈ T ). The model includes 1) two mappings G : F −→
T and H : T −→ F ; 2) two adversarial discriminators,

DF aims to distinguish between images f and translated

images H(t), and DT aims to discriminate between images

t and translated images G(f); and 3) two identity mapping

regularizers. The objective function should thus contain six

terms: two adversarial losses for matching the distribution

of generated images to the data distribution text in the target

domain, two cycle consistency losses to prevent the learned

mappings G and H from conflicting each other [30], and

two identity losses. Hence, the objective function is given

by:

L(G,H,DF , DT , F, T ) =

λ�

g
LGF�T

(DT , F ) + λ�

g
LHT�F

(DF , T )

+ λ�

c
Lcycle
GF�T

(F ) + λ�

c
Lcycle
HT�F

(T )

+ λ�

i
Lidentity

GF�T )
(T ) + λ�

i
Lidentity

HT�F
(F ), (1)

where the set of λ values are selected / optimized to con-

trol the behavior of the objective function and the expected

output, and

LGF�T
(DT , F ) = Ef∼p(f)[(DT (G(f))− ı)2],

LHT�F
(DF , T ) = Et∼q(t)[(DF (H(t))− j)2],

Lcycle

GF�T ,HT�F
(F ) = Ef∼p(f)[‖H(G(f)− f‖1],

Lcycle

HT�F ,GF�T
(T ) = Et∼q(t)[‖G(H(t)− t‖1],

Lidentity

HT�F
(F ) = Ef∼p(f)[‖H(f)− f‖1],

Lidentity

GF�T
(T ) = Et∼q(t)[‖G(t)− t‖1],

(2)

where f ∼ p(f) and t ∼ q(t) denote data distributions, E

denotes the Expectation, and ı = 1 and j = 0 denote valid

and fake images used to fool the discriminators. The aim

is to minimize the objective function shown above in Eq. 1.

The right arrow in λ�

g
denotes the forward generator and the

left arrow in λ�

g
denotes the backward generator. Similarly,

left and right arrows of λc and λi denote forward and back-

ward cycle and identity, respectively. The discriminators’

loss functions, on the other hand, are defined as follows:

LDf
(F,Bf ) = Ef∼p(f)[(Df (f)− ı)2]

+Ef∼p(f)[(Df (bf )− j)2],

LDt
(T,Bt) = Et∼q(t)[(Dt(t)− ı)2]

+Et∼q(t)[(Dt(bt)− j)2],

(3)

where Bf and Bt are buffers that store the 50 previously

created images [30]. These buffers are necessary to reduce

model oscillation, as has been shown in [22] that updat-

ing the discriminators using a history of generated images

rather than the ones produced by the latest generators adds

more stability.

Furthermore, because the dark text affects the output

of the CycleGAN, i.e. cannot be separated from the black

background, we suggest in this work a CycleGAN that si-

multaneously learn from both the negative and positive im-

ages. In this case, we modified Eq. 2 to be as follows:

LGF�T
(DT , F ) = Ef∼p(f)[DT [G(f+) +G(f−)]− ı)2],

LHT�F
(DF , T ) = Et∼q(t)[(DF [H(t+) +DF (H(t−)]− j)2],

Lcycle

GF�T ,HT�F
(F ) = Ef∼p(f)[‖[H(G(f+)) +H(G(f−))]− f‖1],

Lcycle

HT�F ,GF�T
(T ) = Et∼q(t)[‖[G(H(t+)) +G(H(t−))]− t‖1],

Lidentity

GF�T
(T ) = Lidentity

GF�T
(T+) + Lidentity

GF�T
(T−),

Lidentity

HT�F
(F ) = Lidentity

HT�F
(F+) + Lidentity

HT�F
(F−),

(4)

We also modified the discriminators’ loss functions to be as

follows:

LDf
(F,Bf ) = Ef∼p(f)[(Df (f)− ı)2]

+Ef∼p(f)[(Df (bf )− j)2]

LDt
(T,Bt+ , Bt−) = Et+∼q(t+)[(Dt(t

+)− ı)2]

+Et−∼q(t−)[(Dt(t
−)− ı)2]

+Et±∼q(t±)[(Dt(bt+ + bt−))− j)2],

(5)

where the f+ and f− superscripts respectively denote posi-

tive and negative images of f , a similar argument applies to

t ground-truth images, and the Bs are buffers that store the

50 previously created / generated images. Worth to mention

that f+ = f . In order to simplify the notations, we dropped

division by two after adding the positive and negative im-

ages.

