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Abstract

This work explores how to use self-supervised learning on
videos to learn a class-specific image embedding that en-
codes pose and shape information. At train time, two frames
of the same video of an object class (e.g. human upper
body) are extracted and each encoded to an embedding.
Conditioned on these embeddings, the decoder network is
tasked to transform one frame into another. To successfully
perform long range transformations (e.g. a wrist lowered
in one image should be mapped to the same wrist raised
in another), we introduce a hierarchical probabilistic net-
work decoder model. Once trained, the embedding can
be used for a variety of downstream tasks and domains.
We demonstrate our approach quantitatively on three dis-
tinct deformable object classes — human full bodies, upper
bodies, faces — and show experimentally that the learned
embeddings do indeed generalise. They achieve state-of-
the-art performance in comparison to other self-supervised
methods trained on the same datasets, and approach the
performance of fully supervised methods.

1. Introduction

How much information is needed to learn a representa-
tion of an object class? Do we require separate representa-
tions for different aspects: e.g. one representation for 3D,
another for pose, another for 2D landmarks? We investigate
how to learn a single representation for a given object class
that encodes multiple properties in a self-supervised man-
ner. This representation can be used for further downstream
tasks and domains with minimal additional effort.

We learn this representation — which we call an image
embedding — in a self-supervised manner from a large col-
lection of videos of that object class (e.g. human upper bod-
ies, or talking heads). The principal assumption is that of
temporal coherence — that frames of the video contain the
object class, but no additional prior auxiliary information is
required.

In order to learn the image embedding from a video
dataset, the following proxy task is used. Given two frames
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Figure 1. The aim of this work is to obtain a class-specific im-
age embedding by self-supervised learning on a large collection
of videos. The learned embedding can then be used for a variety
of downstream tasks and datasets.
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from the same video, their image embeddings are used to
warp one of the frames into the other.

We want to model long range dependencies at high res-
olutions, for example large hand movements. In order to
do this, we instantiate the warp probabilistically — for every
pixel in one frame, we would like to predict the probability
that that pixel corresponds to every other pixel in the other
frame. Doing this naively is computationally prohibitive
above a small (e.g. 32 x 32) resolution.

As a result, we use a hierarchical approach to perform
this operation. The model first learns the probabilities at a
low resolution, before refining the probabilities at succes-
sive layers while conditioning on the lower resolution pre-
dictions. While solving the proxy task at a small resolution
may seem trivial, in fact low resolution images encode im-
portant salient information such as spatial layout and con-
text [46]. This approach is inspired by the classical (i.e. pre
deep learning) multi-resolution methods employed for opti-
cal flow and stereo matching [1, 4, 26, 29].

The embedding, trained using only pairs of video frames,
is then used for the tasks of predicting landmarks and their
visibility on a variety of datasets which may differ substan-
tially from the initial dataset. Our paradigm is useful in
applications, as it requires only one large network per class
and one additional small network per down stream task.

In summary, our contributions are as follows.

1. A self-supervised class embedding (Section 3) that can



model complex large movements, e.g. the movement
of arms or hands.

2. A hierarchical probabilistic network that allows us to
estimate the probability that a given pixel in a given
frame matches each pixel in another frame of the same
video for high resolution images.

3. Two additional losses for learning this embedding. The
confidence loss (Section 3.2) allows the model to ex-
press what portions of the target image can be reliably
predicted from the source and what portions cannot.
The cyclic loss (Section 3.3) enforces that the model
does not degenerate into a trivial solution.

4. We demonstrate that the method learns a useful rep-
resentation that can be used for downstream tasks on
the same or different domains for a variety of object
classes. Our method achieves state-of-the-art perfor-
mance in comparison to other self-supervised methods
trained on the same datasets. Finally, we show qualita-
tive examples of using our approach for a non-human
class, that of horses.

2. Related work

Here, we focus on self-supervised learning from video.
We also cover class specific modelling, where a model of
the object is extracted using auxiliary information and then
applied to novel images.

