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Abstract

Autonomous driving (AD) programs today primarily de-

pend on one or the other form of supervised Deep Learning

(DL) models for their behavioral success. However, these

DL models are only as good as the data on which they are

trained, and their success depends immensely on their train-

ing data. Hence it is imperative that we create datasets of

good quality. However, the process of collecting this real-

world driving data and the infrastructure needed to evalu-

ate and manage this large data is commonly unspoken and

is challenging. To address this issue, we have developed an

open-source framework and infrastructure to capture, eval-

uate, and maintain such multi-sensor data. In this paper, we

discuss the motive for this framework, a process for evalua-

tion and quality analysis, insights on data storage, distribu-

tion and management for large multimodal data and the key

lessons learned collecting and maintaining huge volumes of

data from long driving distances.

1. Introduction

Raw data collection for today’s AD standards demands

the use of multiple visual, positional, and laser sensors

for the perception of the world around the vehicle. These

sensors, when coupled together, produce large volumes of

high-resolution data possibly in the order of few hundred

Gigabytes (GB) per hour. Correspondingly, capturing this

data in real-time requires high disk write speeds of several

hundred Megabytes per second (MB/s). If data collection

spans multiple hours or multiple days, managing the enor-

mous amounts of data generated prove to be a complex chal-

lenge, pushing the boundaries of today’s storage through-

put limits. This captured data may have to be transferred,

stored, and made accessible to multiple internal and exter-

nal participants for various post-processing activities. The

real-time nature of this data imposes strict requirements for

data coherency at all times. Maintenance of such large-scale

data soon becomes a technical and a logistical nightmare.

This collected raw data may incur several problems such

as incoherent data, corrupted data frames, invalid metadata,

incorrect initializations, among others. For example, data

from the camera might not be captured at the required fps,

the orientation of the LiDAR sensor might be wrong, or the

GPS might have lost its fix on the position during data cap-

ture. Such issues must be thoroughly inspected in the raw

data before it is sent for post-processing. However, there

are no well-defined steps and processes currently available

for analyzing such multimodal data. Besides, since most

of these data collection setups are custom made for specific

requirements, this work addresses the following key chal-

lenges in an AD datasets quality analysis process that can

be applied to a wide range of data collection requirements:

i Analysis and validation of multimodal sensor data.

ii Visualization of sensor-specific data.

iii Timeseries analysis of sensor data.

1.1. Related and Prior Work

There are several multimodal driving datasets available

today. From the popular KITTI[3], and Cityscapes[2] to the

latest BDD100K[8], ApolloScape[4] and IDD[7] datasets.

Moreover, each year, we see more such datasets being re-

leased. [2] and [8] use HD front-facing cameras along with

positional sensors, whereas [3] and [4] collect data from

at least four cameras along with high-density laser scan-

ners and positional sensors. Nuscenes [1] data collection

also constitutes of five surround radars along with six cam-

eras and a LiDAR. The processed and published datasets

from these works are in the order of a few tens of GBs.

The raw data collected to produce these processed datasets

would be several times more. Apart from collecting data di-

rectly from sensors, datasets like Mapillary [6] are created

by collecting a large number of images scraped from the in-

ternet. However, most of these works describe only their

sensor configuration and only provide their final dataset but

do not describe their raw data evaluation and maintenance

pipelines. Geiger et al.[3] describe the use of a custom



database for their data collection and their process for creat-

ing ground truths, but do not provide any details about their

process for validating their raw data collection. Huang et

al. [4] provide an extensive set of tools for data collection,

and sensor calibrations but do not specify any details for

systematically visualizing and validating the raw data. Ja-

cob and Rabha [5] build on the works of Huang et al. [4]

and provide tools for large scale data collection, but does

not include any utilities for data visualization and evalua-

tion. From all of these prior work, we see that ROS (Robot

Operating System) 1 remains to be the underlying frame-

work for all of such robotic multi-sensor data capture. The

captured data is then visualized locally from individual ros-

bags using RVIZ, a visualization tool from ROS. Recently,

UBER and CRUISE have released their visualization tools,

Autonomous Visualization System (AVS)2 and WebViz3,

respectively. However, AVS does not operate on the ros-

bag data format and defines the XVIZ protocol for its data

operations. While WebViz supports rosbag format, it can

handle small bag files of several hundred MBs but becomes

unusable to render large bag files of several hundred GBs,

as seen in typical raw data-capture scenarios.

