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Abstract

The recent increase in the extensive use of digital

imaging technologies has brought with it a simultane-

ous demand for higher-resolution images. We develop a

novel “edge-informed” approach to single image super-

resolution (SISR). The SISR problem is reformulated as

an image inpainting task. We use a two-stage inpainting

model as a baseline for super-resolution and show its ef-

fectiveness for different scale factors (×2, ×4, ×8) com-

pared to basic interpolation schemes. This model is trained

using a joint optimization of image contents (texture and

color) and structures (edges). Quantitative and qualitative

comparisons are included and the proposed model is com-

pared with current state-of-the-art techniques. We show

that our method of decoupling structure and texture re-

construction improves the quality of the final reconstructed

high-resolution image.

1 Introduction

Super-Resolution (SR) is the task of inferring a high-

resolution (HR) image from one or more given low-

resolution (LR) images. SR plays an important role in

various image processing tasks with direct applications in

medical imaging, face recognition, satellite imaging, and

surveillance [7]. Many existing SR methods reconstruct

the HR image by fusing multiple instances of a LR image

with different perspectives. These are called Multi-Frame

Super-Resolution methods [8]. However, in most applica-

tions, only a single instance of the LR image is available

from which missing HR information needs to be recovered.

Single-Image Super-Resolution (SISR) is a challenging ill-

posed inverse problem [6] that normally requires prior in-

formation to restrict the solution space of the problem [37].

We take inspiration from a recent image inpainting tech-

nique introduced by Nazeri et al. [29] to propose a novel

approach to Single-Image Super-Resolution by reformulat-

ing the problem as an in-between pixels inpainting task. In-

creasing the resolution of a given LR image requires recov-

ery of pixel intensities in between every two adjacent pix-

els. The missing pixel intensities can be considered as miss-

ing regions of an image inpainting problem. Our inpaint-

ing task is modelled as a two stage process that separates

structural inpainting and textural inpainting to ensure high

frequency information is preserved in the recovered HR im-

age. The pipeline involves first creating a mask for every

extra row and column that needs to be filled in the recon-

struction of the HR image. The edge generation stage then

focuses on “hallucinating” edges in missing regions, and

the image completion stage uses the hallucinated edges as

prior information to estimate pixel intensities in the missing

regions.

(a) Ground Truth (b) LR Image (c) HR Estimate

Figure 1: Schematic illustration of the super-resolution

problem. (a) The ground truth image, (b) The image down-

sampled by a factor of two. Each four-pixel segment of

information on the left turn into one pixel in the middle, as

a result, the structure and orientation of edges are not dis-

tinguished anymore as the problem is ill-posed. (c) The re-

construction of a high-resolution image from one-pixel seg-

ments of information using bilinear interpolation. Most dis-

tinctive features in the original image are lost and the result

is blurry around the edges.

2 Related Work

Many approaches to SISR have been presented in literature.

These methods have been extensively organized by type ac-



(a) LR image (b) Upsample 2× (c) Upsample 4×

Figure 2: An illustration of the proposed inpainting-based

method for SISR. (a) The original LR image. (b) Upsam-

pling by a factor of two corresponds to interpolating one

pixel between every two adjacent pixels. We add an ex-

tra empty row and column for every row and column in

the ground truth image (shown in gray) which we fill by

an inpainting process. (c) Upsampling by a factor of four

corresponds to interpolating three pixels between every two

adjacent pixels where we can add three extra empty rows

and columns for every row and column in the ground truth

image to be inpainted.

cording to their image priors in a study by Yang et al. [42].

Prediction models generate HR images through predefined

mathematical functions. Examples include bilinear inter-

polation and bicubic interpolation [3], and Lanczos resam-

pling [5]. Edge-based methods learn priors from features

such as width of an edge [9], or parameter of a gradient pro-

file [39] to reconstruct the HR image. Statistical methods

exploit different image properties such as gradient distribu-

tion [36] to predict HR images. Patch-based methods use

exemplar patches from external datasets [2, 11] or the im-

age itself [19, 10] to learn mapping functions from LR to

HR.

Deep Learning-based methods have achieved great

performance on SISR using deep convolutional neural net-

works (CNN) with a per-pixel Euclidean loss [37, 4, 23].