Self-supervised learning on video collections. Learning
from video [2, 10, 15, 17, 21, 22, 30, 31, 35, 40, 42, 47,

, 62, 64] is a powerful paradigm, as unlike with image
collections, there is additional temporal and sequential in-
formation. The aim of self-supervised learning from video
can be to learn to predict future frames [47], or to learn
to predict depth [12, 14, 62]. However, we are interested in
learning a set of useful features (e.g. frame representations).

One approach is to use the temporal ordering or co-
herence as a proxy loss in order to learn the representa-
tion [10, 17, 22, 24, 30, 31, 49, 52, 64]. Other approaches
use egomotion [2, 21] in order to enforce equivariance in
feature space [21]. In contrast, [23] predicts the transfor-
mation applied to a spatio-temporal block. Instead of en-
forcing constraints on the features, one can learn features
using a generative task of future or input frame predic-
tion [15, 40, 42]. Another approach is to use colourisation
to learn features and to track objects [48].

Unlike these works, our focus is to learn a feature repre-
sentation for a specific class, which can be used to predict
class-specific attributes. Most similar to our method is [53]
which uses video to learn a representation of faces. How-
ever, they do not consider other object classes.

Self-supervised learning of landmarks. Instead of using
proxy tasks to learn useful features, another line of self-
supervised learning is to explicitly learn a set of landmarks.
This can be done by conditioning image generation on the
image landmarks [19, 60]. Another approach is to recover
object structure by enforcing equivariance to image trans-
formations [43, 44].

3. A self-supervised representation

This section introduces our self-supervised model and
architecture (Fig. 2). The model is trained for the proxy task
of transforming one frame into another frame in a hierarchi-
cal manner (Section 3.1). We allow the model to express un-
certainty (Section 3.2) and use additional cyclic constraints
(Section 3.3) to stop the learned transformation from degen-
erating. This gives the final training objective. We introduce
the framework for the case of human upper bodies, but the
same framework is used for the other classes considered in
this paper (full human body, talking faces, horses).

3.1. Proxy task to train the network: Modelling the
transformation between images

A source frame Ig and a target frame I are randomly
selected from the same video. The proxy task to train the
model consists of learning how to warp the source frame
I into the target frame I7. Both frames are mapped, us-
ing a convolutional encoder with shared weights, to image
embeddings eg and et respectively.

Conditioned on these embeddings, the model predicts
the probability of a pixel in the generated frame I match-
ing each pixel in Ig. These probabilities are used to gen-
erate the colour of a pixel by taking the weighted average.
To introduce our notation, let Is,, and I,; be the colours
for pixel locations (k,1) and (¢, j) in the source and target
frame respectively. The network predicts the colour in the
generated frame I at pixel location (4, j) as a linear com-
bination of pixels in the source frame

Ig,;, = ZAz‘j,kzIsw (1)
Tl

where A 1 is the probability that a pixel Ir;; in the target
frame matches a pixel Ig,, in the source frame. We explic-
itly predict the match similarity M »; between a pixel Ig,,
and ITu and normalise the M,; 1; to give A;; 1 (see Egs.
(3)-(5)). Ig should match the target frame I (Fig. 2a),
which we enforce using a photometric L1 loss

Lon = |Ig — Ir|i. 2

While using the naive weighted sum works for smaller
resolution images, for larger images this becomes compu-
tationally prohibitive. To deal with this problem, we in-
troduce our hierarchical approach (Fig. 2b). Learning in a
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Figure 2. An overview of the approach. (a) The proxy task used to train the model. Given a source frame /s and a target frame Ir, our
model learns a mapping A" to warp the source frame into a generated frame I. I¢ should match Ir. (b) The model in more detail.
The two frames are mapped to embeddings es, er. Conditioned on these embeddings, the model predicts the warp at an initial resolution
R; = (32 x 32) as well as a confidence o' for each pixel. These predictions are then refined at successively higher resolutions. (c)

(c) Increasing resolution R,._; to R, for K=2

Ilustration of how the predicted M" at each resolution R, are used to determine the warp A".

hierarchical manner has been found to be useful in a num-
ber of tasks [9, 27, 28, 50, 51]. In our case, the network
learns to determine roughly how to transform points (e.g.
bigger parts of the image, like the arms) at a low resolution
(M atlevel 1). This transformation is refined progressively
at higher resolutions (M" at level 7). At these higher lev-
els, the network can learn to focus on the details (e.g. the
placement of the wrists). This can be regarded as a form of
curriculum learning [3] where the decoder is progressively
expanded in levels which increase the resolution of the gen-
erated image.