3.3. Unsupervised text segmentation via CycleGAN

We did a few exploratory analysis to investigate text seg-

mentation via CycleGAN. Our hypothesis is that the Cy-

cleGAN will be able to extract text from images with the

exact color and shape that they appear in the scene image.

This, however, has been the case to some extent. Addi-

tionally, since our CycleGAN is trained to extract text and

overlay it on a black background, text that have dark col-

ors in the input (scene-text images) will not be legible on

black background, and sometimes, appears to be blended

with the black background. To resolve this issue, we opt to

try the negative of the input image (aka image inversion),

which indeed solved the problems of the dark text. As ex-

pected, using only the negative of the input image led to

a similar problem when the input images have bright text



f t g N Tp Fp Fn Tn

Figure 2. Results for an image f containing bright and dark text, with t as ground-truth. Values of Eq. 8 that we use to calculate the F1

score; g is the GAN output when adding the positive and negative of the GAN, i.e. g+ + g−. For example, the calculation of the false

positives for the this image according to Eq. 8 is Fp = ΣFp, i.e. over all the pixels. Best viewed in color.

(e.g., white text), as the negative of the bright text will re-

sult in dark text. To resolve this problem, we propose to

use both the input image and its negative; and hence, an al-

gorithm is needed to blend the output of a CycleGAN for

the input image and its negative. This is better explained in

mathematical notations as shown below; let f+ be the input

image and f− its negative, let GF�T be the model trained

to segment text, we can then write:

g+ = GF�T (f
+),

g− = GF�T (f
−),

(6)

where g+ and g− are the outputs of G for the positive and

negative of the input image f , respectively. Moreover, we

shall also investigate more approaches to come up with a

better text segmentation, including by passing the output g

to G again, in addition to summing the positives and nega-

tives as they should complement each other, as follows:

g± = g+ + g−,

gg+ = GF�T (g
+),

gg− = GF�T (g
−),

gg±a = gg+ + gg−,

gg±b = GF�T (g),

(7)

where g in Eq. 7 denotes a one-pass generator of the Cycle-

GAN of the input image f , gg denotes a two-passe genera-

tor CycleGAN approach, and the + and / or − superscripts

respectively denote using the positive and / or negative in-

put image. We also use the superscripts a and b to distin-

guish between two methods using a two-passe CycleGAN.

We demonstrate the effect of positive and negative input im-

ages on the output of the CycleGAN in Figure 2.

3.4. Text segmentation performance metric

Evaluating the performance of text segmentation is a dif-

ficult task because of a range of problems that can affect

the evaluation scores, such as: character thickness varia-

tions, merged characters, partially discovered letters, frag-

mented characters, and false-positives [3]. A text segmen-

tation evaluation method based on a text detection protocol

has been proposed in [3]; however, their method might not

give accurate results at the pixel-wise level as it is based on

a single character connected component of the segmented

character. We propose in this work a novel metric for evalu-

ating text segmentation, based on the exact pixel-wise level

annotations of the test image. We calculate the segmen-

tation performance by averaging the F1 score over all the

images of the testing set. The metric we are proposing is

not similar to the ones used in other computer vision prob-

lems, where the Recall and Precision can be estimated from

the predictions and the labels that do not depend on pixel-

wise level annotation. To illustrate our proposed metric, let

g be the image containing the segmented text, and let t be

the ground-truth image that should correspond to the test

image f , which has originally been used to generate g via

g = GF�T (f). Both g and t are in binary format. To calcu-

late the average F1 score over all test images, we first find

the F1 score for each segmented image gi as follows:

N = gi ∨ ti,

T p = gi ∧ ti,

Fp = gi ⊕ Tp,

Fn = ti ⊕ Tp,

Tn = N ⊕ (Tp ∨ Fp ∨ Fn),

(8)

where ti denotes the ground-truth of the test image fi.