Although these frameworks support certain multimodal

data visualization, we are not aware of any work that visu-

alizes and defines a standardized process to evaluate these

multimodal data, especially frame-by-frame for large real-

world data, as needed for dataset creation tasks. Addressing

these shortcomings is the prime motivation for our work.

The rest of the paper is organized as follows: In section

2, we discuss the challenges faced in data capture, evalua-

tion, and maintenance. Section 3 describes our framework

design and infrastructure. Section 4 describes our data eval-

uation process in detail, and section 5 discusses the short-

comings and scope for improvement.

2. Challenges

2.1. Data Capturing and Processing

A typical setup for autonomous driving data collection

(e.g. nuScenes[1] and Apolloscape[4] platforms, and setup

used by Jacob and Rabha[5]) constitutes multiple monoc-

ular and stereo cameras, LiDAR, RADARs, GPS, and any

vehicle (On-Board Diagnostics) OBD sensors. Each sen-

sor device must be accurately calibrated for its intrinsic and

extrinsic params. Intrinsic calibration for each sensor type

is generally provided by the manufacturer, but accurate ex-

trinsic calibrations, for example, lidar-to-cams, pose several

challenges and is still considered an open research problem

in itself. For a typical data collection sensor configuration,

as shown in Table 1, the data generated will be in the order

1ROS - https://www.ros.org
2Uber AVS - https://www.avs.auto
3Cruise WebViz - https://www.webviz.io

Sensor Resolution FPS Count

Stereo Cam 3840x1080 15 4

Mono Cam 1280x600 30 2

LiDAR 16 channel 10 1

GPS - 10 1

OBD - 1 1

Table 1. Sensor configuration for a typical multimodal AD data

collection platform used in [5].

Camera Stereo Mono

Resolution 1920x1080 1280x600

Channel 3 3

FPS 15 30

Cams per Rig 2 2

Rigs 4 1

Data rate MB/s 632.81 131.83

Total data rate 764.65 MB/s

Table 2. Data rate for a typical multi-camera AD data capture plat-

form show in Table 1.

of 4TB per hour due to multiple cameras generating con-

tinuous high-resolution images and may require data write

speeds of around 800MB/s, as shown in Table 2. Given

an on-board computer with limited storage for data collec-

tion, this high throughput requirement limits the amount of

continuous data capture possible on the on-board computer

before having to swap storage disks. Moreover, all of these

sensors operate at different FPS. Although some of the sen-

sors, like PointGrey cameras, can be synchronized with an

external signal, other sensors (e.g. GPS, USB Cams, OBD)

cannot be synchronized accurately with external control sig-

nals. Therefore real-time synchronization of these sensor

data, which is ideal for analysis, becomes extremely chal-

lenging.

2.2. Data Evaluation

Given the multimodal nature of the captured data, each

sensor data must be analyzed individually and also, along

with other sensor data for correctness. For example, each

camera frame needs to analyzed individually for the qual-

ity of the image and must also be analyzed with its corre-

sponding LiDAR, GPS, and other sensor frames to ensure

the orientation and time synchronization is correct. Also,

the recorded data must be analyzed for other potential is-

sues like frame loss, drop in frame rates, data corruption

between frames. However, unlike camera images, not all

of the sensor data can be visualized directly for human in-

terpretation. Moreover, all of the sensor data from a given

instance of time must be visualized together to make mean-

ingful correlations.



