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Abstract

Surround-view cameras became an integral part of au-

tonomous driving setup. Being directly exposed to harsh

environmental settings, they can get soiled easily. When

cameras get soiled, the degradation of performance is usu-

ally more dramatic compared to other sensors. Having this

on mind, we decided to design a dataset for measuring the

performance degradation as well as to help constructing

classifiers for soiling detection, or for trying to restore the

soiled images, so we can increase the performance of the

off-the-shelf classifiers. The proposed dataset contains 40+

approximately 1 minute long video sequences with paired

image information of both clean and soiled nature. The

dataset will be released as a companion to our recently

published dataset [14] to encourage further research in

this area. We constructed a CycleGAN architecture to pro-

duce de-soiled images and demonstrate 5% improvement in

road detection and 3% improvement in detection of lanes

and curbs.

1. Introduction

The advances in autonomous driving show that combina-

tion of sensors is a necessary step to achieve difficult safety

and reliability standards. Surround view cameras are be-

coming de facto standard in autonomous parking, where

they significantly contribute to ultrasonic sensors by resolv-

ing difficult scenarios, such as fishbone parking or detect-

ing a free parking spot outlined only by ground markings,

which is completely not resolvable by using ultrasonic sen-

sors solely. Some influential people even believe that cam-

eras could replace expensive sensors like Lidars.

However, the surround view cameras are directly ex-

posed to the environment, which can, sometimes, be very

harsh. In certain conditions, e.g. heavy rain, snow or of-

froad driving, the surround view cameras can get soiled

quite easily. When this happens, all processing based on

the imagery acquired by these cameras is put in danger.

The performance usually degrades dramatically, depending

on the severity of the soiling. While there already exists

studies for dealing with rain and water drops on the cam-

eras [6, 12, 4, 7, 10, 13], not much was done with respect to

other possible soiling sources.

Our contribution is two-fold. Firstly, we release a new

dataset which contains both pairiness and temporal infor-

mation for dealing with several soiling categories, as well

as their mixture. Secondly, we propose a baseline im-

age restoration method and perform extensive experimen-

tal evaluation, showing that even this baseline can help in

leveraging the performance of the classical semantic seg-

mentation classifier used in autonomous driving tasks.

The paper is organized as follows. In Section 2, we

briefly introduce the problematics of the soiling on cam-

eras in automotive area. Section 3 describes the proposed

dataset design and acquisition. In Section 4, we formulate

the baseline solution for the restoration of soiled images and

summarizes the results we obtained. Finally, Section 5 con-

cludes the paper.

2. Soiling on Automotive cameras

Automotive cameras are exposed directly to contami-

nants including mud, dust, rain, fog and snow. They get

deposited on the lens as illustrated in Figure 1 and can

cause severe degradation of quality of computer vision algo-

rithms. Soiling of cameras on handheld consumer devices

occurs commonly but it can be cleaned easily and does not

pose a safety risk. For autonomous driving systems, it is

essential to reliably detect soiling on the lens and notify the

driver. Convolutional Neural Networks (CNN) and some

classical geometric algorithms like optical flow are global

operators and even a small soiled region could cause a se-

vere degradation. Thus even when soiling is detected in

a localized region, partial availability of the algorithms in

other clean parts could be less reliable.

There is very little literature on this topic and it requires

more attention to enable robust self driving. Soiled areas

can be classified as opaque (mud, dust, snow) and transpar-



Figure 1: From left to right: a) soiled camera lens mounted to the car body; b) the image quality of the soiled camera from

the previous image; c) an example of image soiled by a heavy rain.

ent (water). Transparent soiling in particular can be chal-

lenging to detect because of partial visibility of the back-

ground. Some advanced systems trigger a cleaning system

using a water spray or air blower based on the soiling de-

tection. Transparent soiling was addressed in recent work

of Porav et al. [6] where a stereo camera was used in con-

junction with a dripping water supply to simulate rain drops

on camera lens. The authors also propose a de-raining algo-

rithm using CNN.

There are three main ways to deal with the situation of

soiled lens. The best case is when soiling is detected by

an algorithm and then a cleaning system is triggered. But

cleaning systems are currently uncommon due to their addi-

tional cost and maintenance requirements. The second way

is to design algorithms which are robust to these scenar-

ios by implicitly handling them in their model, Sakaridis et

al. [8] proposed a robust algorithm for semantic segmenta-

tion which can deal with foggy scenes. However, opaque

soiling will be challenging to be dealt in this manner. The

third approach is to run a separate image restoration algo-

rithm to improve the quality of the image. Some recent

examples of the restoration algorithms in automotive sce-

narios are de-raining [6, 4, 7, 10, 13, 12], de-fogging [8]

and de-hazing [3]. This would mainly help alleviate partial

soiling. Restoration algorithms can be either single image

based or video based. The latter is more computationally

expensive but it can leverage visibility of soiling occluded

regions over time.