Euclidean loss, however, is less effective to reconstruct

high-frequency structures such as edges and textures. Re-

cently Johnson et al. [21] proposed feed-forward CNN us-

ing a perceptual loss. In particular, they used a pre-trained

VGG network [38] to extract high-level features from an

image effectively separating content and style. Their model

was trained with a joint optimization of Feature reconstruc-

tion loss and Style reconstruction loss and achieved state-

of-the-art results on SISR for challenging ×8 magnification

factor. To encourage spatial smoothness and mitigate the

checkerboard artifact [31] of using feature reconstruction

loss, they introduced total variation regularization [33] to

their model objective. Sajjadi et al. [35] proposed to use

style loss in a patch-wise fashion to reduce the checkerboard

artifact and enforce locally similar textures between the HR

and ground truth images. They also used an adversarial loss

to produce sharp results and further improve SISR results.

Adversarial loss has also shown to be very effective in pro-

ducing realistically synthesized high-frequency textures for

SISR [25, 16, 32], however, the results of these GAN-based

approaches tend to include less meaningful high-frequency

noise around the edges that is unrelated to the input image

[32]. Our work herein is inspired by the model proposed by

Liu et al. [27] which extended their image inpainting frame-

work to image super-resolution tasks by offsetting pixels

and inserting holes. We present a SISR model that simulta-

neously improves structure, texture, and color to generate a

photo-realistic high-resolution image.

3 Model

We propose a Single Image Super-Resolution framework

based on a two stage adversarial model [15] consisting of

an edge enhancement step and an image completion step.

Both the edge enhancement and image completion steps

consist of their own generator/discriminator pair that de-

couples SISR into two separate problems i.e. structure and

texture. Let G1 and D1 be the generator and discrimina-

tor for the edge enhancement step, and G2 and D2 be the

generator and discriminator for the image completion step.

Our edge enhancement and image completion generators

are built from encoders that downsample twice, followed

by eight residual blocks [17], and decoders that upsample

to the original input size. We use dilated convolutions in

our residual layers. Our generators follow similar architec-

tures to the method proposed by Johnson et al. [21] shown

to achieve superior results for super-resolution [35, 14],

image-to-image translation [45], and style transfer. Our dis-

criminator follows the architecture of a 70× 70 PatchGAN

[20, 45] that classifies overlapping 70×70 image patches as

real or fake. We use instance normalization [40] across all

layers of the network, which normalizes across the spatial

dimension to generate qualitatively superior images during

training and at test time.

3.1 Edge Enhancement

Our edge enhancement stage boosts the edges obtained

from a low-resolution image to yield a high-resolution edge

map. Let ILR and I
HR be the low-resolution and high-

resolution images. Their corresponding edge maps will

be denoted as C
LR and C

HR respectively and I
LR
gray is a

grayscale counterpart of the low-resolution image. We add

a nearest-neighbor interpolation module at the beginning

of the network to resize the low-resolution image and its

Canny edge-map to the same size as the HR image. The

edge enhancement network G1 predicts the high-resolution

edge map

Cpred = G1(I
LR
gray,C

LR), (1)



Figure 3: Summary of our proposed method. G1 takes a low resolution greyscale image I
LR
gray and its corresponding low

resolution edge map C
LR interpolated to the desired high resolution image size and outputs a high resolution edge map

Cpred. G2 takes the high resolution edge map generated by G1 as well as an incomplete HR image Igt created by offsetting

the pixels of the ground truth LR image using a fixed fractionally strided convolution kernel. The output is the high resolution

image Ipred.

where I
LR
gray and C

LR are the inputs to the network. The

hinge variant [28] of the adversarial loss objective over the

generator and discriminator are defined as

LG1
= −EIgray

[D1(Cpred, Igray)] , (2)

LD1
= E(Cgt,Igray) [max(0, 1−D1(Cgt, Igray))]

+ EIgray
[max(0, 1 +D1(Cpred, Igray))] . (3)

We also include a feature matching loss objective LFM [41]

to our edge enhancement generator which compares activa-

tion maps in the intermediate layers of the discriminator.