2.3. Data Archiving and Distribution

This type of extensive data collection from AD platforms

requires large storage of data. Generally, such large data

is stored on distributed network file systems (NFS) for ef-

ficient data maintenance and can be shared among teams

for multiple tasks (e.g. validation, annotations, analytics).

However, since data is predominantly collected as large ros-

bag files, typically of several GBs for a few minutes drive,

accessing these rosbag files over the network has a substan-

tial latency of several minutes. Also, in many cases, this

data from rosbags need to be transferred over web inter-

faces for tasks like visual evaluation, labeling, among oth-

ers. Given the high network access overhead for large ros-

bags, it becomes unusable for such tasks. Apart from this,

even for tasks like querying and retrieval of specific data,

for example, searching a recording from a specific time of

a specific day, becomes extremely challenging. Therefore

storing such large rosbag recordings on the network is an

unacceptable solution and requires the need for more opti-

mal archival mechanisms.

3. Infrastructure

3.1. Multimodal Data Summary

Our framework can handle multimodal data from mul-

tiple cameras, LiDAR, GPS, and OBD sensors. They are

stored as images, pointclouds, latitude & longitude, vehi-

cle properties, respectively. The data are recorded in ros-

bag formats from the recording platform and then post-

processed for proper data extraction and analysis. Figure

1 provides an example of these data.

Camera Data - Most cameras used in the AD platform pro-

vides a stream of RGB images. Additionally, there may be

other types of cameras (e.g. thermal cameras, event cam-

eras, greyscale cameras) that provide similar forms of data.

Figure 1 shows a sample of this raw image data converted

into a JPEG format for visualizations.

LiDAR Pointcloud Data - The LiDAR provides a sequence

of points in a 3D coordinate system constituting of x,y,z co-

ordinates along with ring and intensity values. Figure 1 de-

picts a meaningful visualization of a chosen frame by plot-

ting these sequence of points on a 3D graph

GPS Data - The GPS provides a sequence of points con-

taining latitude and longitude coordinates. Figure 1 de-

picts a meaningful visualization by plotting these points on

a map.

OBD Data - The OBD data obtained from the vehicle’s

CAN bus consists of vehicle properties like gear, rpm,

speed, steering angle, throttle position, and clutch lever

value.

Figure 1. Visual representtaion of an example multimodal data.

Top: RGB image from a stereo camera. Bottom: GPS coordinates

plotted on a map and LiDAR pointclouds plotted in a 3D graph.

3.2. Data Collection and Processing

The system defined by Jacob and Rabha [5] is used for

data collection. We improve upon their work by adding

support to format and extract data corresponding to our in-

frastructure. For each recording, the raw images, LiDAR

pointclouds, GPS coordinates, and OBD param along with

timestamps of each frame are extracted. The recording du-

ration, sensor topics, and the sampling frequency is also ex-

tracted from the data recordings. As part of post-processing

step, the data from all the sensors are aligned to the front

camera images. This data alignment is required to analyze

and curate datasets from this raw data. The recording times-

tamp from each data frame is used to align it with the cor-

responding nearest timestamp of the front camera image as

the reference.

3.3. Data Archival

Data from each recording needs to be stored and orga-

nized according to their location and time of recording to

perform data queries when required. The data is hence

stored in a hierarchy, as shown in Figure 2.

This data hierarchy provides a unique path to address

each recording. The recordings are spread over multiple

NFS servers for efficient maintenance. A database is created

by indexing the metadata of each recorded bag along with

its NFS storage path. This database is updated with each

new data recording and provides a quick and easy mecha-

nism to search for recordings.

