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Abstract

We consider a family of structural descriptors for vi-

sual data, namely covariance descriptors (CovDs) that lie

on a non-linear symmetric positive definite (SPD) mani-

fold, a special type of Riemannian manifolds. We propose

an improved version of CovDs for image set coding by ex-

tending the traditional CovDs from Euclidean space to the

SPD manifold. Specifically, the manifold of SPD matri-

ces is a complete inner product space with the operations

of logarithmic multiplication and scalar logarithmic multi-

plication defined in the Log-Euclidean framework. In this

framework, we characterise covariance structure in terms

of the arc-cosine kernel which satisfies Mercer’s condition

and propose the operation of mean centralization on SPD

matrices. Furthermore, we combine arc-cosine kernels of

different orders using mixing parameters learnt by kernel

alignment in a supervised manner. Our proposed frame-

work provides a lower-dimensional and more discrimina-

tive data representation for the task of image set classifi-

cation. The experimental results demonstrate its superior

performance, measured in terms of recognition accuracy,

as compared with the state-of-the-art methods.

1. Introduction

The representation of visual data plays a vital role in

identifying the content of images [14,23], image sets [5,28]

and videos [8, 21]. There are many descriptors for visual

data. As is well known, the most popular representations for

recognition tasks are bag-of-visual-words (BoVW) mod-

els [25], fisher vectors (FV) [14] and vector of locally ag-

gregated descriptors (VLAD) [1]. These representations are

ultimately in the form of vectors and typically involve the

following four steps: extracting features, generating code-

book, encoding and pooling, and normalization.

Structured representations, such as linear subspaces [9],

and covariance descriptors (CovDs) [29, 32], have recently

been shown to offer efficient and powerful representations

for high dimensional tasks in computer vision. In particu-

lar, CovDs, defined by the second-order statistics of sample

features, have been widely used as the visual representa-

tions for both single image [29] and image sets [32]. Prior

to CovDs for describing image sets studied in [32], covari-

ance matrices have been used as region covariance descrip-

tors to characterise local regions within an image. They

have been applied to the task of object tracking, object de-

tection and texture classification. In contrast, when CovDs

are used to describe image sets [32], samples are the im-

ages in the set and features are the raw intensities of the

image pixels. The resulting covariance matrices are often

singular because the feature dimensionality (the number of

the pixels in the image) is usually larger than the number

of samples (the number of images). Among the aforemen-

tioned methods, CovDs for describing image sets has the

following characteristics:

1) In contrast to the vector representations of BoVW,

FV and VLAD, which generate linear descriptors via code-

books, CovDs directly generate structured representations.

2) A feature matrix of an image set with n images: S
= [s1,s2,...,sn], where si ∈ Rd is a d-dimensional feature

vector characterising the i-th image. Here, d is the number

of the pixels in each image.

3) The resulting covariance matrix C ∈Rd×d tends to be

singular and high dimensionality, and may contain a certain

amount of redundant information.

Characteristic 3 summarises several deficiencies of tra-

ditional CovDs as image set descriptors. In this paper, we

propose a improved framework, which involves using a ker-

nel matrix defined in terms of representations associated

with sub-image sets, instead of pixels. Our proposed frame-

work enables to generate covariance descriptors on non-

linear SPD manifold (CovDs-S1). The experimental results

1Source code: https://github.com/Kai-Xuan/iCovDs



show the advantages of our proposed CovDs-S.

The rest of this paper is organized as follows: In Section

2, we introduce the theory of Riemannian geometry of SPD

manifold and review the Log-Euclidean framework which

is the baseline for our proposed approach. In Section 3,

we give a brief overview of the traditional CovDs as image

set descriptors and present the proposed framework. We

present and discuss the experimental results in Section 4.

Section 5 draws conclusions and outlines future work.

2. Background Theory

This section first provides a brief introduction to Rie-

mannian geometry of SPD manifold, and proposes the pro-

cess of SPD mean centralization. We then present a Log-

Euclidean framework based arc-cosine (LogE.Arc) kernel.

Notation: In this paper, In is an n× n identity ma-

trix. S++
n denotes the SPD manifold spanned by real n× n

SPD matrices and Sn denotes the space spanned by real

n× n symmetric matrices. TPS
++
n is the tangent space

at the point P ∈ S++
n , which is a flat surface spanned by

real n× n symmetric matrices. Diag(e1, e2, ..., en) is a di-

agonal matrix with the diagonal elements e1, e2, ..., en. The

matrix logarithm, log(·): S++
n →Sn is defined as:

log(X) = UDiag((log(e1, e2, ..., en))U
T (1)

with X = UDiag(e1, e2, ..., en)UT . If X∈S++
n is an SPD

matrix, log(X) ∈ TIS
++
n will be a point in the tangent space

at the identity matrix In. Similarly, the matrix exponential

exp(·): Sn→S++
n is defined as:

exp(X) = UDiag((exp(e1, e2, ..., en))U
T (2)

with X = UDiag(e1, e2, ..., en)UT .