Probabilistic prediction at a low resolution (Training
level 1). At the lowest resolution, Ry = (W x W;) =
(32 x 32), we explicitly predict the probability lej «; that
each point (k,!) in the source frame matches each point
(7,7) in the target frame. We then take the weighted av-
erage to obtain the probability distribution Azlj, Kl

Azlj,kl = eXp(lej,kl)/ ZGXP(M%j,mn) (3)

Using the computed probability distribution, we obtain the
generated frame (Eq. (1)).

Refining the prediction at a higher resolution (Train-
ing level .) Given the generated frame 7, 8_1 at resolution
R, _1, we seek to refine [ 5_1 to obtain I, at a higher resolu-
tion R,.. For a given location (i, j), the highest A}j’ 1 give
the most likely locations that (7, j) points to in the source
frame. We will use this to limit the locations we consider at
the higher resolution (see Fig. 2c¢).

In a traditional CNN, as we decode, we would have to
keep track of the probabilities for a pixel (¢, j) matching

every pixel (k, ) in the source frame at that resolution. So
doubling the resolution of the generated image at each layer
requires quadrupling the number of predicted probabilities.
Our insight is that keeping track of all of these probabilities
is unnecessary. For a given pixel (i, j), we can throw away
the unlikely matches at lower resolutions (effectively set-
ting them to 0) while keeping track of the top K matches.
Then when we double the resolution at the next layer, we
only need to predict 4K values (if the width and height of
the generated image has doubled, then one pixel at the lower
level corresponds to four pixels at the higher level as illus-
trated in Fig. 2 c¢)). Instead of using these predicted 4K
values as raw probabilities we use them to re-weight the
probabilities predicted at the lower resolution to make the
process differentiable. This leads to a sparser representa-
tion that grows quadratically.

The M -branch decoder is used to obtain the 4K values
M. These are multiplied by the probabilities at the lower
resolution and a softmax normalisation is performed to ob-
tain the final probability distribution A":

T _ r—1 T
Piaw = A1)140 18105 Misw )
A;jvkl = eXp<P;j,kl>/ Zexp(P;],mn) (5)

Discussion. Our aim is to compute a cost volume that mod-
els the probability distribution of where a pixel in the target
frame maps to in the source frame. [ 1] introduced using a
cost volume in a deep learning framework for optical flow
by computing the similarity between features. This idea has
been leveraged in many recent works [45, 48]. However,
naively comparing features at a W x W resolution requires
computing W* values which quickly becomes prohibitively



large. As a result these methods are forced to use a small
cost volume or a tiny batch size.

The grid sampler introduced in [18] provided another
way to model the transformation between images by ex-
plicitly learning the warp field. This was used effectively
by [53] in order to learn meaningful embeddings for faces.
However, gradients only occur in the local neighbourhood
of a point. As a result if the point needs to travel a large dis-
tance between images and there is no smooth colour tran-
sition (as is common in most images), then these gradients
will be useless and the model will fail to learn.

Our hierarchical approach gives a way to address the lim-
itation of both approaches. We can grow the cost volume
to image resolutions of the same size as the original image
with minimal overhead. We additionally do not suffer from
the problem of local gradients. Finally, the hierarchical ap-
proach enforces the spatial constraint — that pixels in a local
neighbourhood move together.

3.2. Modelling occlusion and background

When modelling the transformation between frames it is
possible for part of an object to become occluded (e.g. the
hand moving in front of the face) or un-occluded. Addi-
tionally, there may be parts of the scene that are not visible
in the previous frame (e.g. for the signing videos the back-
ground is a video itself and constantly changing).

