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Abstract

Across-domain multitask learning is a challenging area of

computer vision and machine learning due to the intra-

similarities among class distributions. Addressing this

problem to cope with the human cognition system by consid-

ering inter and intra-class categorization and recognition

complicates the problem even further. We propose in this

work an effective holistic and hierarchical learning by us-

ing a text embedding layer on top of a deep learning model.

We also propose a novel sensory discriminator approach to

resolve the collisions between different tasks and domains.

We then train the model concurrently on textual sentiment

analysis, speech recognition, image classification, action

recognition from video, and handwriting word spotting of

two different scripts (Arabic and English). The model we

propose successfully learned different tasks across multiple

domains.

1. Introduction

Learning the representation of different tasks across multi-

ple domains via one model is a challenging machine learn-

ing problem. Such compact multitasking models can find

huge applications in restricted computing scenarios, for ex-

ample, mobile and autonomous driving applications; by

helping reduce power consumption, memory and hardware

usage. Regardless of the application scenario of this one

(universal) model, the machine learning community has al-

ways been interested in comparing the performance of ma-

chine intelligence with the human brain. While the human

brain is highly capable of learning various tasks across mul-

tiple domains, computer vision and machine learning ap-

proaches are still lagging when it comes to using one model

to learn several tasks. Until recently, works dedicated to

investigate one model learning usually incorporate Multi-

Model building blocks (modular nets) from multiple do-

mains. One of the most prominent works in this direction

appeared in ”One Model To Learn Them All” [16]. Fur-

thermore, Multitask Learning (MTL) usually involves opti-

mizing more than one loss function [32], e.g. one loss for

each model, which increases the search space complexity

and parametric tuning. In this work, we opted to try a chal-

lenging multitask approach by using only one deep learn-

ing model, one loss function, and one output layer for all

tasks across multiple domains. Furthermore, to enable the

OneModel accommodate to different tasks across multiple

domains, we use a text embedding in which each task or cat-

egory is represented by a set of unique words. Using such

representation, the model can learn if a word that comes

from the audio sensory is in a different encoding space than

the same word that comes from the text or vision sensories.

Therefore, one model can learn if a word mimicking a task

is coming from the speech sensory in a different way when

the same word comes from text or visual sensories. Our

approach depends on the fact that there are different ways

in which humans and / or machines can perceive the world.

For example, the word ”car” can be sensed from a car im-

age, a speech form of a person saying ”car”, text containing

the ”car” word, or a handwritten of the word ”car”. We are

able in this work to achieve such cognition, perception and

discrimination by adding a newly generated unique hash-

code to each word; for which the hashcodes are divided into

several groups that mimic vision, language and speech, or

even down to the task level. This hash function copes with

the biological brain; for example, when the sensory retina

sends the vision signal to the lateral geniculate nucleus and

then to the visual cortex via the optic nerve, and the audi-

tory sensory region transmits the speech / sound signal to

the primary auditory cortex via the vestibulocochlear nerve.

Nonetheless, although the human brain is highly modular

and has different regions for vision, text and sound, we

are considering a major challenge in this work using only

one model (OneModel) that handles the various informa-

tion from the sensory layer. The OneModel that we pro-

pose, illustrated in Figure 1, may enable machines to have a

conscious at the higher level of the learning model, e.g. the

output layer.

2. Related Works

Although MTL improves generalization by taking advan-

tage of domain-specific information contained in the train-



Figure 1. The proposed OneModel architecture. Ls, Lt, Lhw, and

Lim are the ground-truth data of speech, text, and vision (hand-

writing and images) such that each of their entries can be repre-

sented as a string containing alphanumeric and non-alphanumeric

symbols. Alphabets can be of different languages and / or scripts.

ing signals of related tasks [5, 6], it still needs further inves-

tigation if it is to be considered across multiple domains. In

the context of Deep Learning, MTL is usually implemented

via layer sharing, e.g. using either hard or soft parameter-

sharing at the hidden layers [32]. The hard parameter-

sharing is applied by sharing the hidden layers between all

tasks and then using several task-specific output layers, i.e.

one layer per task. It has been shown in [4] that using hard

parameter sharing leads to better generalization, by reduc-

ing the risk of over-fitting. Soft parameter sharing, on the

other hand, is achieved by sharing intra connected Multi-

Model blocks, i.e. each model has its own parameters of the

task, such that the distance between the parameters of the

model is then regularized [32]. However, similar to hard

parameter sharing, soft parameter sharing still needs task-

specific output layers.