2.1. The General Metrices on SPD Manifold

A real n×n SPD matrix X ∈ S++
n satisfies vTXv≥0 for

all non-zero v ∈Rn. The Affine Invariant Riemannian Met-

ric (AIRM) is the frequently studied Riemannian metric on

the SPD manifold [22]. Beside AIRM, Log-Euclidean Met-

ric (LEM) [2] and two types of Bregman divergence [16],

namely Stein [26] and Jeffrey [11] divergence, are also

widely used to analyze SPD matrices.

Definition 1 (Affine Invariant Riemannian Metric, AIRM)

The most common Riemannian metric on S++
n is Affine

Invariant Riemannian Metric (AIRM) [22], in which the

geodesic distance dG: S++
n ×S++

n →[0,∞) between two

SPD matrices X and Y can be obtained by:

d2G(X,Y ) = ‖ log
(

X− 1

2Y X− 1

2

)

‖2F (3)

where ‖ · ‖F denotes is the Frobenius norm. log(·) is the

matrix principal logarithm.

Definition 2 (Stein divergence) The Stein, or S, divergence

Figure 1. The illustration of logarithmic and exponential mapping.

[26] dS: S++
n ×S++

n →[0,∞) is a special type of Bregman

divergence:

d2S(X,Y ) = log det(
X + Y

2
)− 1

2
log det(XY ) (4)

Definition 3 (Jeffrey divergence) The Jeffrey, or, J, diver-

gence [11] dJ : S++
n ×S++

n →[0,∞) is another type of Breg-

man divergence:

d2J(X,Y ) =
1

2
Tr(X−1Y ) +

1

2
Tr(Y −1X)− n (5)

The Stein and Jeffrey divergence are similar to geodesic dis-

tance induced by AIRM [22].

Definition 4 (Log-Euclidean Metric, LEM) For two SPD

matrices X,Y ∈ S++
n , the Log-Euclidean Distance (LED)

[2, 32], is defined by Frobenius norm in the tangent space

at identity matrix In:

d2LEM (X,Y ) = ‖ log (X)− log (Y ) ‖2F (6)

Accordingly, the SPD manifold will be reduced to a flat Rie-

mannian space [2] while endowed with LEM.

2.2. Log-Euclidean Framework

In the Log-Euclidean framework, the matrix logarithm

log(·): S++
n →Sn is smooth and bijective, and its inverse

map, denoted by exp(·), is smooth as well. Figure 1 il-

lustrates these two operations on SPD manifold. The Log-

Euclidean Kernel [32] is derived by computing the inner

product in the domain of logarithm matrix:

kLogE(X,Y ) = Tr(log(X)log(Y )) (7)

where Tr denotes the matrix trace. The Log-Euclidean ker-

nel is a positive definite kernel and has been shown to meet

Mercer’s conditions in [32]. The operations logarithmic

multiplication and scalar logarithmic multiplication are the

corresponding Euclidean operations in the domain of loga-

rithm matrix, followed by an inverse mapping back to the

SPD manifold via the operation of matrix exponential (In-

terested readers can refer to [2,19] for details). We thus can

propose the operation of mean centralization on SPD matri-

ces.



Proposition 1 In line with the brief overview of the Log-

Euclidean framework [2, 19], we define the operation of

mean centralization on SPD matrices in three steps. Firstly,

we map the SPD matrices into the domain of logarithm ma-

trix. Then, we centralize the resulting symmetric matrix by

an operation that is similar to centering the kernel matrix

in [7]. Finally, we map the centralized matrices back to

SPD manifold via exponential mapping. For an arbitrary

real n×n SPD matrix X ∈ S++
n , the operation of mean

centralization can be written as:

X̃ = exp(X̂)

where [X̂]i,j = [log(X)]i,j −
1

n

n
∑

i=1

[log(X)]i,j

− 1

n

n
∑

j=1

[log(X)]i,j +
1

n2

n
∑

i,j=1

[log(X)]i,j

(8)

Here, X̃ is the result of our proposed mean centralization

operation applied to the SPD matrix X .

Inspired by the broad applications of arc-cosine kernel

[6] in the Euclidean space and a family of Log-Euclidean

kernels proposed in [19], we propose Log-Euclidean frame-

work based arc-cosine kernel(LogE.Arc kernel), which ex-

tends the well-known arc-cosine kernel onto the nonlinear

Riemannian manifold of SPD matrices.