This stabilizes the training process by forcing the genera-

tor to produce results with representations that are similar

to real images. Perceptual loss [21, 13, 12] has also been

known to accomplish this same task using a pretrained VGG

network. However, since the VGG network is not trained to

produce edge information, it fails to capture the result that

we seek in the initial stage. The feature matching loss is

defined as

LFM = E

[

∑

i

1

Ni

∥

∥

∥
D

(i)
1 (Cgt)−D

(i)
1 (Cpred)

∥

∥

∥

1

]

, (4)

where Ni is the number of elements in the i’th activation

layer, and D
(i)
1 is the activation in the i’th layer of the dis-

criminator. Spectral normalization (SN) [28] further sta-

bilizes training by scaling down weight matrices by their

respective largest singular values, effectively restricting the

Lipschitz constant of the network to one. Although this was

originally proposed to be used only on the discriminator,

recent works [43, 30] suggest that the generator can also

benefit from SN by suppressing sudden changes of parame-

ter and gradient values. We apply SN to both the generator

and discriminator. The final joint loss objective for G1 with

regularization parameters λG1
and λFM thus becomes

JG1
= λG1

LG1
+ λFMLFM , (5)

where we choose λG1
= 1 and λFM = 10 for all experi-

ments.

3.2 Image Completion

The image completion stage upscales the LR image to an

incomplete HR image as input to G2 using a fixed fraction-

ally strided convolution kernel. This has the effect of adding

empty rows and columns in-between pixels. To offset the

pixels and increase the size of an image by a factor of s we

use an s × s convolution kernel with stride of 1/s. Let K
denote a fixed strided convolution kernel and Î

HR represent

the high-resolution image being constructed by offsetting

the pixels from the LR image.

K2 =

[

1 0
0 0

]

K4 =

⎡

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎦

Figure 4: Fixed fractionally strided convolution kernels to

offset the pixels of the LR image and create an incomplete

HR image for ×2 and ×4 SISR factors.

Î
HR = I

LR ∗K. (6)

The HR image is then generated using G2:

I(pred) = G2(̂I
HR,C(pred)). (7)

We proceed to train G2 with another joint loss consisting of

an l1 loss, hinge loss, perceptual loss, and style loss. The

hinge variant of the adversarial loss follows equations 2 and

3

LG2
= −ECpred

[D2(Ipred,Cpred)] , (8)

LD2
= E(Igt,Cpred) [max(0, 1−D2(Igt,Cpred))]

+ ECpred
[max(0, 1 +D2(Ipred,Cpred))] . (9)



We include style loss Lstyle and perceptual loss Lperc [13,

21] in our joint loss objective to further supplement training.

Perceptual loss minimizes the Manhattan distance between

feature maps generated from intermediate layers of VGG-

19 trained on the ImageNet dataset [34]. This has the effect

of encouraging perceptually similar predictions with ground

truth labels. Perceptual loss is defined as

Lperc = E

[

∑

i

1

Ni

‖φi(Igt)− φi(Ipred)‖1

]

, (10)

where Ni is the number of elements in the i’th activation

of VGG-19. While perceptual loss encourages perceptual

similarities between ground truth images and predictions,

style loss encourages texture similarities by minimizing the

Manhattan distance between the Gram matrices of the inter-

mediate feature maps. The Gram matrix of feature map φi is

represented by Gφ
j [13] and distributes spatial information

of texture, shape, and style. Style loss is defined as

Lstyle = E

⎡

⎣

∑

j

‖Gφ
j (Igt)−Gφ

j (Ipred)‖1

⎤

⎦ . (11)

Style loss was shown by Sajjadi et al. [35] to success-

fully mitigate the “checkerboard” artifact caused by trans-

pose convolutions [31]. For both style and perceptual loss

we extract feature maps from relu1 1, relu2 1, relu3 1,

relu4 1 and relu5 1 of VGG-19. We do not use feature

matching loss in the image completion stage. While the

feature matching loss is a regularizer to the adversarial loss

in the edge generator, the perceptual loss used in this stage

has the same effect while it is shown to be more effective

loss for image generation tasks [29, 35, 21, 21]. Thus the

complete joint loss objective is

JG2
= λ�1L�1 + λG2

LG2
+ λpLperc + λsLstyle. (12)

In all of our experiments we choose to train with parameters

λ�1 = 1, λG2
= λp = 0.1, and λs = 250 to effectively min-

imize the reconstruction, style, perceptual, and adversarial

loss to generate a photo-realistic high-resolution image.