To allow the model to express uncertainty due to these
challenges, we use an additional decoder which explicitly
models the confidence ¢” at resolution R, for the trans-
formation at each location in I. Following [33], we as-
sume that the pixel-wise confidence measure is Laplace dis-
tributed and use it to reweigh the photometric loss £}’;h at
each pixel:
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3.3. Dealing with multiple modes

One of the degeneracies that can occur when using the
probabilistic approach is a non-injective mapping due to
multiple colour modes (e.g. the three skin regions — two
hands and the head). For example, a point on the left hand
can be mapped to either hand or the head; the model is
not forced to choose correctly between them. In practice,
the model cheats and maps all these modes to the one that
moves the least (the head).

The key idea here is to use a cyclic loss [41, 63] and
normalisation to enforce uniqueness in order to avoid this
problem. If pixels are transformed from I} to I}, and back
to I%, then they should end up at their original location. If
they do not, then it means multiple points in one image are
mapped to the same point in another.

The cyclic loss enforces that pixels should return to their
original location. It is formulated as the log likelihood of
the expectation that a point in the source frame will end up
back at the same point at level 1 of the hierarchical model,

Zkl - ln(Zij(Allel,ijAzlj,k:l))
WiWy ’

The loss is minimised when each pixel (k,l) in the
source frame maps with probability 1 to a point in the
target frame and that same point in the target maps with
probability 1 to the original point in the source, i.e. when
Ailj,kl = Allcl,ij =1

To enforce uniqueness of the pixel transformation (e.g.
that not all points in the source frame are mapped to the
same point in the target), we perform a normalisation step
before applying the cyclic loss. Points that map to many
others in either the source or the target frame are down-
weighted to give A, ;;:

‘Ccyc = (N

1 1
Aij,kl Aij,kl )
1 ’ 1 :
Zm,n Amn,kl Zm,n Aijmm

The matches that still have a high probability are unique in
both target and source, as required.
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4. Architecture and training

All self-supervised models are trained using 3 levels with
the lowest resolution R; = (32 x 32) which is increased
to resolution Ry = (128 x 128) (as we found additional
levels led to marginal improvements). They are trained with
K =9, A = 1, a learning rate of 0.001 and the Adam
optimizer [25]. When sampling frame pairs from the video,
we sample within a distance of 50 frames from the initial
frame for upper body and horses, 20 frames for full human
body and the whole face track for faces.

Architecture. We use a convolutional architecture similar
to that of [53]. A 256 x 256 image is passed through 8 con-
volutional layers (interleaved with leaky ReLLUs and batch-
normalization) to give a 256D embedding. The confidence
and M -decoder branches have the same structure but dif-
ferent weights. The concatenated embeddings are passed
through 7 upsampling layers (composed of a ReL U, bilinear
upsampler, convolution and batch-norm) to give a 128 x 128
resolution result. The intermediary outputs (e.g. M" o")
are obtained by taking the feature map of resolution R, and
performing a 5 X 5 convolution to compress the number of
channels.

Curriculum training strategy. The final training objective
is the sum of the confidence loss at all layers and the cyclic
loss weighted by a hyperparameter A\, £L = ) . L], +
ALcye.

These losses are trained in a curriculum strategy. As
the predictions of the higher layers depend on those of the



lower layers, we train the lower layers to a good local min-
imum before training the higher layers. We start at the low-
est resolution R; and incorporate new layers when the loss
plateaus. The model can first learn a rough estimation of
how to transform the source frame into the target before it-
eratively refining at successively higher resolutions.

5. Experiments

We apply the learning framework of Section 3 to three
distinct human object classes — upper bodies, faces, and full
human bodies — to demonstrate its utility by modelling a va-
riety of classes with different challenges. In addition to that,
we show that our framework is useful for other, non-human
object classes by presenting qualitative results for horses.
The question we are seeking to answer here is whether the
embedding that we learn from a large set of videos for each
object class has encoded useful information about pose and
shape of the object.