3.4. Web Dashboard and Services

The large data spread across a distributed NFS is not eas-

ily browsable. Accessing each of the extracted recordings

on a local system becomes an exceedingly slow task. Also,

this extracted data would now need to be accessed by multi-
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Figure 2. Data storage hierarchy.

ple teams for various evaluation tasks. Therefore, With the

data extracted and stored as defined in the previous sections,

we build a web dashboard to visualize and evaluate all the

recorded data. This web dashboard provides a facility to see

all the sensors data of each recording together in one view

frame-by-frame and for multiple users simultaneously. The

dashboard utilizes the database with each recording’s meta-

data to quickly lookup a requested recording. Instead of

reading large rosbag files each time to find required data

frames, it accesses the extracted data from each bag to ren-

der it on the webpage as requested. This removes the entire

read overhead time of using rosbags, and raw data is ren-

dered instantaneously for viewing. Additionally, this facil-

ity enables us to perform multiple data analytics required

for the dataset. Along with the dashboard, the infrastruc-

ture (Figure 3) provides APIs to access and query all of

the recorded data. This API framework enables developers

to build additional services, like color corrections, object

recognitions in a given frame, etc. on the datasets.

The following sections show this web dashboard in de-

tail and use its functionality for evaluating raw data record-

ings.

4. Data Evaluation

Once the recorded data is extracted and updated in the

database, it is made available for access on the dashboard.

The following steps are performed using the dashboard’s

features to evaluate and assess each data recording system-

atically.

i Metadata analysis - Validates the coherency of the

recorded bag file.

ii Route map analysis - Validates GPS recordings and

ensures data capture happened in the required regions.

iii Timeseries and jitter graph analysis - Inspects

recordings for data loss and irregularities in sensor data

Figure 3. Dashboard component to analyze image frames. This

example shows an instance of images from all camera mounted on

a typical AD data collection platform configured shown in Table 1

by analyzing the graphs of the data timestamps and

time between consecutive data frames (Jitter).

iv Video playback - Inspects camera recordings for vi-

sual parameters like lighting conditions, route types,

diversity of scenes.

v Images - Inspects subsampled/specific camera images

for frame corruptions.

vi LiDAR - Inspect LiDAR pointclouds for orientation

correctness and data corruption.

vii OBD - Evaluate OBD data frames from the vehicle’s

CAN bus for the correctness of vehicle parameters.

4.1. Metadata

First, the metadata of the rosbag from a selected record-

ing (Figure 4) is verified for the date of collection, duration,

start and end times, and the size of the data. The date and

the timestamps should match correctly. Any data collec-

tion platform with a fixed sensor configuration captures raw

data of a specific size for a specific duration of time. For

example, with sensor configuration shown in Table 1, we

have observed that a drive of 2 minutes should correspond

to around 60GB of rosbag file. Therefore, the size of the

chosen rosbag should align with the expected size scale to

be termed as good data. Recordings not corresponding to

this size is an indication of bad data. Along with this meta-

data, the list of recorded data types (Figure 4) is analyzed to

see if all the sensors data are present and if their correspond-

ing fps matches the sensor configuration. All the predefined

data types corresponding to the sensor configuration should



File : 2017-11-01_17-24-53.bag

Duration : 101.532182 sec

Start time : Wed Nov 01 2017 17:24:53

End time : Wed Nov 01 2017 17:26:35

Size : 48.6 GB [52169457806 bytes]

Total msgs : 61512

Sensor Freq Data_Type

/frontCam/info 15.0 CameraInfo

/frontCam/raw 15.0 Image

/gps/fix 42.0 NavSatFix

/imu/data 42.0 Imu

/lidar/points 9.9 PointCloud2

/rearCam/info 15.0 CameraInfo

/rearCam/raw 15.0 Image

/leftCam/info 15.0 CameraInfo

/leftCam/raw 15.0 Image

/rightCam/info 15.0 CameraInfo

/rightCam/raw 15.0 Image

Figure 4. Example metadata of a rosbag recording from a typical

AD sensor configuration shown in Table 1. A short 2 minutes drive

with this type of sensor configuration leads to around 60 GB of raw

data.

be present with their configured fps. Any missing data types

or lower fps is an indication of missing or corrupted data.