Definition 5 (arc-cosine kernel) Let x, y ∈ Rd be two vec-

tors. The arc-cosine kernel can be expressed as the angle θ
between the samples [6] as:

θ = arccos(
x · y

‖ x ‖‖ y ‖ ) (9)

In [6], the arc-cosine kernel has a simple formulation,

which depends on the magnitude of the vectors and the an-

gle between them. It can be defined as:

kr(x, y) =
1

π
‖ x ‖r‖ y ‖rJr(θ) (10)

where the angular dependence function Jr(θ) for different

orders r ≥ 0 is defined as:

Jr(θ) = (−1)r(sin θ)2r+1(
1

sin θ

∂

∂θ
)r(

π − θ

sin θ
) (11)

The arc-cosine kernel function kr(x, y) has different prop-

erties that are shared respectively by radial basis function

(RBF), linear, and polynomial kernels (Interested reader can

refer to [6] for the details of the arc-cosine kernel). Moti-

vated by the work in [19] and the Log-Euclidean frame-

work, the inputs, x, and y, of arc-cosine kernel can not only

be vectors in the Euclidean space, but also SPD matrices on

the curved Riemannian manifold. Thus, the Log-Euclidean

framework based arc-cosine kernels can be defined as:

krLogE.Arc(x, y) =
1

π
‖ log(x) ‖rF ‖ log(y) ‖rFJr(θ) (12)

Here x, y ∈ S++
n and Jr(θ) has the same formulation as

Eq.11, θ is the angle between the inputs that are mapped

into the domain of logarithm matrix:

θ = arccos(
Tr(log(x) log(y))

‖ log(x) ‖F ‖ log(y) ‖F
) (13)

The arc-cosine kernel given in (Eq.12) sets up a Log-

Euclidean framework for constructing kernels on SPD man-

ifold, which measures the similarity of SPD matrices and

referred to as Log-Euclidean framework based arc-cosine

kernel (LogE.Arc kernel). The LogE.Arc kernels of differ-

ent orders are the corresponding arc-cosine kernels in the

domain of logarithm matrix which inherit the correspond-

ing property (RBF, etc.) in the vector space.

3. Proposed Framework

In this section, we first give a brief overview of tradi-

tional CovDs for describing image sets and then present our

proposed CovDs-S. Finally, we compare our CovDs-S with

other improved versions of CovDs.

3.1. Traditional Covariance Descriptors

Consider a feature matrix (Fig.2 step (b)) of an image set

with n images: S = [s1, s2, ..., sn], where si ∈ Rd is the

d-dimensional feature vector representing the i-th image.

Color images need to be processed as grayscale images and

the d-dimensional feature vectors are obtained by vectoriz-

ing the grayscale images. Using the traditional CovDs, the

representation [32] of this image set can be obtained by:

C =
1

n− 1

n
∑

i=1

(si − s̃)(si − s̃)T = S̃S̃T

where S̃ = (n− 1)−
1

2 (S − s̃1Tn )

(14)

and s̃ = 1
n

∑n

i=1 si is a d-dimensional mean vector of

the feature matrix S. S̃ is the mean centralized matrix

(Fig.2 step (c)), and 1n is a column vector of n ones. The

covariance matrix, C, can also be viewed as the kernel

matrix between mean centralized feature vectors of the

corresponding pixels (the rows of mean centralized matrix

S̃) via linear kernel (Fig.2 step (d)):

C = (Ci,j)i,j=1,...,d

where Ci,j = klinear(S̃(i,:), S̃(j,:)) = S̃(i,:)S̃
T
(j,:)

(15)

where S̃(i,:) ∈ Rn denotes the i-th row of S̃, which is also

the feature vector that represents i-th pixel of n images. Ci,j

is the result of a linear kernel operation between S̃(i,:) and

S̃(j,:) and denotes the similarity between i-th pixel and j-th

pixel.



Figure 2. The flow chart of traditional covariance descriptors (CovDs) and our proposed framework (CovDs-S). Top: traditional CovDs

for describing image set. Bottom: our proposed framework for describing image set.

3.2. Proposed Framework for Image Set Coding

Our proposed framework offers lower-dimensional and

more discriminative representation for describing image

sets than the traditional CovDs. For the sub-volumes of

an image set (Fig.2 step (â)), namely sub-image sets, we

use SPD matrices to describe them via a Gaussian embed-

ding. We then centralize these SPD matrices and use the

LogE.Arc kernel to operate on the resulting mean central-

ized SPD matrices. Finally, the image set representation in

our proposed framework is the kernel matrix defined by the

mean centralized SPD matrices associated with the corre-

sponding sub-image sets. We first give a brief overview of

the Gaussian embedding and elaborate the bottom row of

Figure 2 to describe our framework.