The MTL literature also shows slight deviations from

soft and/or hard layer sharing, which has only been applied

to one domain learning problems. As an example, using

matrix priors as inputs to the task-specific output layers to

allow the model to learn the relationship between tasks [18].

Other MTL approaches are based on dual task learning form

a single dataset. For example, model level dual learning,

which leverages task duality to redesign the model architec-

tures for both the primal and dual task [42] helped achiev-

ing better performance in machine translation task. How-

ever, the proposed dual-learning model has only been ap-

plied to one dataset at a time and is consistent with previous

MTL works by implementing two loss functions, one for

the primal task and another for the dual task. In addition,

the dual-learning model is built using two building block

models. For example, it has been used for textual sentiment

analysis for which the primal task is sentiment classification

that aims to justify whether a natural language sentence has

positive or negative sentiment. The dual task is language

modeling of a sentence conditioned on a given positive or

negative sentiment label [42]. Accordingly, MTL restric-

tions, particularly in deep learning, appear to be primarily

applied to one domain, based on multiple model blocks and

the use of task-specific output layers. Nonetheless, although

the work presented in [16] is inspirational for building ’one

model’ based on multiple building blocks, each dedicated

to a single task, other works have implemented ideas that

are slightly similar in nature / purpose to ours, by placing a

standalone graph layer on top of any feed-forward architec-

ture [9]. In the latter work, the authors developed a model

that allows encoding of flexible relations between labels.

3. Methods

3.1. The Multitasking Encoder

We use a word embedding technique to represent the out-

put of each task regardless of its domain. In this work, we

adopt the Pyramidal Histogram of Characters (PHOC; [3])

to convert a string, that mimics the task and its sub-labels,

to a vector that can be used to supervise the learning. The

PHOC algorithm, ψm(l), simply divides an input word l
into a few regions (m levels) and then finds the histogram

of characters falling within each region [3]. The concatena-

tion of all these regions/ histograms gives the PHOC vector

ζ, which is the label that can be used to supervise the learn-

ing. This can be formulated as follows:

ζ = ψm(l), (1)

where m is the PHOC level, l is the word label. ζ has the

cardinality of (m2+m−2)/(2Ns), and Ns is the number of

symbols used for the word-label set. For English alphabets

Ns = 26. In this work, we propose a novel PHOC rep-

resentational approach to denote across-domain, inter and

intra class categories, which can be formulated as follows:

η = ψm(∪n
k=1Lk), (2)

where lk is a set denoting the alphabet used to denote each

label of the kth task (could be within or across domains), its

entries can also be alphanumerics, and k = 1, 2, ..., n with

n denoting the number of tasks. For example, to model a

system that learns English and Arabic languages, and tasks

related to these scripts, η has a total of 54 symbols (Arabic

has 28 alphabets). In this work, we use up to five PHOC

levels, i.e. PHOC levels used are {2 ,3, 4, 5}. It is possible

that different tasks share the same alphanumeric set, unless

the models must learn tasks for different languages.

3.2. The Sensory Discriminator

Sensory discrimination is one of the vital components of

this work. It aims to distinguish between different tasks by



adding uniqueness to each task and / or domain. Each class

and / or task has a name representing it, e.g. each speech

signal denotes some spoken word and each handwritten im-

age refers to some word. Hence, every problem Rk contains

two groups 1) the data source Sk, which may take the form

of images, signals, or text, etc.; and 2) the corresponding

ground-truth Lk, which contains labels in the form of text.