Downstream learning setup. Given an embedding learnt
using self-supervision on one of the large video datasets,
a regressor is trained to map this embedding to the down-
stream task (e.g. landmark prediction). This regressor is
trained and then evaluated on the given train and test sets
of the given dataset. For the regressor we consider a lin-
ear layer or a multi-layer perceptron containing two lay-
ers. While our embedding should learn about pose and ex-
pression, there is no reason to expect that the explicit land-
marks should be linearly related to the embedding (this is
unlike [19], which explicitly encode landmarks in their la-
tent representation). Note that we are not training our en-
coder/embedding but only this regressor.

Training datasets. The upper body embedding is trained
on the Extended BBC Pose dataset [5, 37] of people signing.
The face embedding is trained on the VoxCeleb2 dataset [7]
consisting of faces of people being interviewed. The full
body embedding is trained on the Penn Action dataset [59]
of people performing sporting actions. The horse embed-
ding is trained on the horse subset of the TigDog dataset [8].
As our task is not to perform the detection but to learn a rep-
resentation of the object class, we use the crops provided by
the dataset or, if this is not available, a rough crop based on
the provided information.

Baselines. We compare to two baselines. The first is us-
ing our encoder with random weights; this baseline shows
how well our self-supervised training improves over ran-
dom initialisation. The second baseline is [53] which uses
a similar proxy task and capacity but a different loss func-
tion/architecture to learn the image embedding and a bilin-
ear sampling for the transformation. They do not use a hi-
erarchical approach or confidence predictions. We retrain
[53] on upper body pose and fully body pose datasets using
the authors’ code provided online.

Other methods. We also report the results of other self-

supervised and supervised methods on these datasets. These
approaches vary in terms of how they pre-process their
training data and assumptions made about the downstream
task. We give these numbers to benchmark our approach
against recent progress but note that these setups are not
precisely the same.

5.1. Predicting landmarks

We consider the downstream task of predicting land-
marks from our learnt embedding.
Evaluation metric. In order to evaluate the landmarks on
upper body and full human body, we use the PCK metric
[57]. This metric reports the percentage of correct key-
points within a normalised distance of the ground truth. The
normalised distance depends on the dataset. In the case of
BBC Pose, we use d = 6 pixels as is customary on this
dataset. For FLIC we use a threshold of 0.2ac where « is
the torso diameter [38]. For Penn Action we use a threshold
of 0.2 max(s,,, sp) wWhere s, s;, are the width and height
of the bounding box. For faces, we report the root mean
squared error normalised by the interocular distance.

5.1.1 Upper body

We use the embedding trained on the BBC Pose dataset to
predict upper body landmarks on the same dataset and on
the FLIC dataset [38]. Quantitative results are discussed
below, and qualitative results are shown in Fig. 3.

BBC Pose. The results on BBC Pose are given in Table 1.
We first ablate our approach, demonstrating the utility of
predicting confidences, and of using the cyclic loss L.
Each addition improves the average results and the results
on the most challenging joint, the wrists. Using three levels
as opposed to one improves performance, demonstrating the
utility of the hierarchical approach.

In comparison to other self-supervised methods, our ap-
proach exhibits strong performance. It performs better than
the baseline methods and [19], which was engineered to ex-
tract landmarks. [53] fails on this dataset due to the problem
of local gradients — the movement between frames (e.g. of
the hand) during training is too large, and it degenerates to
predicting the identity transformation. Our approach is also
better or competitive with most of the supervised methods.
Clearly our embedding has indeed learned a semantically
meaningful representation.

FLIC. Given that our approach outperforms the state-of-
the-art on the BBC Pose dataset, we consider how well the
embedding generalises to a new domain, the FLIC dataset,
which consists of the upper body of people in film. The
background and people are very different from the BBC



(b) FLIC. Predicted poses.

Figure 3. Qualitative results on the upper body pose datasets. More examples are given in the supplementary material.

Table 1. Upper body landmark prediction on BBC Pose. Results
reported are the PCK for d < 6. Higher is better. T denotes train-
ing with Extended BBC Pose, else with BBC Pose. The column
Loss specifies the training losses used, L£px(ph), Leye (cyc) and
Lion (con). 7 denotes the level/resolution at which training is
stopped. 7 = 1 corresponds to a generated image of size 32 X 32,
r = 3 to a generated image of size 128 x 128.