The feature matrix S = [s1, s2, ..., sn], as introduced in

the sub-section of traditional CovDs, can also be described

by a Gaussian model. The space spanned by a Gaussian

model is a Riemannian manifold, and Gaussian embedding

can embed this special manifold into SPD manifold [31]:

N(µ,Σ) ∼ G(β) =

[

Σ+ β2µµT βµ
βµT 1

]

(16)

where µ is a d-dimensional mean vector of S and Σ is a real

d×d covariance matrix. β > 0 is a parameter balancing the

covariance matrix and the mean vector, The resulting ma-

trix G(β) ∈ R(d+1)×(d+1) is an SPD matrix and used as de-

scriptors for sub-image sets(Fig.2 step (f)) in our proposed

framework.

The bottom row of Figure 2 shows the flow chart of our

proposed framework. We first obtain 4 sub-image sets via a

sliding window(Fig.2 step (â), where the particular 4 sub-

image were selected just for demonstration. Their choice is

not fixed in our framework). Then we use four SPD matri-

ces (Fig.2 step (f)) to represent sub-image sets via Gaussian

embedding (Eq.8) and obtain four mean centralized SPD

matrices: S̃p1, S̃p2, S̃p3, S̃p4(Fig.2 step (g)) via the opera-

tion of mean centralization. Finally, the resulting represen-

tation (Fig.2 step (h)) is the sum kernel matrix of the four

mean centralized SPD matrices via the LogE.Arc kernels of

different orders(Eq.12). To this end, the resulting represen-

tation can generally be defined as:

CCovDs−S =

R
∑

r=0

wrCr

where Cr = ([Cr]i,j)i,j=1,...,N

and [Cr]i,j = krLogE.Arc(S̃pi, S̃pj)

(17)

where N is the number of the sub-image sets, which is

the key parameter determining the dimensionality, R is the

number of orders selected for LogE.Arc kernel. S̃pi is the

mean centralized SPD matrix, which is the representation

of the i-th sub-image set. Cr is the local kernel matrix us-

ing the r-th order LogE.Arc kernel function between mean

centralized SPD matrices: S̃p1,S̃p2,...,S̃pN . The resulting

representation: CCovDs−S is the sum kernel matrix (The

sum of kernels is also a p.d kernel [27]) of the local ker-

nel matrices multiplied by the corresponding weight wr.

[CCovDs−S ]i,j denotes the similarity of the i-th sub-image

set and j-th sub-image set.

3.3. Learning weights via Kernel Alignment

In this sub-section, we learn, via the kernel target align-

ment, the weight coefficients wr associated with the r-th

order LogE.Arc kernel for our proposed framework via the



kernel target alignment.

Definition 6 (Kernel Alignment [7, 27]) The kernel align-

ment aims to align an input kernel matrix K to a target

kernel matrix KT . It is defined as:

ρ(K,KT ) =
< K,KT >F√

< K,K >F< KT ,KT >F

(18)

the result of Eq.18 can be viewed as the cosine of the

angle between K and KT . The weight coefficients

W = [w0; ...;wR] should be estimated by maximizing the

ρ(KW ,KT ). KW is the global kernel matrix obtained as

the sum of local kernel matrices of different orders. The

kernel alignment has the following optimization formula-

tion [7]:

W ∗ = argmax ρ(KW ,KT ) = argmax
Tr(KWKT )

√

Tr(KWKW )
(19)

We now introduce the kernel matrices: KW and KT . Given

a set of training samples X = [x1, x2, ..., xN ], where

xi =
∑R

r=0 wrC
i
r is our proposed representation for the

i-th image set and Ci
r is the r-th order LogE.Arc kernel ma-

trix between sub-image sets constructed from the i-th image

set by image division, and the corresponding label matrix

Y = [y1, y2, ..., yN ]T for the N samples, where yi ∈ RC

contains the class label information of i-th sample and the c-
th element of yi is 1 if xi is from the c-th class. In this paper,

the global kernel matrix KW is the sum of Kr
w multiplied

by the weight wr: KW =
∑R

r=0 wrK
r
w and Kr

w is the local

kernel matrix between C1
r , ..., C

N
r : [Kr

w]i,j = Tr(Ci
rC

j
r ).