These groups can be formulated as:

Sk = [s1, s2, ..., sq],

Lk = [l1, l2, ..., lq],
(3)

where q is the total number of samples in the problem Rk,

to simplify notations we dropped the subscript k from q. If

there is no redundancy in the data, Sk is normally a finite

set. The situation for Lk is different since it can not be

represented as a finite set, because each item in Lk usually

contains some text that mimics the task denoted in words,

tags, labels, etc. Hence, let the Fk be a finite set of (unique)

items from Lk, which we denote as:

Fk = {f1, f2, ..., fp}, (4)

where p is the number of labels, with p ≤ q. Clearly, it

is possible that two different tasks and / or domains to use

the same labels, leading to confusion during learning and

will therefore result in poor performance. Humans can eas-

ily distinguish entities according to the type of sensory. To

resolve this problem in machine / deep learning, each label

/ keyword in Fk is appended, or modulated, by a unique

hashcode. This can be formulated as follows:

Gk = {g1, g2, ..., gpk
}, (5)

where

gpk
= γ(fpk

, νk), (6)

such that γ is the sensory discriminator transform, and νk is

the task identifier of the problem lk. Hence, the output layer

will have the following representation:

ζ = ψm(∪n
k=1Gk). (7)

To give a simple example of using the γ discriminator

transform, one can simply use the concatenation of fpk
and

νk as follows:

γ||(fpk
, νk) = fpk

||νk, (8)

and let us assume that the word ’sky’ is used when having

a speech signal of someone saying ’sky’ (νk = speech),

then:

γ||(sky,speech) = sky||speech

= skyspeech.
(9)

The drawback of this simple concatenation is that it does

not provide sparsity in the words / labels / tags when these

tags are used to supervise the learning. This is because

the partial word denoting the task and / or domain will

be repeated across several labels in the domain, and this

will degrade the learning and eventually affect the model’s

performance. To overcome this problem, we propose to

use DJB2 hashing algorithm [31] that has improved hash-

ing uniqueness without the need to use a collision-resistant

function. Hash tables have O(1) average search times, mak-

ing them efficient data structure to use for caching, index-

ing, and other time-critical operations. The DJB2 algo-

rithm, which has a performance equivalent to the generic

alphanumeric MD5 hashing but results in lower numeric

hashcode lengths, is currently used in quite a few informa-

tion retrieval systems. Hence, we can write the discrimina-

tor transform as follows:

γDJB2(fpk
, νk) = fpk

||DJB2(fpk
||νk), (10)

and using DJB2 for the above example gives:

γDJB2(sky,speech) = sky||DJB2(sky||speech)

= sky8246919618043377881.

(11)

Clearly, DJB2(sky||speech) results in the hashcode

8, 246, 919, 618, 043, 377, 881; which has 19 digits. If the

length of this hashcode poses a problem, it can be further re-

duced using the modulo operator with the first prime num-

ber greater than the size of words / labels of the dictio-

nary of the task(s) and / or domain(s). To explain this in

a simple but trivial example, suppose that the labels’ dic-

tionary used contains the 127 English stop words, then,

the first prime number after 127 is 131. In this case,

8, 246, 919, 618, 043, 377, 881 mod 131 = 65. Further-

more, the hashcodes will be grouped into a task-based dic-

tionary as follows:

D = {d1, d2, ..., dn}. (12)

This means that each task / domain will have its own

set of dictionary of hashcodes, which will provide robust

distinction between both tasks and / or domains. In addition,

this hashing will enable us to categorize and / or retrieve

each query according to the task to which it belongs. We

ought to mention that we did not use the hashing algorithm

in for the handwriting domain.

3.3. Datasets

Table 2 shows the number samples distributed across mul-

tiple domains. As is evident, the datasets used in this work

are unbalanced across tasks and domains, another challenge

that has been raised in this work.