4 Experiments

4.1 Training Setup

To train G1, we generate edge maps using Canny edge de-

tector [1]. We can control the level of detail in the LR

edge map by changing the Gaussian filter smoothing pa-

rameter σ. For our purposes, we found σ ≈ 2 yields the

best results. All of our experiments are implemented in

PyTorch, with the HR images fixed at 512 × 512 and the

LR input scaled accordingly based on the zooming factor.

We choose a batch size of eight during training. The mod-

els of both stages were optimized using Adam optimizer

[24] with β1 = 0 and β2 = 0.9. In our experiments, we

didn’t find any improvement by jointly optimizing G1 and

G2, also we are limited to a smaller batch size due to the

large memory footprint of the joint optimization, hence the

generators from each stage are trained separately. We train

G1 using a learning rate of 10−4 with Canny edges until the

loss plateaus. We lower the learning rate to 10−5 and con-

tinue training until convergence. We then freeze the weights

of G1 and continue to train G2 with the same learning rates.

4.2 Datasets

Our proposed models are evaluated on the following pub-

licly available datasets.

• Celeb-HQ [22]. High-quality version of the CelebA

dataset with 30K images.

https://github.com/tkarras/

progressive_growing_of_gans

• Places2 [44]. More than 10 million images comprising

400+ unique scene categories.

http://places2.csail.mit.edu/

• Set5, Set14, BSDS100, Urban100 [18]. Standard

SISR evaluation datasets.

http://vllab.ucmerced.edu/wlai24/

LapSRN/

Results are compared against the current state-of-the-art

methods both qualitatively and quantitatively.

4.3 Qualitative Evaluation

Figures 5 and 6 show results of the proposed SISR method

for scale factors of ×4 and ×8 respectively. For visual-

ization purposes, the LR image is resized using nearest-

neighbor interpolation. All HR images are cropped at

512× 512, which means the LR images are 128× 128 and

64 × 64 for scale factors of ×4 and ×8 respectively. We

obtain the LR images by blurring the HR with a Gaussian

kernel of width σ = 1 followed by downsampling with the

corresponding zooming scale factor. The results are com-

pared against bicubic interpolation and our proposed model

without the edge generation network as a baseline. Despite

having almost high PSNR/SSIM, the baseline model pro-

duces blurry results around the edges while our full model

(with edge-maps) remains faithful to the high-frequency

edge data and produces sharp photorealistic images.



Ground Truth LR Bicubic Baseline Ours

Figure 5: Comparison of qualitative results of images for ×4 scale factor SISR cropped at 512× 512. Left to right: Ground

Truth HR, LR image upscaled using nearest-neighbor interpolation, SISR using bicubic interpolation, Baseline (no edge

data), Ours (Full Model)



Ground Truth LR Bicubic Baseline Ours

Figure 6: Comparison of qualitative results of images for ×8 scale factor SISR cropped at 512× 512. Left to right: Ground

Truth HR, LR image upscaled using nearest-neighbor interpolation, SISR using bicubic interpolation, Baseline (no edge

data), Ours (Full Model)



Dataset Bicubic ENet EDSR Baseline Ours
P

S
N

R

×2

Set5 33.66 33.89 38.20 27.32 33.60

Set14 30.24 30.45 34.02 24.86 29.24

BSD100 29.56 28.30 32.37 23.97 28.12

Celeb-HQ 33.25 - - 31.33 32.12

×4

Set5 28.42 28.56 32.62 24.22 28.59

Set14 25.99 25.77 28.94 21.56 25.19

BSD100 25.96 24.93 27.79 20.78 24.25

Celeb-HQ 29.59 - - 27.94 28.23

×8

Set5 23.80 - - 19.32 23.73

Set14 22.37 - - 18.47 21.44

BSD100 22.11 - - 18.65 21.63

Celeb-HQ 26.66 - - 25.46 25.56

S
S

IM

×2

Set5 0.930 0.928 0.961 0.974 0.985

Set14 0.869 0.862 0.920 0.930 0.954

BSD100 0.843 0.873 0.902 0.909 0.932

Celeb-HQ 0.967 - - 0.957 0.968

×4

Set5 0.810 0.809 0.898 0.929 0.965

Set14 0.703 0.678 0.790 0.832 0.894

BSD100 0.668 0.627 0.744 0.773 0.851

Celeb-HQ 0.834 - - 0.910 0.912

×8

Set5 0.646 - - 0.801 0.904

Set14 0.552 - - 0.708 0.793

BSD100 0.532 - - 0.663 0752

Celeb-HQ 0.782 - - 0.841 0.857

Table 1: Comparison of PSNR and SSIM for ×2, ×4, and ×8 factor SISR over Set5, Set14, BSD100, and Celeb-HQ datasets