The target kernel matrix KT is defined via label matrix:

KT = Y Y T . As introduced in [7], the objective function in

Eq.19 can be rewritten as:

W ∗ = argmax
‖W‖=1

WTββTW

WTΩW
(20)

where ‖ W ‖ = 1 is a regularization term. β is defined by

βi = Tr(K̂i
wKT ), where K̂i

w is the centralized matrix of

the kernel matrix Ki
w [7,27], and the matrix Ω is defined by

Ωi,j = Tr(K̂i
wK̂

j
w).

According to Proposition 2 in [7], the solution W ∗ of

Eq.20 is given by:

W ∗ =
Ω−1β

‖ Ω−1β ‖ (21)

3.4. Comparison with other Improved Versions of
traditional CovDs for Image Set Coding

As far as we know, the works in [4, 20, 30] are the only

three improved versions of traditional CovDs for describing

image sets. It is desirable to manifest their connections and

differences.

Wang et al [30] proposed an open framework2 to use the

kernel matrix over feature dimensions as a generic repre-

sentation. This work uses a non-linear kernel matrix as the

representation, but the kernel functions are defined in the

Euclidean space and the resulting representation describes

similarities between pixels at different locations, as the tra-

ditional CovDs [30]. Our work proposes to capture the sim-

ilarities between sub-image sets that contain more useful

information. It extends the acr-cosine kernel onto the SPD

manifold for this purpose.

Li et al [20] extended the descriptive granularity of co-

variance matrix from traditional pixel-level to more general

patch-level. Though this work concentrates on the patch-

level covariance computation, it is actually a sum-pooling

form of the pixel-level covariance. There is an essential

difference in the way of descriptor computation. For de-

scribing image sets, we use the kernel matrix computed on

SPD manifold as the resulting representation instead of the

covariance matrix computed in the Euclidean space [20].

Moreover, we use the SPD matrices to represent sub-image

sets instead of the feature matrices consisting of intensity

values [20].

Chen et al [4] proposed a framework3 to generate low-

dimensional discriminative data representation for describ-

ing image sets and concentrated on characterising the simi-

larities between sub-image sets instead of pixels. The main

difference his approach and our method is that we combine

arc-cosine kernels of different orders in the domain of log-

arithm matrix instead of using a linear kernel [4]. More-

over, we obtain our sub-image sets via the sliding window

technique instead of dividing images into non-overlapping

blocks [4] and use the Gaussian embedding to model them.

The work in [4] is a special case of our proposed framework.

4. Experiments and Analysis

This section presents comparative experimental results

of our proposed framework with state-of-the-art (SOTA)

methods for the task of image set classification.

4.1. Datasets and settings

In our first experiment involving the task of image

set classification, we consider the Cambridge hand-gesture

(CG) dataset [15] that contains nine categories of samples

and nine hundred image sets. Each class has twenty im-

age sets chosen for training at random, and the remaining

eighty image sets are reserved for testing. In the ETH-80

dataset [18], there are eight categories of samples and eighty

image sets. For each class, five image sets are randomly

chosen as training samples and the remaining five image

sets are used for testing. In the Virus cell dataset [17], there

2https://www.uow.edu.au/ leiw/
3https://github.com/Kai-Xuan/ComponentSPD/



Table 1. Average recognition rates and standard deviations of different descriptors.

Methods Descriptors CG [15] ETH-80 [18] Virus [17] MDSD [24]