Original movie review Review after cleaning

This has always been one of my favourite movies, and will always

be. Over the last few years I have become a 50\’s / 60\’s Sci-fi

freak, trying to collect all of the better ones that were made back

then. I love lots of things about them from how corny they could be

to how technically correct some of them were. The great colours

and the sets get me going too. It\’s a pity when they re-make

some of these good old movies; they nearly always stuff it up, -

just look at the recent re-do of The day the Earth stood still, it\’s

utter garbage!! Forbidden Planet is one of the benchmark space

films of all time, and now they\’re trying to re-make it too, and I

shudder to think what the new one will be like! To my mind, some

things, such as fantastic classic movies, should just be left alone

to be what they are, classic examples of great attempts at telling

simple stories, and giving people a thrill in the process. Once they

add all the techno-crap that we have available now, the film just

seems to be more dog-meat from the Hollywood sausage factory,

- nothing special at all. By the way, I notice that the astronauts\’

uniforms in Forbidden Planet were also used for ”Queen of Outer

Space”! That just tells you that the budgets were a bit lower back

then, doesn\’t it? Hey, less money and better films, hmmm....<br

/><br />Great performances in this movie from Leslie Nielsen,

in a serious role, and Anne Francis, Walter Pidgeon (who has al-

ways been one of my favourite actors), Earl Holiman, and of course

Robby the Robot!<br /><br />The special effects are fantastic,

and the storyline is not too far-fetched. This is a great sci-fi expe-

rience!

this has always been one of my favourite movies, and will always

be. over the last few years i have become a 50 60 science fic-

tion freak, trying to collect all of the better ones that were made

back then. i love lots of things about them from how corny they

could be to how technically correct some of them were. the great

colours and the sets get me going too. it is a pity when they re make

some of these good old movies; they nearly always stuff it up, just

look at the recent re do of the day the earth stood still, it is utter

garbage exclamation mark exclamation mark forbidden planet is

one of the benchmark space films of all time, and now they are

trying to re make it too, and i shudder to think what the new one

will be like exclamation mark to my mind, some things, such as

fantastic classic movies, should just be left alone to be what they

are, classic examples of great attempts at telling simple stories, and

giving people a thrill in the process. once they add all the techno

crap that we have available now, the film just seems to be more dog

meat from the hollywood sausage factory, nothing special at all. by

the way, i notice that the astronauts uniforms in forbidden planet

were also used for ”queen of outer space” exclamation mark that

just tells you that the budgets were a bit lower back then, does not

it questionmark hey, less money and better films, hmmm.... great

performances in this movie from leslie nielsen, in a serious role,

and anne francis, walter pidgeon (who has always been one of my

favourite actors), earl holiman, and of course robby the robot ex-

clamation mark the special effects are fantastic, and the storyline

is not too far fetched. this is a great science fiction experience ex-

clamation mark.

Table 1. One movie review before and after cleaning.

3.3.1 IMDB dataset

This is a dataset for binary sentiment classification contain-

ing a total of 50, 000 image movie (English) reviews [19],

where the labels are balanced with 25, 000 positive reviews

and 25, 000 negative reviews. Furthermore, it basically has

a set of 25, 000 highly polar movie reviews for training, and

25, 000 for testing. One of the key aspects of the IMDB

dataset is that each review has several sentences. The train

and test sets contain a disjoint set of movies and no more

than 30 comments are included for any particular movie.

To eliminate neutral reviews, a negative review has a score

≤ 0.4 and a positive review has a score ≥ 0.7.

3.3.2 Speech Dataset

We use TensorFlow Speech Commands Datasets Version

1.0 [41, 40] (SPCHD). The dataset has one-second long ut-

terances of 30 short (English) words collected from thou-

sands of different people. It includes thirty different speech

commands and we only use 64, 721 samples for training and

2, 489 for testing.

3.3.3 Handwriting datasets

We use the Institute of Informatics and Applied Mathe-

matics English handwriting dataset, which is known as

the IAM-dataset [22, 21], and IFN/ENIT (Arabic) dataset

[27, 28]. Both IAM and IFN datasets are multi writers

datasets. For the IAM-dataset, we use both the training and

validation sets for training, similar to [34]. To cope with the

IAM previous works [17], we remove the stop words from

the query. For the IFN dataset, we partition the data in such

a way that 75% of the samples used for training and the re-

maining 25% for testing. This data partitioning has been

adopted by several previous word-spotting and recognition

works, see for example [35, 36, 34, 37, 2]. We note that the

IFN and IAM datasets may contain images with more than

two (handwritten) words, and thus more than two word la-

bels.