Method Loss Rg. Hd Wrt Elb Shldr  Avg
Ours

=11 ph,cyc,con lin 93.7 35.8 72.3 81.6 67.7
=17 phecyceon  21Ir | 942 512 787 824 741
r=3 ph,cyc.con  lin 98.0 30.7 78.9 713 65.6
r=3 phcyccon  21Ir | 965 41.0 824 732 69.9
=31 ph 21Ir 94.3 54.1 79.1 832 75.3
=31 ph,con 2Ir | 960 583 835 83.7 78.1
=37 phcycecon  21Ir | 968 621 821 828 787
Self-supervised

FAb-Net [i}]f 21Ir 73.8 21.8 64.7 61. 529
Rand. init" 21Ir 73.2 232 64.5 54.7 51.1
Jakab et al. [19] lin 81.1 49.1 53.1 70.1 60.7
Supervised

Yang and Ramanan [56] 63.4 53.7 49.2 46.1 51.6
Pfister et al. [37] 749 53.1 46.0 71.4 59.4
Chen and Yuille [6] 65.9 479 66.5 76.8 64.1
Charles et al. [5] 954 739  68.7 90.3 79.9
Pfister et al. [30] 980 885 771 93.5 88.0

Pose dataset. As can be seen in Table 2, our approach gener-
alises well to this new domain, achieving high performance.
Again, using three levels as opposed to one improves per-
formance.

5.1.2 Faces

The second class we consider is faces. As this model is
trained on VoxCeleb2, which has no annotated keypoints,
we test the learned embedding by predicting landmarks on
a variety of other datasets. This additionally tests the em-
bedding’s generalisability.

Our embedding is used to regress landmarks on the
AFLW, 300-W, and MAFL datasets and results are reported

Table 2. Upper body landmark prediction at PCKO0.2 (as defined
in [32]) on FLIC using the embedding trained on Extended BBC
Pose. Higher is better. T The entire model is fine-tuned on the FLIC
dataset, whereas we regress only two layers from the embedding.

Method Rg. Hd Shldr Elb Wrt Avg
Ours

r=1 21r | 942 95.7 825 626 823
r=3 21Ir | 972 97.1 848 652 845
Self-supervised

Random init 21r | 855 90.9 7719 651  79.0
s&L 301 98.1 93.8 87.1 69.7 86.2
Supervised

Newell et al. [32] - - 99.0 97.0 -

in Table 3. For AFLW, we report results on the 5-always
visible landmarks (AFLWS5) as well as for all 21 landmarks
(AFLW21). Qualitative results are shown in Fig. 4.

Our approach performs better than the baseline methods
and other methods designed for predicting landmarks when
trained with similar data. Our method even performs better
than full frameworks trained (self-supervised or supervised)
on the given dataset.

5.1.3 Full body

Finally, we test our method on full bodies using the Penn
Action dataset [59]. The person may be seen from the
front or back and performing a large variety of deforma-
tions which results in an extremely challenging dataset.

We use the learned embedding to regress landmarks.
Quantitative results are reported in Table 4 and qualitative
results in Fig. 5. We perform better than the baselines,
and approach the performance of methods trained with deep
learning on this dataset. Similarly to upper bodies, [53] de-
generates to predicting the identity transformation, demon-
strating the effectiveness of our method.
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(c) AFLWS. Crosses are predictions, dots GT.

Figure 4. Qualitative results on the face datasets. More examples
are given in the supplementary material.

Table 3. Face landmark prediction error on the 300-W and MAFL,
AFLW datasets. Lower is better. T denotes trained on VoxCeleb
172, ¥ on VoxCeleb 1. Note that MAFL is a subset of CelebA and
models trained on CelebA are fine-tuned on AFLW when reporting
results on this dataset. Our embedding is never fine-tuned on these
datasets; only the regressor is trained.