NN-AIRM

CovDs [32] 51.82±2.55 70.12±5.24 27.57±4.34 13.08±4.05

CovDs-B [30] 71.87±2.47 89.17±3.48 36.57±5.00 23.67±5.55

CovDs-P [20] 87.49±1.41 87.83±4.61 67.40±6.19 22.51±4.56

CovDs-C [4] 89.07±1.15 94.53±2.55 40.17±6.07 21.13±5.68

CovDs-S (Ours) 90.21±1.27 94.18±3.69 67.60±4.76 32.38±5.60

NN-Stein

CovDs [32] 40.66±2.62 57.08±5.62 27.43±4.90 12.67±4.25

CovDs-B [30] 75.06±2.32 88.32±3.71 35.17±4.48 22.92±6.17

CovDs-P [20] 79.97±2.30 88.75±4.69 67.03±6.14 21.77±4.16

CovDs-C [4] 89.76±1.23 94.10±2.90 39.83±6.18 19.51±5.42

CovDs-S (Ours) 90.30±1.28 94.18±3.69 67.70±4.80 31.51±5.89

NN-Jeffrey

CovDs [32] 82.45±1.38 86.12±4.81 30.80±5.49 18.56±4.77

CovDs-B [30] 59.38±2.42 90.13±3.58 40.03±5.81 23.67±5.37

CovDs-P [20] 83.07±1.44 87.63±4.54 65.37±6.55 21.67±4.29

CovDs-C [4] 89.52±1.14 94.60±2.79 40.97±6.54 24.00±5.30

CovDs-S (Ours) 90.02±1.22 94.68±3.64 67.50±4.79 33.03±5.72

NN-LEM

CovDs [32] 67.47±1.93 78.17±5.59 25.97±4.62 13.74±4.52

CovDs-B [30] 73.18±2.39 90.65±3.79 36.07±4.22 24.87±5.51

CovDs-P [20] 89.44±1.17 88.27±4.24 67.57±6.61 24.90±4.96

CovDs-C [4] 90.24±1.09 93.48±3.16 40.57±5.53 21.54±5.31

CovDs-S (Ours) 90.49±1.31 94.07±3.77 68.10±4.88 32.23±6.08

Ker-SVM

CovDs [32] 91.54±1.16 92.60±5.15 65.83±5.63 35.74±6.11

CovDs-B [30] 92.31±1.13 94.18±3.69 73.77±5.82 37.79±5.76

CovDs-P [20] 94.34±1.02 94.52±3.64 75.40±6.01 35.54±6.47

CovDs-C [4] 93.81±1.01 95.45±2.85 53.63±6.80 38.08±6.05

CovDs-S (Ours) 94.36±0.98 97.07±2.66 77.93±5.03 43.92±6.09

are fifteen categories of samples and 100 images in each

category. We divided the images of each category equally

into five different image sets and obtained seventy-five im-

age sets. For each class, three image sets are randomly cho-

sen as training samples and the remaining two image sets

for testing. The MDSD dataset [24] has been used for the

task of dynamic scene classification. Following the settings

in [27], we test the method based on the protocol of seventy-

thirty-ratio (STR) which chooses seven videos for training

and three videos for testing in each class.

4.2. A Comparison with Existing Descriptors

For the comparative experiments with existing descrip-

tors [4,20,30], we first resize all images to 24×24 and then

use the intensity values to generate their corresponding rep-

resentations. For our proposed framework, the sub-image

sets are obtained by 6× 6 sliding window with spatial step

of 2 pixels for the CG, ETH-80 and MDSD datasets, and

spatial step of 3 pixels for the Virus dataset. In total, we

obtain 100 sub-image sets for theCG, ETH-80 and MDSD

datasets and 49 sub-image sets for the Virus dataset. In our

framework, we set parameter r in LogE.Arc kernel to be r
= [0, 1, 2, 3], and the value of β in Eq.16 depends on the

datasets, which is 0.05, 0.9, 14, 2 for the four datasets re-

spectively. For the learned W = [w0, ..., wR], we set first

two largest absolute values to be 1 and another two values

to be zero on ETH-80, Virus and MDSD datasets. We set

the largest absolute value to be 1 and another three values

to be zero on theCG datasets. We regularize the traditional

CovDs: C∗ = C + λI to avoid the matrix singularity as

introduced in [32], and set λ to 10−3 × Tr(C). To gen-

erate the descriptor in [30], we obtain the final kernel ma-

trix representation via RBF kernel that has been shown to

produce better accuracies [30]. For the fairness of the com-

parative experiments, the patch size in [20] and block size

in [20] are all 6× 6 and the step size is the same as the set-

ting used by our proposed CovDs-S on the corresponding

dataset. The different descriptors evaluated in our experi-

ments are referred to as:

CovDs: Image set repesented by traditional CovDs [32].

CovDs-B: Image set repesented by the method in [30].

CovDs-P: Image set repesented by the method in [20].

CovDs-C: Image set repesented by the method in [4].

CovDs-S: Image set repesented by our framework.

In our experiments, five classification algorithms are

used to verify the validity of our proposed CovDs-S, which

include four nearest neighbor (NN) algorithms based on

AIRM, Stein divergence, Jeffrey divergence, LEM and the

well-known SVM classifier [3]. The different methods

tested in our experiments are referred to as:

NN-AIRM: AIRM-based NN classifier.

NN-Stein: Stein divergence-based NN classifier.



Table 2. Average recognition rates and standard deviations of different classifiers.