3.3.4 CIFAR-100 dataset

CIFAR-100 is a well-known natural images dataset that has

heavily been investigated in the computer vision literature.

It essentially has 50, 000 32 × 32 RGB images for training

and 10, 000 32 × 32 RGB images for testing. Each image



Figure 2. Visual representation of the six tasks used in this work.

A top-down view displays 4 images from distracted driver, text

of a movie review in the form of 2D Word2Vec tensor, spectro-

gram of one spoken word, 4 IAM English handwriting images, 4

IFN Arabic handwriting images, and six images selected from the

CIFAR-100. Our model has to learn a total of 6 tasks in three

different domains; vision, speech and language.

belongs to one of 100 classes distributed over 600 samples,

and each class has 500 and 100 training and testing samples,

respectively.

3.3.5 Distracted driver dataset

We use the State Farm Distracted Driver (dDRIVER)

dataset that has been collected using 2D dashboard cam-

era [15, 15]. The objective is to classify each driver’s

behavior that has been categorized to one of ten classes:

“SAFE DRIVING”, “TEXTING-RIGHT”, “TALKING ON THE

PHONE-RIGHT”, “TEXTING-LEFT”, “TALKING ON THE

PHONE - LEFT”, “OPERATING THE RADIO”, “DRINKING”,

“REACHING BEHIND”, “hair and makeup”, “talking to pas-

senger”. In our setting, the dataset is partitioned into 16, 818
training and 5, 605 testing samples, respectively.

3.4. The sensory layer

We transform all input data samples into a rank 3 tensor, i.e.

having three channels, 600 width and 300 height. For each

type of data, the sensory layer performs specific operations,

based on the task and / or domain, to convert the data to

a tensor that is fed then to the deep learning model. The

details of the sensory layer operations are as follows:
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Figure 3. Distribution of review lengths in the IMDB dataset.

• Text sensory layer (IMDB dataset): We first perform

cleaning of each text sample (i.e. movie review) to re-

move all non-word symbols. One review before and

after cleaning / processing is illustrated in Table 1.

The distribution of review lengths in the IMDB dataset

is illustrated in Figure 3. In addition, for every re-

view, we convert each word to a numerical vector using

Google’s pre-trained Word2Vec model [24]. Google’s

Word2Vec model, which has roughly been trained on

100 billion words from a Google News dataset, has

word vectors for a vocabulary of 3 million words and

phrases. We use Gensim Python package [30] as an in-

terface to Word2Vec. We use zero padding if the num-

ber of words is less than 600 and truncated the review

if it has more than 600 words. Each review will result

in a rank 2 tensor with resolution of 600 × 300. Then

we repeat the (single) channel 3 times to have a rank 3
tensor of size 600×300×3. The cleaned movie review

shown in Table 1 that we convert using Word2Vec to

a rank 3 tensor with width 600 and height 300 is illus-

trated in the second row of Figure 2.

• Speech sensory layer (SPCHD dataset): We convert

each speech signal to its corresponding spectrogram

using the Short-Time Fourier Transform [25]. The

spectrogram is a visual representation of the spectrum

of frequencies of a signal as it varies with time. When

applied to an audio signal, spectrograms are sometimes

called sonographs, voiceprints, or voicegrams. We pad

with zeros each spectrogram in order to have a reso-

lution of 600 width and 300 height. Then we repeat

the (single) channel 3 times to have a rank 3 tensor of

size 600× 300× 3.

• IFN and IAM Handwriting datasets: We convert the

pixel intensity values in each image to 1 for the hand-

writing stroke and 0 for the background. We scale

all handwritten images to a height of 120, and the as-

pect ratio is maintained. We then employ zero padding



Data: Task #Training samples #Testing samples #Classes

IFN: Arabic Handwriting 24, 378 8, 127 NA

IAM: English Handwriting 51, 519 18, 142 NA

CIFAR-100: Image Classification 50, 000 10, 000 100
dDRIVER: Distracted Driver 16, 818 5, 606 10
SPCHD: Speech Recognition 64, 721 2, 489 30
IMDB: Text Sentiment Analysis 25, 000 25, 000 2
Total: Multi-task 225, 963 75, 915 NA

Table 2. Data partitioning.

to attain a resolution of 600 × 300 and channels re-

peated to three, resulting in a rank 3 tensor of size

600× 300× 3.