with bicubic interpolation, ENet [35], EDSR [26], and baseline (without edge-data). The best result of each row is boldfaced.

4.4 Quantitative Evaluation

We evaluate our model using PSNR and SSIM for ×2, ×4
and ×8 SISR scale factors. Table 1 shows the performance

of our model against bicubic interpolation and current state

of the art SISR models over datasets Set5, Set14, BSD100,

and Celeb-HQ. Statistics for competing models for ×2 and

×4 SR were obtained from their respective papers where

available. Results for a challenging case of ×8 are only

compared against bicubic interpolation. Note that the PSNR

in our results is lower than competing models. In particular,

EDSR by Lim et al. [26] has achieved the best PSNR for

every dataset. However, their model is only trained with

per-pixel �1 loss and fails to reconstruct sharp edges despite

having higher PSNR. Similar results in recent research [21,

35] show that PSNR favors smooth/blurry results.

4.5 Accuracy of Edge Generator

Table 2 shows the accuracy of our edge enhancer G1 for

Celeb-HQ and Places2 datasets for the Single Image Super-

Resolution task. We measure precision and recall for vari-

ous scale factors of SISR. In all experiments, the width of

the Gaussian smoothing filter σ = 2 for Canny edge detec-

tion.



Ground Truth LR ×4 SISR

Figure 7: Comparison of edge prediction results for ×4 scale factor SISR cropped at 512× 512. Left to right: Ground Truth

HR, HR edge-map, LR image upscaled using nearest-neighbor interpolation, LR edge-map upscaled using nearest-neighbor

interpolation, ×4 SISR, ×4 predicted edge-map SISR.

Scale Precision Recall

C
el

eb
-H

Q

×2 74.27 73.21

×4 45.14 43.04

×8 23.23 19.09

P
la

ce
s2 ×2 79.18 80.24

×4 60.80 58.19

×8 31.06 23.93

Table 2: Quantitative performance of edge enhancer for

Single Image Super-Resolution trained on Canny edges

with σ = 2 for 512 × 512 images. Statistics are calculated

over the standard test sets of each dataset.

Figure 7 shows results of the edge prediction stage for ×4
scale factor. HR images are cropped at 512 × 512 and for

visualization purposes, the LR image and its edge-map are

resized using nearest-neighbor interpolation.

5 Discussion and Future Work

We propose a new structure-driven deep learning model

for Single Image Super-Resolution (SISR) by recasting the

problem as an in-between pixels inpainting task. One ben-

efit of this approach over most deep-learning based SISR

models is that we only have a unified model that can be

used for different SISR zooming scales. Most deep-learning

based SISR models take the LR image as input and generate

the HR by in-network upsampling layers, given a zooming

factor. For each different zooming factor, different network

architecture and training is required. On the other hand, our

model takes the LR image and adds empty space between

pixels before using it as input to the network. Our pro-

posed model learns to fill in the missing pixels by relying

on available edge information to create the high-resolution

image and effectively applies parameter sharing for differ-

ent scales of SISR. Quantitative results show the effective-

ness of the structure-guided inpainting model for the SISR

problem where it achieves state-of-the-art results on stan-

dard benchmarks.

One shortcoming of the proposed inpainting-based SISR

model is that it requires minimizing two disjoint optimiz-

ing algorithms. A better approach is to incorporate the edge

generation stage into the inpainting model’s objective. This

model could be trained using a joint optimization of im-

age contents and structures and potentially outperform the

disjoint two-stage optimization algorithm computationally

while preserving sharp details of the image.

Our method leads to an interesting direction, which

raises the question that what other information could

be learned from the original dataset to help the super-

resolution process. Our source code is available at:

https://github.com/knazeri/edge-informed-sisr
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