Methods CG [15] ETH-80 [18] Virus [17] MDSD [24]

COV-LDA [32] 90.25±1.64 93.95±4.30 46.40±5.76 34.10±5.90

COV-PLS [32] 88.95±1.26 94.23±4.63 62.84±5.99 36.74±5.62

LogEKSR.Pol [19] 92.32±1.19 95.00±3.28 58.53±6.54 36.23±6.81

LogEKSR.Exp [19] 92.23±1.18 95.10±3.20 59.03±6.38 36.59±6.88

LogEKSR.Gau [19] 92.33±1.18 95.18±3.30 61.80±6.35 37.95±6.83

LEML [13] 88.18±1.29 93.05±3.31 33.00±5.70 25.97±6.79

LEML+COV-LDA [13] 89.09±1.63 95.35±3.50 58.03±5.84 31.92±6.44

LEML+COV-PLS [13] 86.36±1.35 95.83±3.04 59.40±6.22 35.90±6.98

SPDML-LEM [10] 84.03±1.04 90.63±4.19 49.37±7.46 24.23±4.47

SPDNet [12] 92.03±1.46 95.50±3.69 59.70±4.58 33.76±5.04

MMML [33] 92.87±1.39 95.28±3.80 51.13±7.60 31.95±6.26

KS-CS-LEK 93.63±1.08 95.38±2.92 74.93±5.92 39.33±7.00

KS-CS-LogE.Pol 93.95±0.94 97.30±2.55 75.17±4.86 42.72±6.20

KS-CS-LogE.Exp 93.68±0.90 95.40±3.03 70.90±5.60 42.67±7.04

KS-CS-LogE.Gau 93.90±0.91 95.65±2.86 71.87±5.18 41.15±6.33

KS-CS-LogE.Arc 94.36±0.98 97.07±2.66 77.93±5.03 43.92±6.09

NN-Jeffrey: Jeffrey divergence-based NN classifier.

NN-LEM: LEM-based NN classifier.

Ker-SVM: LEK-based SVM classifier.

Here, Ker-SVM is a one-vs-all SVM classifier4 imple-

mented by Wang et al. Table 1 shows the average recogni-

tion rates and standard deviations of different descriptors

with the same classifiers. In addition to the results with

NN-AIRM on the ETH-80 dataset, the recognition rates of

CovDs-S are higher than other four descriptors while using

the same classification algorithm. This confirms that our

CovDs-S captures more discriminative information than the

other methods. In particular, the accuracy of CovDs-C is

not as high as shown in Table 1 if the setting follows the

recommendations made in [4].

4.3. Comparison with Existing Classifiers

Here, we compare our method with the SOTA al-

gorithms including Covariance Discriminative Learning

(COV-LDA, COV-PLS) [32], Log-Euclidean Kernels for

Sparse Representation (LogEKSR.Pol, LogEKSR.Exp and

LogEKSR.Gau) [19], SPD Manifold Learning based on

LEM (SPDML-LEM) [10], Log-Euclidean Metric Learning

(LEML, LEML+COV-LDA, LEML+COV-PLS) [13], Rie-

mannian Network for SPD Matrix Learning (SPDNet) [12]

and Multiple Manifolds Metric Learning (MMML) [33].

For these methods, we first resize all images to 20 × 20
and use the intensity values as their features.

We use the Ker-SVM tested on the representations ob-

tained by our framework as our proposed classification al-

gorithm. In addition to the LogE.Arc kernel (introduced

above) used in our framework, we also consider other types

4http://www.peihuali.org/publications/RAID-G/RIAD-G V1.zip

of kernel functions to enrich our framework, such as Log-

Euclidean Kernel (LEK) [32], Log-Euclidean based poly-

nomial (LogE.Pol), exponential (LogE.Exp) and Gaussian

kernels (LogE.Gau). Our framework based classifiers are

reffered as:

KS-CS-LogE.Arc: Ker-SVM tested on CovDs-S (intro-

duced above).

KS-CS-LEK: Ker-SVM tested on the representations via

our framework where the LogE.Arc kernel replaced by LEK

KS-CS-LogE.Pol: Ker-SVM tested on the representations

via our framework where the LogE.Arc kernelis replaced by

LogE.Pol kernel

KS-CS-LogE.Exp: Ker-SVM tested on the representations

obtained by our framework, where the LogE.Arc kernel is

replaced by LogE.Exp kernel

KS-CS-LogE.Gau: Ker-SVM tested on the representations

produced by our framework, where the LogE.Arc kernel is

replaced by LogE.Gau kernel

As shown in Table 2, the classifiers based on our fram-

work produce better performance than other SOTA meth-

ods. The advantage of our methods is very obvious on the

Virus and MDSD datasets, where image samples contain

a large amount of noise. Our method KS-CS-LogE.Arc

achieves the best recognition rate of 94.36%, 77.93% and

43.92% on the CG, Virus and MDSD datasets. Our frame-

work based KS-CS-LogE.Pol achieves the best recogni-

tion rate of 97.30% on the ETH-80 dataset and KS-CS-

LogE.Arc achieves the second best recognition rate of

97.07%.