• Natural images sensory layer for CIFAR-100 and

dDRIVER datasets: We scale up the images in the

CIFAR-100 dataset, which have the size 32 × 32 × 3,

to the height of 300, resulting thus in a tensor of size

300 × 300 × 3. We apply a similar approach to the

dDRIVER dataset, as the video has been segmented to

frames associated to each action the driver is perform-

ing. We scaled-down each image, which originally has

the size 640×480×3, with respect to its height to 300,

resulting thus in a tensor of size 400× 300× 3. Then,

using zero padding, the tensor size of every sample is

600× 300× 3.

After these sensory operations, all values in the tensors

are then normalized to have zero mean and unit variance;

this normalization has become a common practice in com-

puter vision. Moreover, the sensory layer is fixed and does

not involve any learning or tuning. Figure 2 provides a vi-

sual demonstration of samples selected from each dataset.

3.5. Deep learning model

We train the OneModel to concurrently learn different tasks

across various domains. Our model is solely built using one

Residual Network with 152 layers (ResNet-152).

3.6. Multiclass accuracy and retrieval metrics

For each testing sample, the model’s output layer fires a bi-

nary vector denoting the predicted PHOC vector. We use

two metrics to measure the performance. First, we calculate

the multiclass accuracy that measures the fraction of correct

predictions over the testing samples; this metric is dedicated

to measure the classification performance. Second, we use

the mean Average Precision (mAP), which is the standard

evaluation method in retrieval problems, to measure the

retrieval performance; this metric is dedicated to measure

the word-spotting performance. Similar to other previous

works, for example [3, 35], we measure the retrieval per-

formance using two approaches: Query by Example (QbE)

[20], and Query by String (QbS) [10]. For QbE, we only

use the unique strings in the test set as queries; each sample

in the test set is used once as a query to rank the remaining

samples in the test set. For QbS, however, we only take the

unique samples in the test set and use their PHOC represen-

tation as queries. We use the cosine similarity distance to

measure the proximity of queries.

4. Results

We build our model using PyTorch framework [26, 29] and

we make it publicly available at [1]. We train the model

simultaneously using textual sentiment analysis, speech

recognition, image classification, action recognition from

video, and handwriting word spotting of two different lan-

guages / scripts (Arabic and Latin / English). Details related

to the sensory input and the output layers, the deep learning

model and its hyper-parameters are provided below.

We use ResNet-152 that has been trained with ImageNet

[29]. The procedures and the hyper-parameters that we

use in the experiments are as follows: SGD, learning-rate

(lr = 0.1) adapted to (lr = 0.01) after 40 epochs, mo-

mentum = 0.9. We use a binary cross entropy with log-

its loss function, which combines the binary cross entropy

loss and a Sigmoid function and has thus a better numeri-

cally stability than a loss function followed by a Sigmoid
[29]. Because models trained with a PHOC output layer do

not suffer from overfitting [34], we use a maximum of 60
epochs in the training without early stopping criterion. Af-

ter training is finished, we employ the Sigmoid function on

the outputs to bound them between 0 and 1. We use a train-

ing batch size equal to 10, as small batch sizes has great

generalization advantages [23].

Word hashing modulation is used to resolve collisions

between different labels across multiple tasks and domains.

In this work, more than 80,000 unique English words and

15,000 unique Arabic words were used to predict multiple

tasks across multiple domains. The results in Table 3 show

that the OneModel was successful in concurrently learning

the 6 different tasks across multiple domain. Furthermore,

the results of the OneModel trained on the 6 tasks are on

par with the 6 models trained separately to perform a single
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Figure 4. The loss evolution over the course of training for the OneModel trained simultaneously with six tasks across multiple domains.

The training loss is demonstrated as a batch log value such that every ten iterations denotes one epoch.