Each of N , T p,Fn,Fp, Tn have the form of a 2D binary

having the same size of the image gi and the ground-truth

ti. Hence for fi image in the test set i = 0, 1, 2, ..., we

need to take the summation over the binary matrix to obtain

the True-Positives and False-Positives. The calculation of

Precision, Recall and F1 score will therefore be given by:

P =
ΣTp

ΣTp +ΣFp

,

R =
ΣTp

ΣTp +ΣFn

,

F1 = 2
RP

R+ P
,

(9)

and hence, the average of F1 will give the F1 score:

F1 = E{(fi∈F, ti∈T ):i=1,2,...}[F1]. (10)



In
p
u
t

f

g+ g− gg+ gg− g± gg±a gg±b DeepLabV3+

C
o

lo
re

d
B

in
ar

iz
ed

Figure 3. Segmented text using CycleGAN trained in unsupervised manner. The first column shows the input image, the ground-truth in

color and binary, respectively. Columns 2 through 8 show the segmented text via seven different approaches, e.g. based on the positive

and / or the negative of the input image f ; and the last column shows the result using supervised learning of a DCNN implemented via

DeepLabV3+. Best viewed in color.

As the CycleGAN output is real-valued, which could be

normalized then to 0 to 255, one needs to threshold each

image to binary format prior to using it in the calculation

of the F1 score. Moreover, the image that the CycleGAN

generates has lots of zeros, as it tries to mimic the target

domain and therefore segments text into black background.

This indicates that a low threshold value will be sufficient,

or one can rely on the average of the image as the threshold.

4. Results

Dateasets. We experimentally validate our models

using three popular text segmentation datasets: ICDAR-

2013 [12], KAIST [14], and MRRC [13]. We only consider

the English images for training including the 230 images

from ICDAR-2013, 310 images of KAIST and 60 image

of MRRC [13]; the training set thus contain 600 images.

For the testing set, we only use 233 images from the

ICDAR-2013 test set. We also use 1071 Korean text

images from KAIST dataset, which has been acquired by

digital cameras, in zero-shot learning experiments. During

training, all images were scaled up or down to 256 × 256
pixels, regardless of their aspect ratio.

Implementation. We forked DeepLabV3+ and CycleGAN

from [29] and [15], respectively. Our text segmentation

implementation code for both DeepLabV3+ 1 and Cycle-

GAN 2 are written using PyTorch and they are publicly

available.

The training of DeepLabV3+ is based on defining pixels

into two classes: text and non-text. Using this supervised

1https://github.com/denabazazian/scene text segmentation
2https://github.com/morawi/TextGAN

learning technique, we consider the pixel-level annotations,

in binary format, as the ground-truth. Our DeepLabV3+ im-

plementation uses ResNet-101 [8] as a deep learning back-

bone. We train DeepLabV3+ for 100 epochs with a learning

rate of 0.0001 and using ADAM optimizer with AMSGrade

[22] enabled. We apply Softmax on each output channel,

then we obtain the predicted text pixels of the image by us-

ing argmax on the two classes. One can think of the output

of DeepLabV3+ as a (pseudo) probability map of text and

non-text.

In unsupervised learning, we start by breaking the corre-

spondence between each input image and its ground-truth,

i.e. the ground-truths are randomly sampled. For the train-

ing of CycleGAN, we consider the pixel-level annotations

in color as the ground-truth. We use a Residual-Net to build

the generators and discriminators of the CycleGAN, having

9 and 4 Residual blocks for the generators and discrimina-

tors, respectively. We use image negation, with a probabil-

ity of 0.33 as data augmentation during training. We use the

following values for the objective function in Eq. 1: using

λ�

g
= 1, λ�

g
= 1, λ�

c
= 10, λ�

c
= 10, λ�

i
= 5, and λ�

i
= 5.