4.4. Ablation Experiments

In this subsection, we validate the contributions of each

component in CovDs-S and analyze the effect of image



Table 3. The accuracies and standard deviations of variants.

Descriptors CG [15] ETH-80 [18] Virus [17] MDSD [24]

CovDs-S-GE 94.18±0.88 96.73±2.90 60.00±6.21 40.10±6.68

CovDs-S-KA 91.76±1.26 96.62±3.02 74.63±5.14 43.79±6.16

CovDs-S-MC 94.34±0.97 97.07±2.66 77.67±4.68 43.74±6.10

CovDs-S-IM90 94.32±1.00 97.07±2.66 77.40±4.70 43.90±6.16

CovDs-S-IM180 94.34±0.97 97.07±2.66 77.83±4.95 43.92±6.06

CovDs-S-IM270 94.33±0.99 97.07±2.66 77.53±4.56 43.95±6.26

Figure 3. The infulence of different sub-image size and step size.

rotation and sub-image sizes. To this end, CovDs-S is

used in the following variants: CovDs-S without Gaussian

embedding (CovDs-S-GE), CovDs-S without kernel align-

ment (Coves-S-KA), CovDs-S without mean centralization

(CovDs-S-MC), CovDs-S with image rotation 90◦ (CovDs-

S-IM90), CovDs-S with image rotation 180◦ (CovDs-S-

IM180) and CovDs-S with image rotation 270◦ (CovDs-S-

IM270).

Table 3 shows the accuracies and the standard deviations

of the different kernel variants in conjunction with the Ker-

SVM classifier on the four datasets. From the results in

this table, we can conclude that the contribution of Gaus-

sian embedding and kernel alignment are more significant

than the effect of mean centralization of our CovDs-S. In

theory, the mean centralization operation corresponds to the

standard normalization operation used in traditional CovDs.

It appears that in the case of our framework, this operation

does not impact on accuracy. According to the last three

rows of the table, CovDs-S is also not sensitive to image

rotation.

Figure 3 shows the effect of sub-image size and step

size on the recognition rates of KS-CS-LogE.Arc. In the

horizontal ordinate in the form of ’a/b’, ’a’ represents the

sliding window size, and ’b’ denotes step size. The results

show clearly that the proposed framework performs bettter

when the sub-image size is 6×6. In that case, our CovDs-S

achieves the best accuracies on the CG, ETH-80 and MDSD

datasets when the step size is 2 pixels. When the step size

is set as 3 pixels, our CovDs-S achieves the best accuracies

on the Viurs dataset.

Table 4. Time comparisons on ETH-80 dataset.

CovDs
CovDs-S

LEK LogE.Pol LogE.Exp LogE.Gau LogE.Arc

GT 20.15 48.67 48.74 49.32 49.20 51.83

NN-AIRM 28.77 1.248 1.252 1.248 1.250 1.249

Ker-SVM 2.07 0.056 0.056 0.056 0.056 0.055

4.5. Advantages of Our Framework

From the superior results in Table 1 and Table 2, we

can conclude that our proposed framework captures more

discriminative information for the task of image set classi-

fication than other methods. The superior performance is

particularly notable for noisy samples. Moreover, the di-

mensionality of the representation obtained via our frame-

work is related to the number of sub-image sets(100 or 49),

which is far lower than that of the traditional CovDs. Table

4 shows the run time for representative methods (NN-AIRM

and Ker-SVM), as well as the generating time (GT) required

for different descriptors on the ETH-80 dataset, where the

unit of time is one second. The representations extracted

by our framework require far less time than the traditional

CovDs. With the recommended settings in the experiments,

our proposed representations tend to be nonsingular. The di-

mensionality of the feature representation for the sub-image

set is (1 + (62 + 1))(62 + 1)/2 = 703. The resulting rep-

resentation can also be viewed as corresponding to the ker-

nel matrix (arc-cosine kernel, etc. in the Euclidean space)

of 100 × 703 or 49 × 703 feature matrix S as traditional

CovDs. Here, we cannot be sure about the nonsingularity

for the resulting kernel matrix, but it is more likely to hold

for an SPD matrix than a traditonal covariance matrix.

5. Conclusion And Future Work

We proposed a novel framework extending CovDs from

the Euclidean to an SPD manifold. It generates a kernel ma-

trix defined by the representations of sub-image sets instead

of pixels. Our method provides a lower-dimensional data

representation, which is beneficial for improving the effi-

ciency of classifiers. The experimental results show that the

representation obtained by our proposed framework is more

discriminative than other methods when performing the task

of image set classification. In future, we will consider how

to extend our proposed framework to Reproducing Kernel

Hilbert Space (RKHS).
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