3. Overview of the dataset

The main goal of the proposed dataset is a restoration

of soiled images. The dataset is formed by 40+ video cap-

tures, each of them is approximately 1 minute long and con-

tain low speed maneuvering of the car in a close proximity

of a parking place. Part of the scenario is also parking be-

tween parked cars. Each capture consist of image data from

a setup of 4 cameras, that are positioned on the car trunk in

a row, one camera next to each other. One camera is always

kept clean, while the rest 3 cameras are manually soiled in

some way (see Figures 2a and 2c).

3.1. Dataset Acquisition

The data were collected on a small test track of our fa-

cility. The test track speed limit is 20 kmph and the data are

collected within this speed limit. The test track is located

around one building and outlined by a fence and foliage.

Some parts of the test track are also reserved as parking lots

and there are some line markings on the road as well.

During the acquisition, we were using only one vehicle,

with the same camera mount position. The 4 cameras were

lined up one next to each other and fastened on the vehicle

trunk by a hook-and-loop fastener. The 40+, approximately

1 minute long image sequences were obtained in 3 record-

ing sessions, which were conducted each on a different day

with slightly different weather conditions. While one cam-

era was always kept clean, the remaining 3 cameras were

manually soiled by a different type of soiling (e.g., ceramic

mud of different consistency, ISO mud, muddy water, water

or foam from formed by a cleaning agent). For applying the

soiling, we used either a toothbrush by which we sprayed

randomly the camera hood, or an aerosol spray which we

used to spray water drops of different size. In Figure 2, we

show both the camera mount and alignment (Figs 2a and

2c) as well as the corresponding imagery from this camera

setup (Figs 2b and 2d). Thanks to our setup, it is possible

to used both pairiness (clean and soiled image with a small

shift in camera position) and temporal information (consec-

utive frames from the video streams). We believe this is

beneficial not only for the task of image restoration, but also

for soiling detection and other admissible tasks.

We used similar driving scenario for all sequences. It

consisted of a short stay at a starting spot (a place where we

were applying the soiling on cameras). Then a short drive

around the testing track, parking between parked cars in a

reverse motion and then again a short drive through the test-

ing track back to the original position. The driving scenario

covers typical classes used for semantic segmentation in au-



(a) Camera mount with one specific soiling setup. (b) Corresponding imagery from this particular soiling setup.

(c) Camera mount with another specific soiling setup. (d) Corresponding imagery from this particular soiling setup.

Figure 2: The documentation of the dataset acquisition setup. Figs. 2a and 2c depicts the camera mount and show some

examples of the soiling sprayed on the camera hood. Figs 2b and 2d show how this camera setup sees the world. It also

roughly shows how the testing track looks like.

tonomous driving, such as building, other vehicles, ground

line markings, foliage, and sparsely also pedestrians.

To be GDPR compliant, we blur out all the license plate

numbers as well as faces which appear in the sequences.

Since the dataset is aimed on the image restoration task,

we believe this decision will not negatively impact any pro-

posed solutions.

4. Soiling Restoration Baseline and Results

The main goal of our dataset is to give the research com-

munity an opportunity to explore what are the possibili-

ties of image restoration for leveraging other processing al-

gorithms degradation. We propose the following baseline

method for soiling imagery restoration.

Since the shift in the physical position of cameras intro-

duces non-affine perturbations of the images, we decided to

use the CycleGAN [15] architecture, which should be able

to deal with the non-aligned data. The CycleGAN scheme is

depicted in Figure 3. It consists of a pair of generators and a

pair of discriminators. For the soiling restoration purposes,

we are interested only in a single generator, which takes the

soiled data on its input and provides “de-soiled”/clean im-

ages on its output. However, due to the cycle-consistency,

we need all four networks.

We trained the CycleGAN reckless to both the temporal

and the pairiness information. We simply sampled 17, 828

images altogether (both clean and soiled) and created the

following split: training set (8, 913 images), validation set

(4, 457 images), and testing set (4, 458 images). The train-

ing images were used to train the four networks in Cycle-

GAN scheme. The validation images were used for display-

ing the training progress (which we used as the stopping cri-

terion). The testing images were used for the experimental



Figure 3: The CycleGAN [15] architecture.

evaluation.