Then, we train the CycleGAN from scratch for 300 epochs

with a learning rate of 0.0002 using ADAM optimizer with

AMSGrade [22] enabled. After the CycleGAN converges,

we only use the forward generator, GF�T , as a text segmen-

tor / extractor. During text segmentation, i.e. testing phase,

we use a threshold value 10 (for images ranged between

0 and 255) to binarize the textual images generated by the

CycleGAN. In addition, At testing time, the generator of

the CycleGAN, which is based on Residual Net, needs 13.4

milliseconds to segment text from a scene-text image, in-

cluding the time needed to read the image and place it on

the GPU.



Figure 4. Qualitative results of English (“rst four columns) from ICDAR2013 dataset and Korean (“fth trough eighth columns) from KAIST
dataset. Each column shows the input image, output of CycleGAN trained in an unsupervised manner, and DCNN text segmentation based
on DeepLabV3+ trained in a supervised manner. Korean text has been segmented in zero-shot learning,i.e. the trained models have never
seen the Korean text images. Best viewed in color.

Table 1. Text segmentation results using ICDAR-2013 dataset.

Method Recall% Precision% F1%
Lu et al. [17] 77.27 82.10 79.63
BUCT-YST[11] 74.56 81.75 77.99

S
up

er
vi

se
d

I2R-NUS[12] 73.57 79.04 76.21
USTB-FuStar[12] 69.58 74.45 71.93
NSTsegmentator[12] 68.41 63.95 66.10
OTCYMIST[12] 46.11 58.53 51.58
DeepLabV3+(ours)(1) 76.34 83.52 79.76
g+ (ours) 45.21 43.33 40.92

U
ns

up
er

vi
se

d

gŠ (ours) 45.32 48.02 43.45
gg+ (ours) 43.79 44.90 41.01
ggŠ (ours) 44.49 49.27 43.77
g± (ours) 81.94 46.77 56.28
gg± a (ours) 79.40 47.56 56.12
gg± b (ours) 72.55 52.57 57.33

(1) Our implementation of text segmentation via DeepLabV3+.

We explore the approaches that we propose in Eqs.6
and 7 to resolve the problem of dark text that the Cycle-
GAN model might not be able to produce, or being pro-
duced correctly but blended with the dark background of
the CycleGAN output. To calculate the segmentation per-
formance, we use Eqs.8, 9 and10. The results, shown in
Table1, indicate that our CycleGAN approach to learning
text segmentation in an unsupervised manner is a success.
We present results of one sample image in Figure3. Inter-
estingly, the performance difference, based on the average
F1 score, between other supervised methods and the un-
supervised CycleGAN that we are proposing is nontrivial.
However, our approach is completely unsupervised and has
signi“cant dimensions for further improvement. We illus-
trate some text segmentation samples in Figure4.

It must be noted that although we break the correspon-
dence between the images their pixel-wise annotation, we
are still using pixel-wise annotation ground-truth (via ran-
dom sampling) to train the proposed unsupervised Cycle-
GAN. We, thus, opt to take try another test using synthet-
ically generated text images on black background. These
synthetic images will only replace the ground-truth but the
real-world scene text images used for input will be the same.
The textual image synthesizer is very simple and its im-
plementation is available on [link to be added], and a few
synthetic text image samples are shown in Figure5. We
generated 12,000 text images and we applied (with proba-
bility of 0.5) random shearing and rotation of [-30 to 30]
degrees for each text image. The CycleGAN trained with
the original scene text images and the synthetically gener-
ated pixel-wise annotated text (the two datasets are totally
independent) achieves an averageF1 score of 52%, which
is slightly lower than the model that uses the original pixel-
level annotations as ground truth (we are still speaking of
unsupervised learning) that reached an averageF1 score of
56%. Still, generating synthetic textual images is a criti-
cal problem that needs further investigation due to the large
number of parameters one needs to consider,e.g. the num-
ber of words, word size, color distribution, location and ag-
gregation of words,etc.
Zero-shot learning. Zero-shot learning refers to using a
trained model to predict data from a distribution that is dif-
ferent from the one used in training the model,i.e. with-
out training the model using any instance of the new distri-
bution. We explore in this section the ability of our mod-
els to perform text segmentation on another script/language
that it has not seen during training, of which the script is
totally unknown to the models. We use the Korean lan-
guage dataset and we test text segmentation using 7 Cycle-