4.2. Route Map

The next step is to verify the route to ensure the cor-

rectness of GPS data (lat & lng) recording. Data collec-

tion drives are mostly pre-planned to capture specific di-

verse conditions and distances, e.g. nuScenes([1]) perform

data collection in Boston and Singapore, and emphasizes di-

versity in terms of vegetation, vehicles, buildings, and traf-

fic conditions. Each data recording happens in predefined

routes to capture such variations in data. When GPS coor-

dinates from the data are mapped (Figure 5), the path driven

should correspond to the predefined route to be termed as

good data. We plot the route on maps and visually ver-

ify any discrepancies. Also, the distance is calculated from

these coordinate points, and this calculated distance should

match the manual observation recorded by the data collec-

tion team.

Figure 5. GPS coordinates plotted on a map with distance calcu-

lated from the start to the end points.

Figure 6. Sensor timeseries graphs shwoing examples of good data

recording (top) and bad data recording (bottom).

4.3. Timeseries Graph

The next step is to analyze the time-series graph of sen-

sory data (Figure 6). By plotting the timestamps of each

data frame from all the sensors, the graph helps us to verify

if all the sensors start and stop at the same time, and cap-

tured data during the entire period of recording. Absence of

any data will show up as a gap in the plot, which could indi-

cate if the sensor started late or closed early or if it stopped

functioning during the recording period. For good and us-

able data, the timeline for each sensor in the graph should

start and stop around the same time, with a few milliseconds

of acceptable error.

Figure 6 shows an example graph of a bad data recording

where several sensors have stopped recording before others,

and the LiDAR has missed some frames in between.

4.4. Jitter Analysis

The next step is to verify if the sensor’s data capture rate

is uniform and if all the sensors captured at the expected

sampling rate. The jitter graph (Figure 7) plots the time dif-

ference between consecutive sensor messages and denotes

any jitter as spikes in the graph. These spikes in the graphs

are analyzed for all sensors and any spike exceeding the er-

ror threshold denotes bad data segments. Figure 7 shows an

example of jitter graphs for good and bad data recordings.

The good data graph has no spikes exceeding 150 millisec-



Figure 7. Sensors jitter graph showing examples of good data

recording (top) and bad data recording (bottom).

onds for sensors operating at fps ≥ 10, thereby indicating

no data loss. The bad data graph example shows multiple

high spikes in OBD data, which indicates that data loss oc-

curred in those time intervals.

4.5. Video Playback

The previous steps verify the integrity of the data. The

next step is to check if the camera data playback is good,

i.e., there is no corruption in the camera frames; the light-

ing condition is acceptable; frames are not spliced, etc. To

inspect this, videos created from camera frames during data

extraction is viewed and analyzed. The web dashboard pro-

vides facilities for viewing and annotating videos from mul-

tiple cameras at multiple speeds. For a quick playback, the

videos are played manually at 10x playback rate and in-

spected for anomalies. If none exists, the data is termed

as good. (Figure 8)

4.6. Image Frames

If the video analysis of the front camera shows good data,

then the images captured from different cameras are ana-

lyzed. Since it is cumbersome to go through all the frames

of all the cameras, the images are inspected at 10% inter-

vals of the total number of images to check for any anoma-

lies. The web dashboard provides facilities to view camera

frames at multiple ranges (Figure 3). The camera frames

Figure 8. Video playback component of the dashboard.

Figure 9. 3D plot of a LiDAR frame.

are analyzed for anomalies like frame overlaps, color cor-

ruption, bad exposures, etc. If no anomalies are detected,

we can consider the data as good.

4.7. LiDAR Point-clouds

Next, the LiDAR pointclouds from the recording are ver-

ified. The LiDAR visualization component plots the point

clouds in a 3D graph, which provides a visual rendering

of the data (Figure 9). These 3D plots of the pointclouds

enable the validation of parameters like the horizontal &

vertical resolution, the angle of orientation, etc. If no such

anomalies are detected, then the data is termed as good.

4.8. OBD Data

As the last step, the OBD data containing the vehicle pa-

rameters (gear, rpm, steering angle, throttle, etc) is verified.