Data:Task Joint 6-task Single task Single task state-of-the-art

IFN: Arabic Handwriting † 98.1/98.5 99.0/99.0 99.0/99.0 [2]

IAM: English Handwriting † 88.7/89.9 88.5/89.4 94.6/88.3 [34]

CIFAR-100: Image Classification 71.0 74.4 79.3∗ [8]

dDRIVER: Distracted Driver 93.2 94.5 88.6 [7]

SPCHD: Speech Recognition 96.6 95.9 95.8 [39] ‡
IMDB: Text Sentiment Analysis 81.2 85.3 89.2+ [12]

Table 3. Accuracy [%] comparison of the proposed OneModel trained jointly on 6 tasks or separately on each task. † The retrieval

performance of word-spotting is provided in QbS/QbE [%]. ‡ Using a smaller ResNet with only 15 layers. ∗ This accuracy can be reached

using data augmentation, which we have not considered in this work. + Such high accuracy can usually been attained using dedicated NLP

methods; our approach, however, is novel and is based on converting the text into a rank 3 tensor that can be viewed as an image; it is

almost impossible for humans to make inferences from these tensors visually, but clearly, Deep Nets can.

task. Starting from a ResNet-152 trained with ImageNet

and after only 10 epochs, the average testing loss decreased

to 0.005 and the OneModel reaches an overall accuracy of

64.0%. Notably, the overall chance-level performance of

the OneModel, prior to any training, is 0.0%; which is ex-

pected due to the undetermined number of classes in the

handwriting datasets. The learning loss also decreased from

0.069 to 0.001, which indicates that the OneModel is tak-

ing advantage from models trained with ImageNet. The loss

evolution over the course of training is shown in Figure 4.

5. Discussion

We show in Figure 5 how the hashing algorithm does a vital

role to increase the distance between words / labels, in addi-

tion to separating the sensory information. We did the anal-

ysis using a character-based word embedding model based

on RNN [13], in which similarly spelled words are repre-

sented by the neighbouring vectors. For this illustrative ex-

ample, we use the English stop-words and the three words

shown in Figure 5 to build the model. The visualization

is based on using Principal Component Analysis projected

into 2D space. We show that the hashing algorithm enables

the separation between the different tasks / domains when

there is a probability of collisions between the words / labels

denoting samples across tasks and / or domains.

The sentiment analysis approach we are proposing can

be enhanced further as our focus was to get something

running within the OneModel context. This can be im-

proved using further NLP techniques at the sensory layer

and / or tuning the hyper-parameter of the deep learning

model. There are some techniques that can be used in the

enhancement; for example, Google’s Word2Vec does not

recognize British English; e.g. the word ’favourite’ needs

be removed from the textual tensor. This requires adding

a spell checker based on American English vs British En-

glish to improve the text cleaning. Similarly, our purpose

was not to present a model that works best for CIFAR-100

and goes beyond state-of-the-art, e.g. as proposed in [8]

or other recent regularization methods [43]. All these ap-

proaches can be used, in addition to data augmentation to

build a better OneModel. With respect to Arabic handwrit-

ing word-spotting, our model achieves beyond state-of-the-

art performance. Still, for the English word-spotting task,



Figure 5. The effect of hashing on words separation and cognition.

Top shows the three words ’pay’, ’way’ and ’say’ where one has

collision when each word is associated to speech, text/language

and vision; we use black to indicate the collision between the dif-

ferent tasks / domains. The bottom figure shoes the effect of us-

ing the DJB2 hash algorithm, where red, green, and blue denote

speech, vision, and language, respectively. We truncated the hash-

codes by taking their modulus with the prime number 1000003,

i.e. DJB2 mod 1000003. DJB2(payspeech): pay99881;

DJB2(payvision): pay712162; DJB2(paylanguage): pay834868;

DJB2(wayspeech): way893078; DJB2(wayvision): way505356;

DJB2(waylanguage): way623809; DJB2(sayspeech): say296965;

DJB2(sayvision): say909246; DJB2(saylanguage): say458699.