Method Regr. 300-W MAFL AFLWS5 AFLW21
Self-supervised

Trained on VoxCeleb2

Ours

r=3 lin 4.93 3.21 6.73 7.16
r=1 21r 542 3.55 7.30 7.84
=3 21r 4.70 2.98 6.64 7.28
FAb-Net [5 .‘»]T lin 5.71 3.44 7.52 8.08
Jakab et al. [19]* lin - 3.63 6.75 -
Jakab ez al. [201* lin 5.37 - - -
Trained on CelebA

Jakab et al. [19] lin - 2.54 6.33 -
Zhang et al. [60] lin - 3.16 6.58 —
Thewlis et al. [44] lin 9.30 6.67 10.53 -
Thewlis et al. [43] lin 7.97 5.83 8.80 —
Supervised

MTCNN [61] — 5.39 6.90 -
TCDCN [58] 5.54 - 7.65 -
RAR [54] 4.94 — 7.23 -

5.1.4 Non-human object classes: horses

A big advantage of our self-supervised framework is that we
can get embeddings for any object class, provided we have
video data to train with. To show this, we obtain a horse
embedding by training on the horse subset of the TigDog
dataset. We train a 2-layer regressor from the embedding
to the provided keypoints. Example results can be seen in

Figure 5. Full body 2D landmarks results on the Penn Action
dataset.

Table 4. Full body landmark prediction at PCKO0.2 (as defined in
[39]) on rhe Penn Action dataset. Higher is better.

Method Regr. Hd Shldr Elb Wrt Hip Knee Ankl Mean
Ours

r=1 21r 80.7 76.4 66.3 542 793 76.3 76.5 72.6
r=3 21r 83.0 78.8 71.0 58.3 80.9 78.6 76.9 75.1
Self-supervised

FAb-Net [53] 21r 69.3 59.1 50.2 34.0 68.8 622 575 56.4
Random init 21r 70.5 60.4 50.4 35.1 70.9 63.5 539 56.8
Supervised

Park and Ramanan [34] 62.8 52.0 323 233 533 50.2 43.0 453
Nie et al. [55] 64.2 554 33.8 244 56.4 54.1 48.0 48.0
Igbal et al. [16] 89.1 86.4 739 72.0 85.3 79.0 80.3 81.1
Gkioxari et al. [13] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8
Song et al. [39] 97.6 96.8 95.2 95.1 97.0 96.8 96.9 96.4

Fig. 6, more results are shown in the supplementary mate-

rial.

Figure 6. 2D landmarks results on horses from the TigDog dataset.

5.2. Predicting visibility

While we have extensively investigated and demon-
strated the high quality of the learned embedding by using
it to regress landmarks, here we investigate whether the em-
bedding has learned something beyond landmarks. In par-
ticular, we consider whether our embedding can be used
to predict whether a landmark is or is not visible. Self-
supervised methods for detecting landmarks, such as [19]
cannot perform this task, as they explicitly use the land-
marks in their representation.

Both the Penn Action and AFLW datasets have visibil-
ity annotations. We train a 2-layer multi-layer perceptron
from the embedding to predict visibility for each landmark
using a binary-cross entropy loss. We compute the area un-
der the curve (AUC) and average over each landmark. For
AFLW, we obtain 89.0 AUC and for Penn Action 77.4 AUC.
A network with random initialisation achieves 63.3 AUC
for PennAction and 76.6 for AFLW. This demonstrates that
our method has learned something beyond just 2D position-

ing.



6. Conclusion

We have introduced a novel method for learning an em-
bedding which encodes high-fidelity 2D landmarks using
self-supervision on video. Because our method is self-
supervised, we can incorporate an unlimited amount of data
from varied domains to improve the learned embedding and
only use a small set of training data in order to learn the
mapping from the embedding to downstream tasks or do-
mains. We explore further in the supplementary material
how the downstream performance varies with the size of
this downstream training set. We have demonstrated the
method for four distinct deformable or articulated classes,
but it is equally applicable to rigid classes (e.g. cars).

There are many interesting future directions. The em-
bedding can be learnt for more animal classes and used for
other downstream tasks. Also, the embedding could be ex-
tended to incorporate the temporal component implicit in
the video in order to summarise multiple frames.
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