Sample OBD data from one of the recordings is as shown

in Listing 10.

Verification is done using the graph plots of the OBD

data, as shown in Figures 11-14. Plotting the raw OBD data

(Figure11) does not provide a meaningful interpretation of

the data as the data range for each for feature ranges from

10s to 1000s. Features are hence normalized and plotted

for verification, as shown in Figure 12. This normalized

graph enables us to interpret the data better. For example,



Figure 10. Example of OBD data containing vehicle parameters.

Figure 11. Raw OBD data plot example.

in Figure 12, we can see the speed, and the rpm drops simul-

taneously towards the end of the plot. This drop indicates

the vehicle coming to a stop/halt. However, if the rpm and

speed do not change proportionally, then it is an indication

of malformed/bad data. Similarly, the gear value can also

be interpreted and verified accordingly. In this example, as

the vehicle comes to a halt/stop, the gear should return to

neutral. This transition is seen towards the end of the plot,

where the high gear value drops to neutral along with rpm

and speed.

The jitter plot of the OBD data (Figure 13) helps to per-

form a sanity check of our interpretation of the data. In this

example, the large spikes in the rpm towards the end of the

plot aligns with the steep change in rpm and speed as the

vehicle comes to a halt/stop. If there were no spikes in this

timeslice, or if there were irregular spikes in any other part

of the previous time windows, then it is an indication of

malformed/bad data.

Apart from the validating the sanity of OBD data, plot-

ting these features also enables us to identify and interpret

undefined pattern in the data. For example, Figure 14 shows

the plot of rpm and gear data containing discontinuities in

gear data when rpm value drops below 1000. Although this

Figure 12. Normalized OBD data plot example.

Figure 13. Jitter plot example of OBD data.

discontinuity initially seems like the loss of gear data dur-

ing data collection, since it corresponds to the duration in

which the rpm also drops below 1000 simultaneously, this

discontinuity corresponds to the gear value for neutral, as

the vehicle comes to a halt.

In configurations where GPS data is also available from

OBD frames, they are verified by plotting its route on the

same map containing the route from the onboard GPS sen-

sor. Figure 15 shows an example of two routes plotted on

the same map. The sanity of GPS data from OBD is verified

by its alignment with the onboard GPS sensors route map.

Because the OBD sensor runs at a much slower framerate



Figure 14. Example of gear and rpm data plot for a time slice.

Figure 15. Routes of GPS coordinates from OBD(red) and on-

board sensor(blue).

compared to the onboard sensor, a slight deviation of up to

10 meters is permitted. Any deviations beyond this can be

considered as invalid data.

4.9. Results

These steps provide a fast and reliable way to ensure the

good quality of raw data recordings. When executed on

sample data collection activities with sensor configuration,

as shown in Table 1, the process takes an average of 15 min-

utes to process a recording of a few hundred GBs. We were

successfully able to filter bad data like irregularities in GPS

coordinates, image frame corruption due to overheating of

the camera, undesired segments of overexposure of camera

frames, irregularities in LiDAR orientation, etc.

5. Conclusion and Future Work

Our infrastructure and evaluation process enables the

collection of large volumes of multimodal data. We open-

source our framework for the global research commu-

nity to perform similar large-scale data collection, either

in AD or other such multi-sensor scenarios. The val-

idation of data using the process defined in this paper

is currently performed manually and takes several min-

utes. In the future, we want to integrate automated ways

of performing these kinds of data validation and reduce

the time taken for such tasks even further. Also, with

such large volumes of data, searching for specific sub-

sets of data, like retrieving all recording with bridges in

them, or recording with a specific type of vehicles on

the road, etc. becomes a tedious task, and is in itself

an open research problem of large-scale image/data re-

trieval. Using our framework, we envision creating an ar-

chitecture for deep image/data retrieval to effectively cre-

ate and maintain large multimodal datasets for research.

Our code is available at https://github.com/intel/driving-

data-collection-reference-kit.
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