Based on the quality of the generators on validation im-

ages and our timeline constraints, we stopped the training

after 200 epochs. While the generator which takes the soiled

images on its input and produces clean images on the out-

put was working already quite reasonably, the other gener-

ator was not so convincing. It was able to introduce only

“water”-like soiling in the clean images.

4.1. Results

In this sub-section, we present the results of our base-

line networks. We make use of the proposed baseline net-

work based on the CycleGAN [15] to generate the de-soiled

images. Qualitative results are illustrated in Figure 4, they

show reasonable restoration. We also obtained quantitative

results using commonly used image similarity metric Struc-

tural Similarity Index (SSIM) [11] and the comparison of

mean Intersection over Union (mIoU), which is commonly

used to express semantic segmentation accuracy. The re-

sults are summarized in Table 1.

In case of the SSIM, the comparison is made between

the soiled and de-soiled images using the clean image as a

ground truth. We observe an improvement of 6% without

any tuning of the algorithm.

To obtain more application oriented metrics, we mea-

sured the mIoU scores on semantic segmentation of the

road, lanes and curbs classes. Due to the lack of segmenta-

tion ground truth on these images, we run the same network

on clean images and use it as a ground truth. We observe an

improvement of 5% for the road class and 3% improvement

Table 1: Comparison of accuracy metrics on soiled data vs

desoiled data

Accuracy Metric Soiled data Desoiled data

Image Similarity (SSIM) 0.40 0.46

Semantic Segmentation

Road (IoU) 0.51 0.56

Lanes (IoU) 0.74 0.77

Curbs (IoU) 0.87 0.90

for lanes and curb classes. We used the encoder-decoder

architecture of the semantic segmentation network with the

ResNet-50 [2] encoder and the FCN8 [9] decoder. The net-

work is pre-trained on ImageNet and then trained on our

internal fisheye dataset [14].

Recent comprehensive benchmark on de-raining [5] con-

cluded that no existing de-raining algorithm helps to im-

prove object detection accuracy. This shows that this is

a challenging problem and we have obtained encouraging

results using our dataset with the baseline methods to en-

courage further research into this problem. However trans-

parent soiling on the camera lens has better structure to be

exploited than rainy scenes.

In addition to our baseline results, we extend our work by

utilizing temporal information. Autonomous driving scenes

are highly dynamic where there are strong motion clues due

to ego-motion and due to moving objects where collision

risk usually arises from moving objects. When there is an

area in the FOV that is blocked by a soiled part of the cam-



Figure 4: Qualitative results of restored images using our

proposed CycleGAN architecture.

era, it is likely to be visible when the vehicle moves as it

will be captured by an unsoiled part. On the other hand,

if the vehicle is at standstill, moving objects that are not

seen due to soiled part are likely to be seen in the upcoming

time frames. In this case, a sequence of temporal images

can be used to extrapolate the parts that have been hidden

by soiled parts and therefore reconstruct the whole scene.

We argue that leveraging temporal information is crucial for

the de-soiling task. For that purpose, we define our recon-

struction problem as an in-painting problem. We make use

of the temporal information through optical flow images as

demonstrated by [1]. We provide preliminary results as il-

lustrated in Figure 5, where we show the benefit of utilizing

the time information. The first column shows the masked

input where the black mask represents the soiled part. The

second column shows our restoration results on our fisheye

dataset [14] and the third column shows the ground truth.

The first 4 rows show results on our rear-view camera and

the last 3 rows show results on the front-view fisheye im-

ages. It is shown that the scene is being restored based

on temporal neighbors where the car in the middle is com-

pletely or partially masked out, and it was restored correctly

due to being seen in the neighboring frames. These results

motivate our future work which will extend our experiments

to incorporate the time information as well.

5. Conclusions

In this paper, we discussed the problem of soiling on au-

tomotive cameras and motivated the possibility of restora-

tion. We created a four-camera setup with varying levels

of soiling where one of the images is clean and acts as

ground truth. We will make this dataset comprising of 1̃8k

images public to encourage further exploration of soiling

restoration problem which is a nascent area of research in

autonomous driving. We construct a baseline using Cycle-

GAN which demonstrates reasonable restoration both qual-

itatively and quantitatively. We also applied a recent video

inpainting algorithm which produces better results than our

baseline.
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Figure 5: Qualitative results of restored images using Video Inpainting [1]. First column represents the masked images

which simulate soiled camera frames. Second column shows the reconstruction results compared to ground truth in the third

column.