Best viewed in color.

the OneModel is close to state-of-the-art models. Recent

state-of-the-art word-spotting models rely heavily on large

data augmentation sets that are obtained via synthetic hand-

written generators. We therefore think that incorporating

these methods will result in enhancing the overall perfor-

mance of the OneModel, and not only improving its abil-

ity to perform word-spotting. The output layer can be fur-

ther improved by considering higher PHOC levels or inves-

tigating other text embedding techniques. In addition, using

Long Short Term Memory networks (LSTMs) or Recurrent

Neural Networks (RNNs) on top of the PHOC may provide

enhanced reasoning [12].

How does our model fit into how biological vision sys-

tems work? In fact, this question has been the major motiva-

tion of this work. For example, how does the brains process

the word cat? Does the brain picture a cat after reading

the word cat? The same argument applies here when one

hears the sound of someone saying cat, does the brain pic-

ture a cat? Another argument goes in the same and similar

manner when one sees a cat or a picture of it, are there any

brain activations related a cat as a word / text, or equally re-

lated to the sound of someone saying cat? Furthermore, it is

well known that the modular regions in the human brain are

highly connected, and therefore, it is possible that textual or

sound information go to regions dedicated to vision to com-

plete the reasoning. In fact, evidences form functional brain

studies supports this [11, 33, 38, 14]. This notion strongly

agrees with the OneModel we are proposing in this work,

as speech and text are converted into rank 3 tensors that

match the visual image space. Regardless of the results we

present, the question of how language, vision and speech

can be modeled via one deep learning model remains open

and further research is needed in this direction.

6. Conclusions

When compared to previous works based on MultiModel

deep-learning blocks to build one model, the OneModel

approach we are proposing that is based on a single deep-

learning model is very successful. To the best of our knowl-

edge, there are no previous works based only on a single

model to learn different tasks across multiple domains. We

conclude that using an appropriate text output layer that can

decode the different tasks across multiple fields from the

signals it receive from the deep learning model is provides

a compact and efficient learning approach. This can be the

bases for further compact models in the future; by using, for

example, other textual representation methods for the out-

put layer, improving how the sensory layer processes the

input before sending it to the deep learning model, and con-

sidering more tasks and domains.

The per-task performance of the OneModel is slightly

lower than the best models we trained for every task; still,

the OneModel performs fairly well and has a large mar-

gin of improvements in the future. The English handwrit-

ing words-spotting is an exception, however, as the perfor-

mance of the OneModel trained on all the tasks is slightly

higher than the single model.

There are other problems that remain to be open for fu-

ture works; for example, using data augmentation, investi-

gating the effect of balancing the data, adding a sensory at-

tention layer, adding more tasks across some other domains,

investigating the possibility of the model in zero and a few

shot learning, and testing it in domain adaptation problems.

Acknowledgement

This work has received funding from the European Union’s

Horizon 2020 research and innovation programme under

the Marie Skodowska-Curie grant agreement No. 665919.



References

[1] M. Al-Rawi. MLPHOC: Bi-Script Word Spotting. https:

//github.com/morawi/MLPHOC/. [Online; accessed:

11-November-2018]. 6

[2] M. Al-Rawi, E. Valveny, , and D. Karatza. Can one deep

learning model learn scriptindependent multilingualword-

spotting? In ICDAR, 2019. 4, 7

[3] J. Almazn, A. Gordo, A. Forns, and E. Valveny. Word spot-

ting and recognition with embedded attributes. IEEE Trans.

Pattern Anal. Mach. Intell., 36(12):2552–2566, 2014. 2, 6

[4] J. Baxter. A bayesian/information theoretic model of learn-

ing to learn viamultiple task sampling. Machine Learning,

28(1):7–39, July 1997. 2

[5] R. Caruana. Multitask learning. Machine Learning,

28(1):41–75, 1997. 2

[6] R. Caruana. A Dozen Tricks with Multitask Learning, pages

163–189. Springer Berlin Heidelberg, Berlin, Heidelberg,

2012. 2

[7] P. M. Chawan, S. Satardekar, D. Shah, R. Badugu, and

A. Pawar. Distracted driver detection and classification. In-

ternational Journal of Engineering Research and Applica-

tions, 04 2018. 7

[8] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le.
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